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ABSTRACT: The discovery of electrochemical switching of the Lα

phase of chlorpromazine hydrochloride in water is reported. The
phase is characterized using polarizing microscopy, X-ray scattering,
rheological measurements, and microelectrode voltammetry. Fast,
heterogeneous oxidation of the lyotropic liquid crystal is shown to
cause a phase change resulting from the disordering of the
structural order in a stepwise process. The underlying molecular
dynamics is considered to be a cooperative effect of both increasing
electrostatic interactions and an unfolding of the monomers from
“butterfly”-shaped in the reduced form to planar in the oxidized
form.

■ INTRODUCTION

Conformational changes in redox-active molecules can be
triggered electrochemically.1 Such changes do not always have
to occur simultaneously with heterogeneous electron transfer;
they can both precede, or follow from, the electron transfer
event2 so that voltammetry can identify intermediates and
evaluate their lifetimes. One of the characteristics of conforma-
tional change occurring in concert with electron transfer is
sluggish electrode kinetics, since this can affect the
reorganization energy for the heterogeneous electron transfer,3

as seen for the reduction of cyclooctatetraene1,3,4 and some of
its derivatives1 and nitrogen analogues,1,5 wherein a nonplanar,
“tub”-shaped neutral molecule affords a planar anion
radical.1,3−5 A second, more important, feature is due to the
fact that any intermediate state does not last more than a few
vibrations6 so that the observation is that there is a complete
absence of an intermediate, even at the fastest, nanosecond
timescales (corresponding to a few million volts per second
scan rates) that can be explored voltammetrically.7,8

Complications in the following conformation change resulting
from heterogeneous electron transfer include ion pairing1 and
potential inversions for two-electron transfers.9 In this article,
following reports of electron transfer-induced mesomorphism
in thermotropic liquid crystals based on ferrocene deriva-
tives,10−12 and in nickel(II)-based mesogenic systems,13 we
investigate whether the mechanism of electrochemically
trigged conformational change can change as a result of
close-packing monomers within a self-assembled, redox-active,

liquid nanosystem (viz., lyotropic liquid crystal) based on
chlorpromazine hydrochloride.
The tranquilizing drug, chlorpromazine (Figure 1a), and its

derivatives are often used as one-electron mediators in
electrochemistry,14 as well as in the treatment of schizo-
phrenia;15 its biological activity is thought to derive from its
facile oxidation and photo-oxidation to a stable cation
radical16−40 and its flexibility:31−37 in the solid state and in
solution, the neutral molecule folds about the N−S axis with
the central six-ring in a boat confirmation (“butterfly”-shaped,
dihedral angle of 139−153°, Figure 1a), with rapid molecular
motions that include those associated with the side chain,
pyramidal inversion at nitrogen and ring inversion, even at low
temperatures.35 Oxidation to the cation radical flattens the ring
system through relaxing steric repulsions and readjusting the
side chain,33 so that the dihedral angle opens up to 170−
180°.31−37 In contrast, further oxidation to the dication
followed by hydrolysis with water yields the corresponding
sulfoxide, which is thought to exist with the central six-ring in
the boat conformation, at least in the solid state.36 Accordingly,
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the conformational change on oxidation to the cation radical
affords a bathochromic shift in the absorption: slightly yellow
chlorpromazine24,25,41 (white as the hydrochloride on the side
chain,21,38,41 pKBH

+ = 9.15−9.3) converts to the pink cation
radical22,38 (λmax = 526−534, 775−865 nm); the sulfoxide is
known to be red.22 Chlorpromazine is a surfactant,42−56

affording “cup-stack” micelles54 (where the hydrophobic core
comprises the aromatic rings, with the alkyl chains penetrating
into the aqueous pseudophase, enabling the formation of a
micellar palisade layer), with a critical micelle concentration
(cmc) that depends on the ionic strength, electrolyte nature
and temperature of the aqueous solution:42,43,46−52,55 it ranges
between 21 and 27 mM at ambient temperature in water,
decreasing to between 2 and 8 mM (aggregation number
between 6 and 40) in the presence of 0.1 M NaCl. It is notable
that even at concentrations two orders lower than the cmc,
self-association of chlorpromazine can occur.45 Indeed, we
have been able to observe aggregates (7.5 ± 2.0 nm radius,
assumed spherical, Figure 1b) in an aqueous solution
containing 13.1 mM chlorpromazine hydrochloride and 36.0
mM zinc chloride (corresponding to an ionic strength of ca.
0.1 M), roughly in agreement with cmc aggregation numbers
for micelles in which the hydrophobic core is a stacked bilayer
of aromatic rings:54 treating chlorpromazine hydrochloride as
having planar dimensions of 1 nm × 1 nm, with 0.33 nm
interplanar distance between monomers,54 and assuming the

