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Information on the dynamics of the effective population size over time can be obtained from the
analysis of phylogenies, through the application of time-varying coalescent models. This approach
has been used to study the dynamics of many different viruses, and has demonstrated a wide variety
of patterns, which have been interpreted in the context of changes over time in the ‘effective number
of infections’, a quantity proportional to the number of infected individuals. However, for infectious
diseases, the rate of coalescence is driven primarily by new transmissions i.e. the incidence, and only
indirectly by the number of infected individuals through sampling effects. Using commonly used
epidemiological models, we show that the coalescence rate may indeed reflect the number of
infected individuals during the initial phase of exponential growth when time is scaled by infectivity,
but in general, a single change in time scale cannot be used to estimate the number of infected
individuals. This has important implications when integrating phylogenetic data in the context of
other epidemiological data.
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1. INTRODUCTION
Viruses, especially RNA viruses such as human immu-
nodeficiency virus type 1 (HIV-1), hepatitis C virus
(HCV) and influenza A virus, may exhibit a great
deal of genetic variation at the population level, allow-
ing the reconstruction of viral phylogenies that reflect
the past transmission of the virus. The shape of the
phylogeny can tell us a great deal about population
processes, such as changes in population size and
geographic population structure. It can also indicate
the effects of immunological processes, such as
selection of escape variants (Pybus & Rambaut
2009). For example, ‘star-like’ phylogenies are typical
of populations that are growing exponentially, while
‘ladder-like’ phylogenies are consistent with a model
where one variant is replaced by another due to
immune escape. This integration of ecological,
epidemiological and evolutionary processes has been
dubbed ‘phylodynamics’ (Grenfell et al. 2004).

Sophisticated statistical methods have been devel-
oped which allow time-stamped phylogenies to be
obtained from viral sequence data (Rambaut 2000;
Drummond et al. 2006), and these have been used
in conjunction with coalescent models borrowed
from population genetics (Kingman 2000; Pybus
et al. 2000; Drummond et al. 2005) to determine
different patterns of changes in population size over
r for correspondence (sdf22@cam.ac.uk).
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time (figure 1). These methods have been used to
study the phylodynamics of many different viruses,
mostly RNA viruses, but also to a lesser extent,
DNA viruses (table 1). While not an exhaustive
review of viral phylodynamic studies, table 1 reveals
a wide range of phylodynamic patterns, ranging in
complexity from a constant population size to mul-
tiple phases of growth, including oscillations. Most
of these studies have used a model of the coalescent
in a time-varying population, which considers the
genealogical process of a small sample of taxa taken
from a large population that changes in time determi-
nistically. The population size is assumed to be
homogeneous and under neutral evolution. Although
in practice these assumptions are broken, it is often
the case that an ‘effective population size’, Ne , can
be derived, which gives the same coalescence rate as
an idealized population of size N. To date, phylody-
namic studies of viral evolution have assumed that
Ne is equivalent to the (effective) number of infected
individuals. Although some studies argue that the
effective population size may be lower than expected
due to variability between individuals in infectious-
ness, all assume that an ‘effective number of
infections’ that is proportional to the number of
infected individuals.

Using simple epidemiological models, we have
recently demonstrated that the coalescence rate of an
infectious disease is related to the rate of transmission
(i.e. the incidence) and not directly to the absolute
number of infected individuals (i.e. the prevalence;
Volz et al. 2009). Prevalence does affect the shape of
the phylogeny, but only indirectly through sampling
This journal is q 2010 The Royal Society
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Figure 1. Schematic of different phylodynamic patterns for the relative size function, n over time. (a) constant; (b) exponential;

(c) piecewise expansion; (d) piecewise logistic; (e) constant–expansion–constant; ( f ) oscillatory.

