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Structural brain imaging studies have shown that obesity is associatedwithwidespread reductions in graymatter
(GM) volume. Although the body mass index (BMI) is an easily accessible anthropometric measure, substantial
health problems aremore related to specific body fat compartments, like visceral adipose tissue (VAT).We inves-
tigated cortical thickness measures in a group of 72 healthy subjects (BMI range 20–35 kg/m2, age range
19–50 years). Multiple regression analyses were performed using VAT and BMI as predictors and age, gender,
total surface area and education as confounds. BMI and VAT were independently associated with reductions in
cortical thickness in clusters comprising the left lateral occipital area, the left inferior temporal cortex, and the
left precentral and inferior parietal area, while the right insula, the left fusiform gyrus and the right inferior
temporal area showed a negative correlation with VAT only. In addition, we could show significant reductions
in cortical thickness with increasing VAT adjusted for BMI in the left temporal cortex. We were able to detect
widespread cortical thinning in a young to middle-aged population related to BMI and VAT; these findings
show close resemblance to studies focusing on GM volume differences in diabetic patients. This may point to
the influence of VAT related adverse effects, like low-grade inflammation, as a potentially harmful factor on
brain integrity already in individuals at risk of developing diabetes, metabolic syndromes and arteriosclerosis.

© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Functional and morphological brain changes are associated with
obesity. Previous neuroimaging studies demonstrated increased neural
activation to food cues in obese compared to lean subjects in brain
regions associated with reward, gustation, emotion, cognitive control
and memory (Carnell et al., 2012). Furthermore, structural alterations
in obesity have been investigated using volume-based morphometry
(VBM). Hereby obesity was associated with reduced gray matter (GM)
density compared to lean subjects in prefrontal, somatosensory, insular,
temporal, cerebellar and subcortical regions (Kurth et al., 2013;
Pannacciulli et al., 2006). In general, obesity is determined by the body
mass index (BMI). However, it is well known that the risk of developing
obesity related diseases is increased by specific body fat distribution and
insulin resistance (Stefan et al., 2008). Individuals with abdominal
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adiposity, showing increased visceral adipose tissue (VAT), have an en-
hanced risk of metabolic complications. Raschpichler et al. (2013) dem-
onstrated in young adults reduced GM volume exclusively in cerebellar
areas with increased VAT. In comparison to BMI, Debette et al. (2010)
found, in a middle-aged group, the strongest negative association
between VAT and total brain volume. In old subjects, higher VAT was
associated with reduced hippocampal volume and enlarged ventricles
compared to lower VAT (Isaac et al., 2011).

Besides GM volume, cortical thickness is a more specific (Ashburner
and Friston, 2001) and sensitive (Hutton et al., 2009) measure of GM al-
terations, and it is directly linked to cortical organization. Furthermore,
studies investigating gray matter changes in autism (Jiao et al., 2010)
and Parkinson diseases (Pereira et al., 2012) showed superior diagnostic
classification using thickness-based models compared to VBM based
models. Cortical thickness may therefore be a more appropriate measure
when assessing structural brain alterations in diseased brains. Recently,
cortical thinning was reported in obese compared to lean middle-aged
adults in the anterior cingulate cortex (ACC), the anterior insula, the pos-
terior parietal cortex (Hassenstab et al., 2012), the left superior frontal
gyrus and the right medial orbitofrontal cortex (OFC) (Marques-Iturria
et al., 2013) using atlas based averaged surface measures.
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Table 1
Anthropometric and metabolic characteristics.

Mean SD Range

Age (years) 29.65 8.15 19–50
BMI (kg/m2) 25.49 5.18 17.70–46.49
Waist-to-hip ratio 0.84 0.08 0.68–1.06
VAT (l) 2.39 1.56 0.31–7.58
Fasting glucose (mmol/l) 5.0 0.45 4–6.72
Fasting insulin (pmol/l) 69 65.9 20–529
Cholesterol (mg/dl) 177 31.4 119–259
HDL cholesterol (mg/dl) 55 14.1 31–101
LDL cholesterol (mg/dl) 95 25.5 43–152
Triglyceride (mg/dl) 93 47.5 34–317
C-reactive protein (mg/l) 0.25 0.44 0.01–2.52

Table 2
Significant differences in cortical thickness in relation to VAT and BMI.