aggregates illustrated in Figure 1b as having a longest length of
15 nm, the monolayer aggregation number n can be estimated
from the relationship: n(1 nm) + (n − 1)(0.33 nm) = 15 nm,
yielding n∼ 10, and thus a micelle aggregation number, N ∼
20 for a bilayer system. This is in agreement with experimental
estimates42,43,49,51 of between 12 and 40 for chlorpromazine
hydrochloride at the cmc (8 mM for 0.1 M NaCl).
Surprisingly, however, lyotropic liquid crystals of chlorproma-
zine in water have never been reported. Accordingly, we first
examine the electrochemical switching behavior of chlorpro-
mazine hydrochloride in dilute solution, and subsequently
investigate both structural and electrochemical effects within
its lyotropic liquid crystalline phase.

■ RESULTS AND DISCUSSION
One-electron voltammetric oxidation of chlorpromazine (in
aqueous 0.1 M KCl) yields the cation radical (Figure 2a). In
the absence of nucleophiles or electron donors,18−22,57−66 this
species is considered to be stable in solution (decaying in
unbuffered water at pH 7 with a first-order rate constant of
2.9 × 10−3 s−1 at ambient temperature).19 As evidenced in
Figure 2b, the electron transfer is Nernstian at low scan rates
(<100 mV s−1), where the peak oxidation ( Ep

Ox) and reduction
(Ep

Red) potentials become independent of the voltammetric
timescale. The second oxidation to afford the dication (not
shown) occurs typically at ca. 400 mV greater potentials. At
chlorpromazine concentrations below (or near) the cmc, the
peak-to-peak potential difference (ΔEpp) also indicates slight
deviation from electrochemical reversibility (75.8 ± 10.6 mV),
this changes to electrochemical quasi-reversibility above the
cmc (ΔEpp = 97.6 ± 13.8 mV). Curiously, the oxidative peak
potential shifts positively by 24.4 mV/decadic change in
chlorpromazine concentration, whilst the reverse peak moves
only by 11.9 mV/decade. This has the effect of making the
oxidation process more difficult as the degree of aggregation
increases, with Emid = 1

2(Ep
Ox + Ep

Red) varying by
18.2 mV/decade. This is in agreement with literature studies
on the influence of self-assembly on redox properties.65−68

Accordingly, we suggest this reflects the additional energy
required to separate aggregated molecules, owing to both the
increased charge and the “butterfly-shaped”-to-planar tran-
sition that occurs on oxidation, which is manifested through an
intrinsic activation barrier.6 Given that ring inversion in dilute
solutions of chlorpromazine is considered to be rapid, even at
low temperature,35,54 we thus suggest that these data are
consistent with conformational change occurring in concert
with electron transfer.
The growth of the aggregates to afford micelles and then

larger micelles can be inferred from the voltammetric data in
Figure 2a,69 through the extraction of the diffusion coefficient
(D) from Randles−Ševcǐḱ plots illustrating the variation of the
peak oxidative current (ip

Ox, from the first cycle) with scan rate

(v), using the equation i FSc D0.443 Fv
RTp

Ox
0= where F is

the Faraday constant (96 485.3 C mol−1), S is the geometric
area of the working electrode, T is the absolute temperature,
and R is the molar gas constant (8.3145 J mol−1 K−1). As
indicated in Figure 2c, the diffusion coefficient decreases with
increasing chlorpromazine concentration, even when corrected
for the increased viscosity of the solution.70 Note that the data
reported in Figure 2c were also extracted from peak oxidation
currents from cyclic voltammograms in aqueous acetate buffer
at pH 4, and through Levich plots of the limiting current of