1880 S. D. W. Frost & E. M. Volz Viral phylodynamics
effects; when a higher proportion of infected individ-
uals are sampled, more coalescent events are evident
near the tips of the phylogeny. In this study, we exam-
ine whether there are conditions under which the
coalescence rate may indeed reflect the ‘effective
number of infections’, by comparing coalescence in
epidemiological models with classical population gen-
etics models. We also address how the conclusions of
previous studies may be affected by interpreting phylo-
dynamic patterns as being driven by incidence rather
than prevalence.
2. PHYLODYNAMIC PATTERNS UNDER
DIFFERENT EPIDEMIOLOGICAL SCENARIOS
(a) The time-varying coalescent model

The model used most commonly for viral phylo-
dynamics is the time-varying coalescent model
(Griffiths & Tavaré 1994), which considers the genea-
logical process in a population that changes size in a
deterministic fashion according to some relative size
function, n(t), where t is the time measured in gener-
ations, starting with the present and going backwards.
For example, for a constant population size, we have
n(t) ¼ 1. A variety of different parametric models
have been proposed for n(t), including a constant
population size, exponential growth, logistic growth
and expansion growth. These can be strung together
in series to make more complicated patterns. In
addition, a number of ‘nonparametric’ models have
been proposed for n(t) (Pybus et al. 2000; Strimmer &
Pybus 2001; Drummond et al. 2005; Opgen-Rhein
et al. 2005; Minin et al. 2008), which when fitted to
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data have sometimes demonstrated complex patterns,
including oscillatory dynamics (table 1).

So, what does the relative size actually mean, and
how does it relate to the coalescence rate? Let us
consider a sample of n individuals taken at time
t ¼ 0, and assume that the sample can be traced
back to a single common ancestor with probability
1 (i.e.

P
0
1 n21(t)dt ¼1). The dynamics of the

number of distinct ancestors of the sample at time t

is modelled as a stochastic process fAn(t), t � 0g,
which starts at An(0) ¼ n, and moves down in steps
of 1 until reaching 1, at which point the sample has
been traced back to a most recent common ancestor.
In a small time step h, the transition probabilities are
determined by the following:

P An tþ hð Þ ¼ jjAn tð Þ ¼ ið Þ

¼

i

2

� �
1

n tð Þ hþ oðhÞ j ¼ i � 1;

1�
i

2

� �
1

n tð Þ hþ oðhÞ j ¼ i;

0 otherwise:

8>>>>>><
>>>>>>:

Equation (2.1) shows that the rate of coalescence
increases with the number of distinct ancestors, and
decreases with a greater relative size. Under a
Wright–Fisher model of a haploid population, the
relative size function is simply the population size,
i.e. n(t) ¼ N(t). This is only an approximate result
for the Wright–Fisher model, however, which holds
when the sample size is small relative to the population
size, as equation (2.1) assumes that only one



Table 1. Phylodynamic patterns of viruses.

pattern virus

constant Canine distemper virus (Pomeroy et al. 2008); Hepatitis B virus (van Houdt et al. 2010);
Hepatitis C virus (Golemba et al. 2010); HIV-1 (Deng et al. 2008; Tee et al. 2008);

Measles virus (Pomeroy et al. 2008); Mumps virus (Pomeroy et al. 2008);
Rabbit haemorrhagic disease virus (Kinnear & Linde 2010); Rabies virus (Hughes et al.

2004; Davis et al. 2007);
Ross River virus (Jones et al. 2010); Simian foamy virus (Liu et al. 2008);
St Louis encephalitis virus (Twiddy et al. 2003).

expansion Hepatitis B virus (Zehender et al. 2008); Hepatitis C virus (Jiménez-Hernández et al.
2007);

HIV-1 (Worobey et al. 2008); Influenza A (Goñi et al. 2009).
exponential Dengue virus (Twiddy et al. 2003); Hepatitis C virus (Jiménez-Hernández et al. 2007;

Pybus et al. 2003, 2005);
HIV-1 (Lemey et al. 2004; Salemi et al. 2005; Walker et al. 2005; Salemi et al. 2008);

Influenza A (Chen & Holmes 2006; Fraser et al. 2009; Rambaut & Holmes 2009);
Human rhinovirus (Briese et al. 2008);

Measles virus (Pomeroy et al. 2008); Rabies virus (Hughes et al. 2004; Davis et al. 2007);

West Nile virus (Snapinn et al. 2007).
logistic Canine parvovirus (Pereira et al. 2007); Dengue virus (Carrington et al. 2005);

Hepatitis B virus (Zehender et al. 2008); Hepatitis C virus (Verbeeck et al. 2006;
Jiménez-Hernández et al. 2007).