Area Size mm2 Coordinates p-Value

x y z

VAT
Fusiform lh 3644 −40.4 −73.4 −14.6 0.0001
Insula rh 3022 34.8 −19.0 20.3 0.0206
Inferior temporal rh 1951 43.1 −10.1 −33.4 0.0487
BMI
Inferior parietal lh 2056 −38.2 −78.2 13.0 0.0311
Inferior temporal lh 4401 −48.4 −61.5 −6.7 0.0004
Precentral rh 3713 51.8 4.3 13.6 0.0075
VAT (adjusted BMI)
Transverse temporal lh 2190 −51.5 −15.0 3.0 0.0224

The listed areas represent the vertexwith themaximumdifferencewithin the cluster. The
p-values are corrected formultiple comparisons over both hemispheres usingMonte Carlo
simulation. lh = left hemisphere, rh = right hemisphere.
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Thus far, the majority of the abovementioned structural studies
focused on middle -aged to elderly individuals with severe obesity. It
is, however, well known that additional factors are rather common in
these populations like hypertension, elevated cholesterol and inflam-
matory processes, which potentially influence structural integrity and
contribute to brain atrophy. Hence, in the current study we assessed
surface based cortical thickness to investigate adipose tissue (i.e. VAT)
related morphometric changes in lean, overweight and obese young to
middle-aged adults.

2. Material and methods

A total of 72 subjects (30 females) were included in the study (mean
age (years): 29.65 SD 8.15;meanBMI (kg/m2): 25.49 SD 5.18). Of the 72
subjects, 42 were lean (BMI b 25), 17 overweight (BMI 25–30) and 13
Fig. 1. Lateral and inferior views of the reductions in cortical thickness in relation to BMI adju
temporal and left inferior parietal cortex (a) and right precentral gyrus (b). Scatter plots repr
the corresponding clusters representing the left inferior temporal cortex (c) and the right prec
obese (BMI N 30). There were no significant sex differences for age
and BMI. All subjects had normal metabolic status, no chronic diseases
or psychiatric and neurological diseases. In particular, in the present
study the average VAT was 3.22 l in male and 1.80 l in female. Based
on published studies normative values in subjects with BMI below 30
range from 2.0 to 4.0 l in men and 1.5 to 2.0 l in women (Maislin et al.,
2012). C-reactive protein levels were determined using standard clinical
measure to exclude subjects with acute infection (CRP N 10 mg/l). There
was a significant difference between overweight/obese compared to
lean subjects regarding their CRP levels (overweight/obese mean: 0.47
(SD 0.57) mg/l, lean mean: 0.10 (SD 0.21) mg/l; t(68) = −3.79,
p b 0.001). The local Ethics Committee had approved the protocol and
sted for sex, age, total surface area and education. Significant clusters in the left inferior
esent the association between BMI and the averaged cortical thickness of each subject in
entral gyrus (d). The t-value and the corresponding p-value are depicted.
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Fig. 2. (a) Lateral and inferior views of the reductions in cortical thickness in relation to visceral adipose tissue adjusted for sex, age, total surface area and education. Significant clusters in
the left fusiform gyrus (a) and the right inferior temporal and mid-insular region (b). Scatter plots represent the association between VAT and the averaged cortical thickness of each
subject in the cluster representing the left inferior temporal cortex (c) and the right mid-insular gyrus (d). The t-value and the corresponding p-value are depicted.
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informed written consent was obtained from all subjects. An overview of
anthropometric and metabolic characteristics are shown in Table 1.

2.1. Magnetic resonance imaging

Whole brain anatomical scans were recorded using a Magnetization
Prepared Rapid Acquisition Gradient Echo sequence with the following
parameters – TR: 2300ms; TE: 2.98ms;flip angle: 9°; 192 sagittal slices;
matrix: 256 × 256 mm2; bandwidth: 240 Hz/Px, voxel size: 1 × 1 ×
11 mm3 – on a Siemens Tim Trio scanner equipped with a 12-channel
head coil.

For the determinationof body fat distribution (i.e. VAT) a standardized
measurement protocol was used (Machann et al., 2005). An axial T1-
weighted fast spin echo sequence with a train length of 7 was applied
(TR: 490ms, TE: 12ms, slice thickness: 10mmwith 10mmgap between
slices, field of view: 430–530 mm, matrix size: 256 × 178) on a 1.5 Tesla
Siemens scanner (Magnetom Sonata, Siemens Healthcare, Erlangen,
Germany).