Figure 1. (a) Structure of chlorpromazine hydrochloride in planar
(left) and quasi-equatorial (right) conformations. The latter has been
drawn to emphasize the boat conformation of the central six-ring. (b)
Transmission electron micrograph of chlorpromazine hydrochloride
aggregates obtained in an aqueous solution comprising 13.1 mM
chlorpromazine hydrochloride and 36.0 mM zinc chloride. The scale
bar corresponds to 50 nm.
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steady-state voltammograms (ilim) obtained at a channel flow
electrode against the cube root of the volume flow rate (Vf),
over a limited range of volumetric flow rates (5−50 μL s−1). In
the latter, diffusion coefficients were determined using the

expressions,71 ilim = FSc0km and ( )Sh Pe1.849 d
x

1/3
e

e
= , where

km is the average mass transport coefficient, Sh is the Sherwood
number, Pe is the Pećlet number, de is the hydraulic diameter,

Figure 2. (a) Cyclic voltammograms (fourth scan from a series of four cycles illustrated) for the oxidation of 1.0 mM chlorpromazine
hydrochloride in aqueous 0.1 M aqueous potassium chloride solution, recorded using a 3.0 mm diameter glassy carbon working electrode swept at
a rate of 0.1 V s−1 (green), 0.5 V s−1 (black), 1.0 V s−1 (blue), and 2.0 V s−1 (red) . (b) Variation of the voltammetric peak potentials (from the
first scan) with experimental timescale at various concentrations of chlorpromazine hydrochloride: 1.0 mM (red circles), 10 mM (blue squares),
100 mM (black diamonds); open symbols refer to the oxidative peak, with filled symbols corresponding to the re-reductive peak. Data points are
plotted as the average over two measurements, with error bars indicating one standard deviation. (c) Variation of the diffusion coefficient, D, (left)
and aqueous solution (0.1 M KCl) viscosity, η (right), with chlorpromazine hydrochloride concentration (c0). For the left panel, the aqueous
solution was 0.1 M KCl (green diamonds and blue squares as an internal laboratory repeat), pH 4 acetate buffer with 0.1 M KCl (magenta
triangles), from cyclic voltammetric measurements at a 3.0 mm glassy carbon electrode, and 0.1 M KCl using steady-state currents at a 5.5 mm ×
4.5 mm platinum channel flow electrode (red circles). The black line is the average of all of the data illustrated, with the error bar representing one
standard deviation.
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Figure 3. (a) Polarizing microscope images (under crossed-polarizers) of the Lα phase of chlorpromazine hydrochloride in water at 10.0 mol kg−1,
freshly prepared (left, magnification × 100) and after 4 months of standing in light and air (middle). Note that in the latter image, a part of the slide
outside the cover plate was imaged so as to illustrate the contrast. The image on the right-hand side illustrates the formation of the oxidized
material (red-pink) on top of the un-oxidized material (yellow). (b) UV−visible absorption spectrum of the Lα phase of chlorpromazine
hydrochloride in water at 10.0 mol kg−1. (c) Rheological properties of the chlorpromazine hydrochloride/water system at various chlorpromazine
hydrochloride molalities (m0): left, viscosity (η) as a function of molality; right, basic shear diagram affording plastic viscosities of 201.2, 306.6, and
499.7 P, and Bingham yields of 30.9, 45.3, and 53.1 Pa for m0 = 7.5, 10.0, and 12.5 mol kg−1, respectively. (d) X-ray scattering patterns obtained
from the Lα phase of chlorpromazine hydrochloride in water at 10.0 mol kg−1. The primary beam is not shown.
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and xe is the electrode length. The data in Figure 2c indicate
consistency in the measurements made with different
techniques, and suggest a cmc of ca. 10 mM, with self-
association of chlorpromazine hydrochloride occurring well
below this concentration, in agreement with the literature.42−54

The continual decrease of diffusion coefficient with increasing
chlorpromazine concentration, which is consistent with the
notion of increasing micellar size, prompted the investigation
as to whether a lyotropic mesophase could be formulated
while N-alkyl-phenothiazines have been studied when
incorporated into lyotropic liquid crystals,72 to the best of
our knowledge, no lyotropic liquid crystals based on such
derivatives have been reported. Here, the idea was to seek to
magnify the effect of conformational change through
cooperative effects associated with self-assembly into tight
liquid nanosystems.65