HIV-1 (Robbins et al. 2003; Hu et al. 2005; Walker et al. 2005; Bello et al. 2007; Tee

et al. 2008); Human erythrovirus B19 (de Freitas et al. 2008);
West Nile virus (Snapinn et al. 2007).

piecewise logistic Hepatitis C virus (Tanaka et al. 2004; Pybus et al. 2003);
piecewise expansion Hepatitis B virus (Michitaka et al. 2006); Hepatitis C virus (Pybus et al. 2005; Nakano

et al. 2004; Kurbanov et al. 2007);

Hepatitis delta virus (Kurbanov et al. 2007); Hepatitis E virus (Tanaka et al. 2006);
HIV-1 (Kurbanov et al. 2003); HIV-2 (Lemey et al. 2003a); Infectious bursal disease

virus (Hon et al. 2006);
Japanese encephalitis virus (Twiddy et al. 2003); Rabies virus (Hughes et al. 2004)

two-phase exponential Dengue virus (Twiddy et al. 2003).

nonparametric
constant Epizootic haemorrhagic disease virus (Biek 2007);

St Louis encephalitis virus (Baillie et al. 2008).
constant/exponential phases Avian metapneumovirus (Padhi & Poss 2009); Dengue virus (Schreiber et al. 2009);

Feline immunodeficiency virus (Biek et al. 2006);
Hepatitis C virus (Nakano et al. 2006; Njouom et al. 2007; Njouom et al. 2009; Pybus

et al. 2009); HIV-1 (Bello et al. 2009; Pérez-Losada et al. 2010); JC virus (Kitchen
et al. 2008);

Rabies virus (Biek et al. 2007).

decline Buggy Creek virus (Padhi et al. 2008); Hepatitis A virus (Moratorio et al. 2007);
Hepatitis B virus (van Ballegooijen et al. 2009); Toscana virus (Zehender et al. 2009)

oscillatory Dengue virus (Bennett et al. 2009); Influenza A (Rambaut et al. 2008); Influenza B
(Chen & Holmes 2008)

West Nile virus (Amore et al. in press).
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coalescence can occur at a time. When a large pro-
portion of the population is sampled, multiple
coalescent events may occur in a single generation.
In such a case, more general coalescent models that
the commonly used Kingman coalescent may be
more appropriate, which allow multiple ‘collisions’ of
lineages (Pitman 1999; Sagitov 1999, 2003; Schweins-
berg 2000; Mohle & Sagitov 2001). Although
populations may deviate from the assumptions of a
Wright–Fisher model—for example, they may show
geographical structure—in many, but not all cases,
the relative size function can be assumed to be pro-
portional to the population size, in which case, it is
referred to as the ‘effective population size’, Ne, and
the relative size function is n(t) ¼ Ne(t).

If gi is the length of time during which the ancestral
process is in state An ¼ i and ti is the time that the
Phil. Trans. R. Soc. B (2010)
interval starts, then under model (2.1), gi is distributed
as follows (Pybus et al. 2000).

P gi jtið Þ ¼

i

2

� �

n ti þ gið Þ exp �
ðtiþgi

t¼ti

i

2

� �

n tð Þ dt

2
664

3
775: ð2:1Þ

Since P(gijti) depends only on the relative size func-
tion, equation (2.1) allows coalescent intervals to be
simulated for a given relative population density n(t),
and also allows the model to be fitted to coalescent
intervals estimated from phylogenetic trees. Although
branch lengths in a phylogeny are typically in units
of expected substitutions per site, in many viral phylo-
dynamic studies, a strict or ‘relaxed’ molecular clock is
often used in conjunction with serial samples of
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sequences (Rambaut 2000; Seo et al. 2002a,b; Lemey
et al. 2003b; Sanderson 2003; Drummond et al. 2006;
Yang et al. 2007), such that branch lengths are scaled
in absolute time. Many studies do not assume a
specific generation time, and in doing so, generate esti-
mates of the product of the generation time and n(t) as
the ‘effective population size’. To avoid making
assumptions regarding how time is rescaled, some
studies simply refer to estimates of n(t) obtained
from the data as ‘genetic diversity’ (Carrington et al.
2005; Rambaut et al. 2008; Schreiber et al. 2009;
van Ballegooijen et al. 2009).
(b) Deterministic models for the coalescent

A common framework for modelling infectious dis-
eases is compartmental models, in which the
population is divided up into subpopulations called
compartments, such as susceptible and infected individ-
uals. The rate of change in the size of these
compartments as we go forward in time, t, is modelled
using differential equations. We can also consider a
differential equation for the dynamics of the number
of lineages over time based on equation (2.1).