2.2. Data processing

Cortical thickness analysis was performed using FreeSurfer software
package (v5.10) (http://surfer.nmr.mgh.harvard.edu). Standard pre-
processing of the structural images was performed including intensity
normalization, Talairach transformation, skull stripping, white matter
segmentation, and tessellation and inflation of the surface (Dale et al.,
1999). The pial surface of each hemisphere was computed by using a
deformable surface algorithm to extract white matter surface outward
toward the gray matter boundary. After automatic correction of topo-
logical defects (Fischl et al., 2001), each individual image was visually
checked for labeling inaccuracies in white matter and pial surface. In
case of defective labels they were manually corrected and reexamined
before surface generation. The distance between the white matter
surface and pial surface yields an estimate of cortical thickness at each
vertex (Fischl and Dale, 2000). For further analysis the data was trans-
formed into a common template with a smoothing kernel of 10 mm
which is in line with most cortical thickness studies. Higher smoothing
kernels (20 mm and above) as suggested by other groups (Lerch and
Evans, 2005) were not used to minimize artificial extension of cortical
thinning patterns (Bernal-Rusiel et al., 2010).

Whole body image analysis was performed with customized
MATLAB (Mathworks, Natick, MA) scripts. Volumetric assessment of
different adipose tissues was based on intensity threshold values sepa-
rating visceral adipose tissue (VAT) and abdominal subcutaneous tissue.
The respective selected pixels were multiplied with the in-plane pixel
dimensions and slice thickness and the resulting volumeswere calculat-
ed in liters (Machann et al., 2005).

2.3. Statistical analysis

To compute differences in cortical thickness vertex-by-vertex analy-
ses were performed separately for each hemisphere. In a first step, we
defined two different general linear models (GLMs) using VAT or BMI
respectively as predictors (continuous variable). We defined in both
models sex (discrete variable), age and educational status as confound-
ing variables. Educational level was coded on a discrete scale with three
levels (middle school, high school, academics). To account for possible
head size effects, we calculated the total surface area and included it
as a covariate. BMI and VAT were tested for normality using the
Shapiro–Wilk test. Both variables were non-normally distributed and
were logarithmically transformed prior to GLM analysis. Furthermore,
we tested whether the slope for males and females were different

http://surfer/nmr.mgh.harvard.edu
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Fig. 3. Lateral view of the reductions in cortical thickness in relation to VAT adjusted for BMI,
sex, age, total surface area and education. A significant cluster in the left transverse temporal
gyrus extending into the superior temporal gyrus andmid-insula. Scatter plot represents the
association between VAT and the averaged cortical thickness in the corresponding area in
each subject. The t-value and the corresponding p-value are depicted.
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regarding the continuous variables. We found no gender specific slopes
and used a model with one regressor for each covariate.

To evaluate the specific contribution of each predictor to the changes
in cortical thickness we defined a model with VAT and BMI as regres-
sors, while age, sex, total surface area and education were kept as con-
founds. All continuous variables were mean centered. The results were
corrected for multiple comparisons over both hemispheres using a
Monte Carlo simulation to assign clusters surviving a cluster-wise sig-
nificance threshold of p b 0.05. In addition to the vertex-wise analysis,
we labeled the significant clusters and calculated the average cortical
thickness of the vertices within each labeled cluster separately for
each subject. Linear regression analyses were performed using the
cluster-wise averaged thickness values as dependent variable. Addition-
ally, we computed a partial correlation analysis with BMI, age, sex and
educational status as control variables and VAT as dependent variable.
3. Results

The multiple regression analyses revealed that increasing BMI was
associated with decreased cortical thickness in a cluster extending
from the right precentral gyrus to the postcentral gyrus, the insula and
the pars triangularis and pars opercularis. In the left hemisphere, there
were two clusterswith cortical thinning namely in the inferior temporal
and the inferior parietal cortex (the clusters include also the middle
temporal, lateral occipital and fusiform areas) (Fig. 1; Table 2). Increas-
ing VAT was significantly related to cortical thinning in a cluster
centered around the left fusiform gyrus extending into the inferior pari-
etal, the inferior temporal and the lateral occipital cortex. In the right
hemisphere, we found a significant reduction of cortical thickness in a
cluster including the insula (extending into the precentral and
postcentral gyrus) and a second cluster in the inferior temporal cortex
including the fusiform gyrus (Fig. 2; Table 2). The GLM analysis using
VAT and BMI as predictors revealed a VAT specific reduction (adjusted
for BMI) in cortical thickness in a cluster including the transverse tem-
poral gyrus, the superior temporal gyrus and the mid-insula (Fig. 3;
Table 2). Partial correlation analysis using the average cortical thickness
in the labeled cluster of the transverse temporal gyrus confirmed the
unique contribution of VAT (adjusted for BMI) for the reduced cortical
thickness. No significant correlations were found between BMI or VAT
and global values of surface area and average cortical thickness.