Formulations of 1.0 and 2.0 mol kg−1 chlorpromazine in
water appeared dark when viewed under crossed-polarizers,
indicative of the normal micellar phase; further addition of
chlorpromazine to 5.0 mol kg−1 yielded transient birefringence
and Myelin figures, which on further addition to 10.0 mol kg−1,
yielded stable, long-lasting birefringence, even in the presence
of mechanical agitation of the phase. Under crossed-polarizers,
classical, rough, oily-streak textures were observed (Figure 3a).
These are typical of lamellar (Lα) lyotropic liquid crystals.
Concurrent with this was the change in the color of the
chlorpromazine/water mixture: dilute aqueous solutions are

clear and colorless; this changed to a cloudy, pale yellow
viscous mixture by 10.0 mol kg−1, with a large absorption band
occurring in the violet-to-blue region (300−420 nm, Figure
3b), which is in contrast to the well-defined peaks that occur in
dilute solution.53 The onset of liquid crystallinity in the
formulation is marked by the discontinuous increase in the
viscosity measured at a constant shear rate of 1.13 Hz between
5.0 and 7.5 mol kg−1 (Figure 3c). Indeed, the basic shear
diagrams presented in Figure 3c demonstrate Newtonian
behavior at 5.0 mol kg−1, with shear thinning, Bingham plastic
behavior (plastic viscosities and yield stresses were deter-
mined73 through the fit of shear stress with shear rate in the
range 0.2−4 Hz, to yield plastic viscosity >200 P, increasing
with molality) for the liquid crystalline material (m0 > 5.0 mol
kg−1), as expected for lamellar (Lα) lyotropic liquid crystals:74

the shear stress, at high shear rates (>0.2 Hz), increases
roughly as a linear function of the shear rate, corresponding to
large yield stresses (>30 Pa) which increase with the volume
fraction of chloropromazine hydrochloride; this increase
gradually tails off at shear rates larger than ca. 4 Hz, as
expected.74 For all three liquid crystal systems examined, there
are discontinuities in the flow behavior at low shear rates
(<0.2 Hz). This is attributed to “wall slip” where micelles may
deplete from the liquid region closest to the surface enabling a
thin layer of pure continuous phase to form adjacent to the
surface, lowering the viscosity.75,76 X-ray scattering (Cu Kα

radiation at 1.54 Å) was used to characterize the structure of

Figure 4. Microelectrode voltammetry of the Lα phase of chlorpromazine hydrochloride in water at 10.0 mol kg−1 at an 11 μm diameter carbon
microelectrode. The main image is the variation of the peak potentials with experimental timescale (the error bars correspond to one standard
deviation), with peripheral images illustrating four consecutive cycles in the voltammetry at 500, 100, 20, 10, 5, 1, and 0.5 mV s−1. In these images,
the first cycle is shown in red, with the subsequent cycles being first in blue, then green, and finally black.
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the Lα phase at 10.0 mol kg−1 (Figure 3d), wherein it is seen
that, at small angles (3.65° ≤ 2θ ≤ 11.0°), there are three
Bragg spacings (strong first- and second-order reflections, with
a very weak third-order reflection) in the ratio 1:1/2:1/3,
characteristic of the large separations of the Lα arrangement.
The fundamental crystal spacing (d) was determined using the
Bragg equation: d (Å) = 1.54/(2 sin θ), with the scattering
vector (q) estimated through q = 2π/d, so that Bragg ratios
q/q0 could be determined, in which q0 is the fundamental
repeat distance in the lamellar system (viz. center-to-center
separation between surfactant aggregates). We calculated a
fundamental repeat distance of 2.42 nm, corresponding to the
thickness of the surfactant and the water layers. For this 10.0
mol kg−1 formulation (78 wt %), the thickness of the individual
surfactant layers is estimated as 1.88 nm, which, in the light of
X-ray crystallographic data for chlorpromazine hydrochloride,
suggests the formation of a surfactant bilayer, as expected. The
diffuse peak occurring at the wide angle of 2θ = 20.3°,
corresponds intra-aggregate spacings (0.44 nm) between the
alkyl chains.54 This tight-packing of the individual monomers
suggests that conformational change upon oxidation may
disrupt the Lα phase. Indeed, incubation results of the samples
in the dark and in the absence of oxygen over a period of four
months were observed to be stable and retained their pale
yellow coloration; in contrast, samples exposed to both
sunlight and oxygen developed a pink-red coloration, which,
did not exhibit optical anisotropy when viewed through
crossed-polarizers (Figure 3a), indicative of mesomorphism.
This is in line with the expectation that flattening the
chlorpromazine structure increases the molecular volume of
the hydrophobic core, thereby increasing the area of the head
group relative to the core through self-distancing of the
individual oxidized monomers, and changing the aggregate
curvature from zero (Lα) to positive. We did not undertake a
chemical analysis of the pink-red material; it is likely that this is
a mixture of the cation radical and the sulfoxide.22,24−30,39,64