dA tð Þ
dt

¼ � A tð Þ
2

� �
1

n tð Þ : ð2:2Þ

There are two different ways of interpreting this
equation. Firstly, we could consider A as an approxi-
mation to the number of lineages when the sample
size is very large i.e. A ¼ limn!1An, in which case we
could approximate equation (2.2) by 2A(t)2/ 2n(t),
as n(n 2 1) tends to n2 as n gets large. This approxi-
mation is surprisingly good, even when the number
of distinct lineages is small (e.g. only an 11% differ-
ence when n ¼ 10). Another way to look at A is as
an approximation to the mean number of lineages
over time i.e. A � E(An); we adopt the latter interpret-
ation. Recently, we showed that for many simple
epidemiological models, the rate of coalescence in a
phylogeny is a function of the number of infected
individuals, Y and the rate at which susceptible indi-
viduals, X, become infected, fXY. If we denote time
going backwards from the present as s, the dynamics
of the number of ancestral lineages over time can be
modelled using the following differential equation
(Volz et al. 2009).

dAðsÞ
ds
¼ �

AðsÞ
2

� �
fXY

YðsÞ
2

� � � �fXY
AðsÞ2

YðsÞ2
: ð2:3Þ

The rationale underlying equation (2.3) is that
coalescence occurs at a rate equal to the transmission
rate, fXY; coalescence can occur between any pair of
infected individuals, but will only result in a decrease
in the number of lineages in the sample if both the
source of infection and the recipient of infection are
sampled, either directly (through these individuals
being included in the sample) or indirectly (through
sampling their descendant viral lineages). In our pre-
vious work, we modelled the number of lineages
using expression (2.3); in order to assist comparisons
between the coalescent and epidemiological models,
Phil. Trans. R. Soc. B (2010)
we assume that the population size is large, such that

Y

2

� �
� Y2/2, but not the number of samples.

Hence, we model the number of lineages over time
as follows.

dAðsÞ
ds
¼ � AðsÞ

2

� �
2fXY

YðsÞ2
: ð2:4Þ

Note that the time scale in equation (2.4) is in real
time, and the coalescence rate is determined by a com-
bination of the number of new infections per unit time
(the absolute incidence) and the level of sampling
(which, for a fixed sample size, is dependent on the
absolute prevalence of infection). The term 2fXY/
Y(s)2 on the right-hand side of equation (2.4) is
simply the probability that a pair of ancestral lineages
are descended from a common ancestor, and this
probability is the same as that under a Moran model,
because one of the lineages we are following must be
the ‘offspring’ and the other must be the ‘parent’,
and there are two ways for this to occur. This is in con-
trast to the haploid Wright–Fisher model, in which the
probability of a pair of ancestral lineages being des-
cended from a common ancestor is the inverse of the
population size. Despite being based on differential
equations, extensive simulation results show that this
model is surprisingly good at recapitulating the
dynamics of the number of lineages over time (at
least on average) for a range of population sizes and
sample sizes (Volz et al. 2009 and this study), although
it should be noted that the variance in the number of
lineages can be large. Although this may be an issue
when trying to estimate parameters from data (for
example, using equation (2.1)), equation (2.4) is
extremely useful to help understand the connection
between the epidemiological and evolutionary
dynamics. To illustrate this, we considered the
dynamics of the number of lineages over time for a var-
iety of epidemiological scenarios using two simple, but
commonly used, epidemiological models.
(c) A model with a constant number

of infected individuals

A useful ‘null model’ to study the change in effective
population size over time is a model with a constant
population size. In an epidemiological model, this cor-
responds to an endemic equilibrium. As an example of
a model with an endemic equilibrium, we consider a
simple model commonly used to study the spread of
HIV among men who have sex with men (for a com-
parison of the deterministic and stochastic version of
this model, see Jacquez & Simon 1993). If X denotes
the number of susceptible individuals and Y denotes
the number of infected individuals, the rates of
change of X and Y are as follows:

dXðtÞ
dt

¼ L� bcXðtÞYðtÞ
NðtÞ � mXðtÞ ð2:5Þ

and

dYðtÞ
dt
¼ bcXðtÞYðtÞ

NðtÞ � ðmþ gÞYðtÞ; ð2:6Þ



time (years)

Y

1

10

100

1000

10 000(a)