4. Discussion

The present study aimed to investigate the relationship between vis-
ceral adipose tissue and BMI on changes in cortical thickness in a group
of lean, overweight and obese young to middle-aged adults. In agree-
ment with recent volumetric studies, reduced gray matter thickness
was associatedwith both increased BMI and increased VAT in lateral oc-
cipital areas (e.g. fusiform gyrus) (Karlsson et al., 2013; Pannacciulli
et al., 2006; Walther et al., 2010). Recent research has identified the fu-
siform gyrus as an important structure for discriminating high from low
caloric food cues (van der Laan et al., 2011). Of note, overweight/obese
subjects showed decreased activation in the fusiform gyrus to food
items compared to lean subjects (Kullmann et al., 2013). On the other
hand, in the current study, we observed more extended reductions in
the right inferior temporal gyrus and the insula in relation to VAT but
not BMI. However, there is large overlap of areas with significant reduc-
tions in relation toVAT and BMI,which ismainly due to the relative high
correlation between both variables. Even independent of BMI, we were
able to show that increasing VAT was related to reduced cortical thick-
nessmainly in the temporal cortex and themid-insular region. Concom-
itantly, volumetric reductions in gray matter volume of temporal areas
have been repeatedly shown in obese adults (Karlsson et al., 2013;
Kurth et al., 2013; Weise et al., 2013). Interestingly, in type 2 diabetes
patients reduced cortical thickness was also identified in the medial
temporal cortex (Brundel et al., 2010).

Considering the fact that the risk of developing obesity related dis-
eases, such as type 2 diabetes andmetabolic syndrome, is strongly relat-
ed to abdominal adiposity, a possible pathomechanism underlying the
relationship between cortical thinning and increasing VAT may arise
from inflammatory responses. These are seen in connection with adi-
pose tissue in obesity (Karlsson et al., 2013). In a recent study,
Neeland et al. (2013) showed that VAT is only related to C-reactive pro-
tein (CRP) compared to other inflammatory markers. CRP is an impor-
tant marker of infection or inflammation and CRP levels are often
elevated in obese subjects (Choi et al., 2013), in particular in individuals
with metabolic syndrome (Aronson et al., 2004). In the present sample,
therewas a significant difference between overweight/obese compared
to lean subjects in relation to CRP levels. Increased CRP levels are
markers of cardiovascular disease risk and current evidence suggests
impaired microstructural integrity in relation to elevated CRP levels
(Wersching et al., 2010). Taki et al. (2013) investigated the association
between CRP and regional gray matter differences in a healthy elderly
cohort. The authors found volumetric reductions in a strictly defined
area in the left lateral temporal cortex almost exactly located in a region
that we found in the present study. Although a causal linkage between
CRP levels and gray matter reductions is difficult to establish, there is
evidence that atherosclerosis affects cerebral blood flow regulatory pro-
cesses (Nobili et al., 1993) in a way that ischemic states can occur more
often and lead to tissue degeneration.Moreover, increased cardiovascu-
lar risk factors are associated with reduced cortical thickness in tempo-
ral and parietal areas (Cardenas et al., 2012). The graymatter loss in the
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left temporal cortex can be an early indicator of low grade inflammatory
processes that lead to tissue degeneration.

5. Conclusions

In this studywe found cortical thinning in relation to BMI andVAT in
a group of young to middle-aged adults. With increasing visceral adi-
pose tissue, we identified extended cortical thinning in the left temporal
cortex independent of BMI. Since VAT is strongly related to cardiac and
metabolic risk factors, a possiblemechanismmay arise from adipose tis-
sue related low grade inflammation processes as a potential harmful
factor on brain integrity, although the exact mechanisms including hor-
monal, metabolic and lifestyle factors underlying structural changes
warrant further investigations.
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