The apparent fast conformational change in oxidation of
chlorpromazine in dilute solution, but slow oxidative break-
down of the long-range order in the 10.0 mol kg−1 anisotropic
phase was next investigated through microelectrode voltam-
metry (Figure 4) so as to quantify the effective relaxation time.
Microelectrodes have the multiple advantages of being
sufficiently small in size so that only small amounts of material
need to be prepared, whilst providing improvements in signal-
to-noise ratio, at steady-state, at reduced Ohmic loss. Since the
resistance at a disk electrode of radius r0 is ρ/4r0, where ρ is
the bulk resistivity of the Lα phase (experimentally determined
as 46.4 Ω cm), the Ohmic drop is then ca. 2 mV at the highest
scan rates used (corresponding to a maximum current flow of
ca. 100 nA). It is clear that a single pair of well-defined
Nernstian oxidation and reduction signals is observable at high
scan rates (ΔEpp = 74 ± 10 mV), corresponding to the
oxidation of chlorpromazine to the corresponding cation
radical and its re-reduction, with the reverse peak being
considerably thinner than the forward, oxidative peak (cf. half-
peak widths of ca. 20 mV with 50 mV for the reverse and
forward waves, respectively). At higher potentials, typically
around 200 mV more positive (at a scan rate of 100 mV s−1)
than those illustrated in Figure 4, a second oxidation wave is
observable (data not shown) corresponding to the oxidation of
the cation radical to the dication. As for the case in dilute,
isotropic solution, this second oxidation wave is chemically

irreversible, owing to nucleophilic attack by water on the
dication.64

The quantitative treatment of the voltammograms requires
the effective concentration (in moles per unit volume of the
phase)77,78 to be known. The density of the 10.0 mol kg−1 Lα

phase was determined to be 1.30 ± 0.12 g mL−1, leading to an
effective concentration, c0 of 2.858 ± 0.263 M. The diffusion
coefficient was determined as being (2.0 ± 0.3) × 10−12 m2 s−1

from Randles−Ševcı̌ḱ plots using data from the higher scan
rates investigated (≥75 mV s−1). Given the liquid crystalline
phase is optically anisotropic, it follows that diffusive transport
to the electrode might, likewise, be anisotropic. Surprisingly,
however, diffusion within the Lα phase was found to be
essentially isotropic, viz. the axial diffusion coefficient (Dz) is
not significantly different from the tangential diffusion
coefficient (Dr): following previous protocols,78 and using
D D D 2.0 0.3 10 m sr z

12 2 1= = ± × − − , t h e fi r s t - c y c l e
oxidative peak currents ( ip

Ox) for the high-scan

reg ime were dimens iona l ized us ing
i

FDr cp 4
p
Ox

0 0
ψ = =

a v0.34 e 0.66 0.13 e 0.351a v a v0.66 11/( )+ − +− − , where

a r
D

F
RT

0

r
= . A nonlinear least-square fit, using the Leven-

berg−Marquardt algorithm afforded a good correlation using
c0 = 2.858 M (coefficient of determination, R2 = 0.9803), with
Dr = (2.5 ± 0.4) × 10−12 m2 s−1 and Dz = (1.6 ± 0.7) × 10−12

m2 s−1. We suggest that this apparent transport isotropy arises
from the fact that the hydrophobic core is a bilayer of aromatic
rings, with the electron lost from the ring nitrogen.33,64