(b) (c) (d)

500 100 150 200 250 300

time since present

A

1
2

5
10
20

50
100

20 10 0
time since present

40 20 0
time since present
300 150 0

Figure 2. Phylodynamics of a simple susceptible-infected model in an open population (equations (2.7) and (2.8) in the main
text). (a) Dynamics of the number of infected individuals, I over time in years. The vertical lines denote sampling times, and
the number of lineages over time (b) during exponential growth (red), (c) following the peak of infected individuals (blue) and

(d) at equilibrium (green). The grey lines represent stochastic simulations; in order to generate a fair comparison between the
deterministic model and the stochastic simulations, time was shifted for each simulation such that the peak prevalence
occurred at the same time as in the deterministic model. Parameter values are as follows (with time in years); bc ¼ 52,
g ¼ 1/10, m ¼ 1/70, L ¼ 10000/70. The initial conditions were: X(0) ¼ 9999, Y(0) ¼ 1. Sampling times were set at 900/52,
2000/52 and 15000/52 years, and a sample size of 100 was assumed, i.e. A ¼ 100. Numerical simulations were performed

in R (R Development Core Team 2009) using the simecol library (Petzoldt & Rinke 2007). Stochastic simulations were
performed with SimPy (http://simpy.sourceforge.net). All code is available from S.D.W.F. on request.
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where

NðtÞ ¼ XðtÞ þ YðtÞ:

Here, b denotes the probability of infection per con-
tact, c, the contact rate, m, the natural mortality rate,
g, the excess mortality caused by infection, and L,
the rate of immigration/birth of new susceptibles.
The dynamical behaviour of the model depends on
the value basic reproductive number R0 ¼ bc/m þ g.
If R0 . 1, the number of infected individuals initially
increases exponentially, plateaus, and finally reaches
an equilibrium (figure 2).

By substituting fXY ¼ bcXY/N into equation (2.4),
we obtain the following expression.

dAðsÞ
ds
¼ � AðsÞ

2

� �
2bcXðsÞ
YðsÞNðsÞ : ð2:7Þ

If we denote the equilibrium population sizes of the
number of susceptibles, infecteds and the total popu-
lation size as X*, Y* and N* ¼ X* þ Y*, respectively,
the rate of change of lineages going backwards in
time, dA/ds, is as follows.

dAðsÞ
ds
¼ �kAðsÞðAðsÞ � 1Þ: ð2:8Þ

The solution of which is

AðsÞ ¼ 1� Að0Þ � 1

Að0Þ e�ks

� ��1

; ð2:9Þ
Phil. Trans. R. Soc. B (2010)
where

k ¼ bcX�

ðX� þ Y �ÞY � ¼
ðbc� gÞðmþ gÞ2

Lðbc� ðmþ gÞÞ : ð2:10Þ

Equation (2.8) shows that the coalescence rate is
not proportional to the number of infected individuals,
but is also a function of the number of susceptible indi-
viduals. Consequently, even for this relatively simple
model, the expression (2.10) for the rate parameter k

is a nonlinear combination of several parameters, and
shows that in the absence of other information about
the epidemiological processes, the dynamics of
lineages through time may provide very little infor-
mation about individual parameters. Note that by
starting the system at equilibrium, the number of
infected individuals going backwards in time is con-
stant i.e. all information on when the susceptible
population was invaded with an infected individual
is lost.

We compared the number of lineages over time
using equation (2.9) with stochastic simulations
(figure 2). The analytical solution gives a good
approximation to the mean number of lineages over
time for the period during which the system is close
to equilibrium.
(d) An exponentially growing population

During the early phase of epidemic growth, when X(t)/
N(t) � 1, the number of infected individuals increases

http://simpy.sourceforge.net
http://simpy.sourceforge.net
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exponentially over time.

dYðtÞ
dt
¼ ðbc� ðmþ gÞÞYðtÞ

and

YðtÞ ¼ Yð0Þeðbc�ðmþgÞÞt:

Going backwards in time, the expressions for Y(s)
and A(s) are as follows:

YðsÞ ¼ Yð0Þe�rs;

dAðsÞ
ds
¼ � bcers

Yð0ÞAðsÞ
2

and

AðsÞ ¼ 1� Að0Þ � 1

A0
e�bc=rYð0Þðers�1Þ

� ��1

;

where

r ¼ bc� ðmþ gÞ:

It is also informative to examine the expression for
dA(s)/ds as a function of Y(s) in the case of exponential
growth.

dAðsÞ
ds
¼ � AðsÞ

2

� �
2bc

YðsÞ : ð2:11Þ

During exponential growth, there is a linear
relationship between the prevalence and the incidence,
and hence the coalescence rate is directly proportional
to the number of infected individuals.