The cation radical is less stable in the Lα phase than in
aqueous solutionsequential scanning of the voltammetric
perturbation reveals the gradual loss of material at higher scan
rates. However, on lowering the scan rate, the voltammograms
stabilize (cf. the voltammograms at 1 and 500 mV s−1 in Figure
4), and exhibit characteristics corresponding to a switch in
diffusion regime (from one- to two-dimensional diffusion) at
longer timescales,79,80 with essentially stable scans on repetitive
cycling, indicative of chemical reversibility with fast heteroge-
neous electron transfer. The variation of the one-electron
oxidation peak potentials with scan rate, illustrated in Figure 4
is consistent with a first-order transition corresponding to an
electrochemically triggered breakdown of the liquid crystal
order (mesomorphism), with the voltammograms at the higher
scan rates (≥75 mV s−1) typically exhibiting relatively
unperturbed, reversible Nernstian waves (peak potentials
being independent of scan rate, half-peak widths of 52 ±
5 mV) based around a formal potential of 0.75 ± 0.1 V vs Ag/
AgCl/Cl−, effectively uncomplicated by follow-on kinetics,
whilst those at lower scan rates being thinner (40 ± 10 mV),
and eventually reversible Nernstian waves centered around a
new formal potential 0.71 ± 0.1 V vs Ag/AgCl/Cl−. At these
lower scan rates, the oxidation becomes easier, with the peak
shifting by 30 ± 7 mV/decade, and eventually become
independent of scan rate. This corresponds to the reversible
oxidation of chlorpromazine into an equilibrium mixture (lg K
= 0.45 ± 0.24) of the radical cation in both the Lα phase and
the normal micellar solution, with a first-order rate constant for
the phase change of 0.70 ± 0.15 s−1, estimated from the KG to
DE transition in the reported kinetic zone diagram.81

The phase change results in an apparent paradox at very low
scan ratesthe voltammograms in Figure 4 take on the shape
expected for an electrochemically irreversible system, but do
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not exhibit decreasing signals upon repetitive cycling. This
suggests that, at these slow scan rates (<1.0 mV s−1), there is
sufficient time for the electrochemically triggered phase change
to be irreversible, giving rise to the observed waveshape.
Moreover, under these conditions, the marked increase in peak
oxidation current and its shift toward more positive potentials
is rationalized as being due to an increase in the local viscosity
of the system upon mesomorphism. This analysis assumes that
there is negligible volume change during the phase trans-
formation driven by both conformational change and electro-
static interactions. Work on the voltammetry of redox liquid
microdroplets, which may generate a phase (due to counterion
insertion) starting from the triple phase boundary, suggests
that such volume changes, even for immiscible phases, tends to
either have little effect on the voltammetry or yield subsequent
scans with oxidative peaks shifted negatively.82 The peak shift
between the first scan and the stabilized third/fourth scans in
the voltammograms recorded at 0.5 mV s−1 is 10.1 mV.
Although this is comparable with the average error in the
recording of the first scan of the voltammograms over several
experiments (ca. 8 mV), and neglecting reference potential
drift, given the voltammgrams at 1 mV s−1 and higher, the peak
potential in this region of the EC mechanism is given83 by

( )E E ln 1.109RT
F

D
D

RT
Fp

Ox 0
2

Red

Ox
= + +″ , where E0″ is the formal

potential for the oxidation of the system to afford an
equilibrium mixture and Di (i = Red or Ox) is the diffusion
coefficient of the reduced and oxidized species. Thus, we find
DRed ∼ 3Dox, indicating that the diffusion coefficient for the
cation radical in the disordered, normal micellar solution to be
ca. three times smaller than that in the ordered Lα phase. This
is roughly in line with expectation, based on the viscosity
trends illustrated in Figure 3c, where molecular ordering to
form a lamellar phase results in a reduced viscosity than would
be expected from the normal isotropic phase. It thus follows
that the tightly packed nature of the lyotropic phase enables
high rates of electron hopping across bilayer sheets. This is
Dahms−Ruff electron hopping, the rate constant for which
may be calculated from the diffusion coefficient:84 D k c1

6
2

0δ= ,

where k is the self-exchange rate constant, c0 is the effective
homogeneous concentration, and δ is the thickness of the
water layer separating the surfactant pseudophase, determined
from X-ray scattering to be 0.54 nm. The isotropic diffusion
coefficient suggests a rate constant of ca. 1.5 × 107 M−1 s−1,
which is reasonably high, whilst the less ordered system is
probably limited through translational diffusion through the
viscous surfactant system.

■ CONCLUSIONS

In summary, the amphiphile chlorpromazine hydrochloride
(CPZ·HCl) aggregates in dilute solution at concentrations
smaller than the cmc; the latter is readily seen through a
marked change in the diffusion coefficient with concentration.
One-electron oxidation occurs with a conformation change
from butterfly to planar shape. Although this unfolding process
is electrochemically reversible, it becomes increasingly sluggish
with aggregation, indicative of a concerted electron-conforma-
tional change. We have discovered that the micelles themselves
can aggregate further to form lamellae for the surfactant
pseudophase, yielding a lyotropic liquid crystal. Although this
phase is optically anisotropic, electron hopping transport
within this phase is essentially isotropic. Oxidation breaks

down this ordered structurethe oxidized liquid crystal has a
half-life of ca. 1.0 s, to yield an isotropic phase (N). This
oxidation can be mediated by oxygen and light, or occur
heterogeneously at an electrode surface, with fast electrode
kinetics consistent with the following mechanism:
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The underpinning molecular rationale for this stepwise
mesomorphism is either due to increased electrostatic
interactions that are poorly supported by the counterions, or,
more likely, due to the change in space required by the
butterfly-to-planar transition. Such phase transitions may find
application of these switchable materials for the development
of new types of redox sensors, based on polarizing microscopy
or electrochemical techniques.

■ EXPERIMENTAL SECTION
All chemical reagents were purchased from Sigma-Aldrich in
the purest commercially available grade and used as received.
Water, with a resistivity of not less than 18 MΩ cm, was taken
from an Elgastat system (Vivendi). Nitrogen and argon were
obtained from Energas, Ltd, U.K..
Viscosities of dilute solutions were measured using an

Ubbelohde viscometer mounted within a water bath thermo-
statted to 298 K. The viscometer was calibrated using pure
water. Transmission electron microscopy was undertaken using
a JEOL JEM1200EXII instrument equipped with energy-
dispersive spectrometry (EDS) analysis (INCA Energy 350,
Oxford Instruments). Images were acquired using a Gatan dual
view camera.
Concentrated solutions and lyotropic liquid crystals were

prepared by mixing the required mass of chlorpromazine
hydrochloride with nitrogen- or argon-purged water in the
appropriate wt % ratio in screw-capped vials sealed with
Parafilm, followed by heating in a water bath, with stirring to
approximately 363 K for 60 min, thereby achieving sample
homogenization in the normal, isotropic micellar phase. The
samples were then allowed to cool to ambient temperature
(294 ± 2 K) prior to further experimentation at this
temperature. Long-term (four months) exposure of the
material to both oxygen and sunlight was undertaken through
regular (weekly) opening of the sample vial to enable gas
exchange, and keeping the glass vial containing the sample on a
south-facing windowsill.
Concentrated samples were examined using an Olympus

BX-51 optical polarizing microscope, equipped with a digital
camera for image capture. Ultraviolet−visible spectrophotom-
etry was undertaken using a PerkinElmer Lambda-25-Scan-
UV−Vis instrument, using a quartz cell of 1.0 cm path length.
X-ray scattering measurements were undertaken through filling
capillary tubes with the viscous sample, placed into an
MAR345 diffractometer with a two-dimensional (2D) image
plate detector (Cu Kα radiation, graphite monochromator, λ =
1.54 Å, 130−300 mm detector-sample distance, with an
exposure time of 30 min). The samples were heated (between
297 and 363 K) in the presence of a magnetic field using a
home-built capillary furnace. The bulk electrical resistivity of
the samples was measured using a CDM210 conductivity
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meter equipped with a four-pole CDC511T conductivity cell
(Radiometer) inserted vertically into the sample. Rheological
measurements were made using a Bohlin CVO 120 high-
resolution rheometer in the controlled rate mode with a
truncated cone (4° cone angle, 40 mm cone diameter) in plate
geometry (200 μm gap width), at a temperature of 298 K. The
lowest shear rate applied was 0.1 s−1. For each step, shear was
applied for ca. 10 s, during which the shear stress was
measured and the viscosity of the material calculated.
Measurements made where the deviation between the achieved
and target shear rate was >5% were rejected.
Electrochemical experiments were undertaken using a