(e) Logistic growth

The model given by equations (2.5) and (2.6) also
exhibits similar dynamics to logistic growth. Although
closed expressions for X(t) and Y(t) cannot be
obtained for this model, we can obtain the number
of lineages through time by numerically solving for A
backwards in time, either by simulating the complete
system of differential equations backwards (as in Volz
et al. 2009), or by simulating the epidemic forwards
in time, and storing fXY and Y, which can then be
used as inputs into a single differential equation for A.
Figure 2 demonstrates that the number of lineages
over time, for a sample taken just after peak preva-
lence, is well described on average by the differential
equation model (2.5) and (2.6). During exponential
growth, incidence is high and lineages increase rapidly,
while after the peak, incidence is low, and the rate of
increase of lineages drops.

(f ) Relationship between coalescence rate and

estimates of effective population size

Many previous studies have estimated the ‘effective
population size’, Ne of an epidemic without consider-
ing an explicit model of disease transmission. To
investigate the relationship between estimates of effec-
tive population size obtained using standard coalescent
models, transmission rates, and number of infected
individuals, we fitted generalized skyline plots to sto-
chastic simulations of the model based on equations
(2.5) and (2.6). When branch lengths in the phylogeny
Phil. Trans. R. Soc. B (2010)
are measured in continuous time, as is common for
viral phylodynamic studies, then assuming model
(2.1), the use of this approach will generate estimates
of the product of the generation time and Ne. From
a comparison of equations (2.2) and (2.11), it might
initially appear that the application of standard
coalescent models would give estimates of 2bcY. How-
ever, as shown in figure 3, during exponential growth,
the skyline is a good estimate of bcY. This arises as
epidemiological models that operate in continuous
time bear a closer resemblance to the Moran popu-
lation model, where generations overlap in
continuous time and only one coalescent event can
occur at a time. The ‘coalescent effective population
size’, defined as the average time to a coalescent
event measured in units of the average time back to a
birth event is Ne ¼ N for a Wright–Fisher model,
and Ne ¼ N/2 for a Moran model (Wakeley & Sargsyan
2009). Consequently, we have to halve the estimates of
effective population size obtained assuming a Wright–
Fisher model. In addition, the appropriate scaling in
time is determined by the infectivity, which determines
the average time back to a transmission event (analo-
gous to a birth event), and not by the duration of
infectiousness. Figure 3 demonstrates that standard
models perform well in terms of both the absolute
number of infected individuals, and the rate of
change over time, suggesting that previous studies
may have obtained good estimates of epidemic dou-
bling time, despite making the erroneous assumption
that coalescence is directly related to prevalence. How-
ever, as the relationship between the transmission rate,
fXY and the number of infected individuals Y is differ-
ent during exponential growth and at equilibrium, we
cannot find a single transformation of time such that the
coalescence rate corresponds to the number of infected
individuals over the entire epidemic. In this model, as
the time between infections changes, the use of a
single transformation of time to fit the early stages of
the epidemic results in an overestimation of the true
number of infected individuals in the later stages.
(g) Oscillatory dynamics

By application of the non-parametric ‘skyline’ type
approaches used in the previous section, a number of
studies have demonstrated oscillations in the relative
size, n, over time. Oscillations in the number of
infected individuals in an epidemiological model can
arise, for example, from seasonally changing contact
rates. A simple example of this, appropriate to study
the dynamics of an acute infection under seasonality,
which considers susceptible, X, infected, Y, and
immune individuals, Z, is as follows.

dXðtÞ
dt

¼ mN � b0ð1þ b1 sinðvtÞÞXðtÞYðtÞ
NðtÞ � mXðtÞ;