variety of potentiostats (μAutolab Type III, or Autolab
PGSTAT30, or a PalmSens Instrument). Cyclic voltammetry
experiments employed a silver/silver chloride reference
electrode (BAS), a nickel spiral or nichrome wire counter
electrode, and a glassy carbon working electrode (of diameter
3.0 mm, BAS). In the case of dilute solutions, samples were not
degassed prior to oxidative electrochemistry, but the working
electrode was cleaned and polished using an aqueous 0.3 μm
alumina slurry on a wetted, napped polishing cloth before
every experiment so that a clean surface was exposed to
different locations of the sample for every change in
experimental variable. For voltammetric experiments within
the redox liquid crystal, to overcome any effects due to wall
slip, the phase was allowed to melt into the normal, isotropic
micellar phase under argon, prior to insertion of the cleaned
and polished 11.0 μm carbon microelectrode, together with the
reference and counter electrodes. This system was then cooled
to ambient temperature so that the insertion of the electrodes
would not shear the liquid crystal. This procedure was repeated
for every scan rate examined. For channel electrode measure-
ments of dilute aqueous solutions, a bespoke, rectangular
channel flow base plate (of length, L = 7 cm; width, d =
0.6 cm) was machined in PTFE using a CNC, covered with an
optically pure silica cover plate (Optiglass, Ltd., Hainault,
Essex, U.K.), and sealed with adhesive (Stick 2, Ever Build) so
that the channel depth is 2h = 0.08 cm, where h is the half-cell
depth. A platinum foil working electrode (of length, xe = 0.55
cm, and width, w = 0.45 cm, measured accurately within a
traveling microscope) was positioned so that its upstream edge
was located two-thirds of the channel length downstream from
the flow entrance. The platinum foil was connected via contact
through the verso face with conductive epoxy through a hole at
the bottom of the channel, and was polished using a cotton
swab impregnated with 0.3 μm alumina slurry prior to sealing
the channel flow cell. The long entry length (le) enabled the
establishment of a laminar, Hagen−Poiseuille flow85 (le >
0.034hRe, where Re is the Reynolds number, defined as Re =
deû/ν, in which de is the hydraulic diameter, de = 4hd/(2h + d),
û is the free stream and average velocity, and ν is the kinematic
viscosity), using a syringe pump (Fusion 200, CHEMYX) to
drive the solution to flow between 5 and 50 μL s−1,
corresponding to 1.5 ≤ Re ≤ 15. A saturated calomel reference
(Radiometer) was positioned upstream to the channel flow
cell, with a platinum mesh counter electrode placed down-
stream of the flow cell, so that the products formed on the
counter electrode would not interfere with the process
occurring on the working electrode during the recording of
steady-state currents.
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(41) Domanśka, U.; Pelczarska, A.; Pobudkowska, A. Solubility and
pKa determination of six structurally related phenothiazines. Int. J.
Pharm. 2011, 421, 135.
(42) Attwood, D.; Boitard, E.; Dubes̀, J.-P.; Tachoire, H.
Calorimetric study of the influence of electrolyte on the micellisation
of phenothiazine drugs in aqueous solution. J. Phys. Chem. B 1997,
101, 9586.
(43) Attwood, D.; Natarjan, R. Micellar properties of chlorproma-
zine hydrochloride in concentrated electrolyte solutions. J. Pharm.
Pharmacol. 1983, 35, 317.
(44) Attwood, D.; Mosquera, V.; Villar, V. P. Thermodynamic
properties of amphiphilic drugs in aqueous solution. J. Chem. Soc.,
Faraday Trans 1 1989, 85, 3011.
(45) Attwood, D.; Waigh, R.; Blundell, R.; Bloor, D.; Thévand, A.;
Boitard, E.; Dubes̀, J.-P.; Tachoire, H. 1H and 13C NMR studies of the
self-association of chlorpromazine hydrochloride in aqueous solution.
Magn. Reson. Chem. 1994, 32, 468.
(46) Pérez-Rodríguez, M.; Varela, L. M.; Taboada, P.; Attwood, D.;
Mosquera, V. The temperature dependence of the micellisation of
chlorpromazine hydrochloride in aqueous solution. Colloid Polym. Sci.
2000, 278, 706.
(47) Attwood, D.; Mosquera, V.; Novas, L.; Sarmiento, F.
Micellisation in binary mixtures of amphiphilic drugs. J. Colloid
Interface Sci. 1996, 179, 478.
(48) Attwood, D.; Florence, A. T.; Gillan, J. M. N. Micellar
properties of drugs: properties of micellar aggregates of phenothia-
zines and their aqueous solutions. J. Pharm. Sci. 1974, 63, 988.
(49) Attwood, D.; Mosquera, V.; Rey, C.; Vasquez, E. Self-
association of amphiphilic phenothiazine drugs in aqueous solutions
of low ionic strength. J. Chem. Soc., Faraday Trans. 1991, 87, 2971.
(50) Attwood, D.; Dickinson, N. A.; Mosquera, V.; Villar, V. P.
Osmotic and activity coefficients of amphiphilic drugs in aqueous
solution. J. Phys. Chem. E 1987, 91, 4203.
(51) Ruso, J. M.; Attwood, D.; Taboada, P.; Suaŕez, M. J.;
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