ð2:12Þ

dYðtÞ
dt
¼ b0ð1þ b1 sinðvtÞÞXðtÞYðtÞ

NðtÞ � ðmþ gÞYðtÞ

ð2:13Þ
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Figure 3. The product of the transmission probability, contact rate and number of infected individuals, bcY, at different stages

of the epidemic depicted in figure 2 (smooth black line) obtained from numerically solving equations (2.7) and (2.8), along
with numerical estimates of ‘effective population size’ estimated using generalized skyline plots fitted to stochastic simulations
(grey lines) on the same scale. During the exponential growth period, the skyline generates good estimates of bcY. Parameter
values and initial conditions are as described in figure 2. Skyline plots were generated using the APE library (Paradis et al.
2004) in R (R Development Core Team 2009). (a) Exponential growth; (b) after peak; (c) at equilibrium.
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and

dZðtÞ
dt
¼ gYðtÞ � mZðtÞ; ð2:14Þ

where

NðtÞ ¼ XðtÞ þ YðtÞ þ ZðtÞ:

We chose parameter values that gave annual fluctu-
ations in the number of infected individuals, and
numerically simulated the epidemic over a ten year
period. We then simulated the dynamics of the
number of lineages, sampling at the last peak of infec-
tion. Figure 4 shows the prevalence of infection, Y(t)
over time. This looks very different from the trans-
mission rate, fXY ¼ b0 (1 þ b1 sin(vt))X(t)Y(t)/N(t),
which determines the rate at which lineages coalesce.
If we were to mistakenly interpret the coalescence
rate as proportional to the number of infected individ-
uals, we would conclude that the prevalence was at a
peak when it was in a trough, and vice versa, as for
these parameter values, Y(t) and fXY are out of
phase. For more complex oscillatory dynamics, such
as biennial cycles, the relative magnitudes of Y(t)
and fXY may also differ. These model results also
reinforce previous assertions (Rambaut et al. 2008;
Stack et al. in press), that a sample taken at a single
point in time may provide relatively little information
about the past population dynamics, as the population
bottlenecks result in all sequences sampled at a single
timepoint having a relatively recent common ancestor.
3. DISCUSSION
Using simple differential equation based models to
gain insights into the phylodynamics of viral infections,
we have demonstrated that the pattern of coalescence
for an infectious disease is dominated by the trans-
mission rate, while the number of infected
individuals is of secondary importance. Although
Holmes et al. (1995) recognized that coalescence in
an infectious disease was related to transmission, this
was not taken into account in later phylodynamic
studies, which referred to the ‘effective number of
infections’, i.e. the prevalence. Some studies also
Phil. Trans. R. Soc. B (2010)
noted that the generation time is effectively the time
between infections (Pomeroy et al. 2008; van Balle-
gooijen et al. 2009), and not the duration of
infectiousness, but did not recognize that this changes
throughout an epidemic. Hence, a single transform-
ation of time, which is commonly used to estimate
Ne from temporally sampled sequence data, cannot
be used to recover the ‘effective number of infected
individuals’. In some cases, such as during exponential
growth, there is a linear relationship between the trans-
mission rate and the number of infected individuals,
and with an appropriate choice of time scale (dividing
time by bc in the models here) it is possible to estimate
the number of infected individuals, but this is not true
in general. Some studies (e.g. Rambaut et al. 2008)
have been vague in the interpretation of the coalesc-
ence rate, relating it to ‘genetic diversity’. We believe
that this is a little too cautious—the rate of coalescence
can be related to epidemiological parameters, but we
have to explicitly consider the underlying transmission
dynamics for this to be done correctly. For example, in
the case of endogenous retroviruses (Romano et al.
2008), the transmission tracks the reproduction of
the host, and standard coalescent models used for
human populations can be used. In the case of viruses
where there is significant vertical and horizontal trans-
mission, more sophisticated models that incorporate
coalescence in both the host and the virus will be
required to interpret the phylodynamics patterns in
the context of transmission parameters. A particularly
pertinent quote comes from a review by Donnelly &
Tavaré (1995) in their discussion of the time-varying
coalescent (equation (2.1)):
[T]he results described above do not apply in general.

It is true for very general neutral models that unless

there are discontinuities, i.e. sudden changes, in the

processes governing the population size, the ancestral

process can be represented as a time change of the pro-

cess described in (equation (2.1)). However, the form

of the time change, which is in general different from

(equation (2.1)), depends on properties of the

random process governing the rate at which individ-

uals are born in the population, about which little is

known in many practical contexts. It thus appears
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Figure 4. (a) Dynamics of the number of infected individuals, Y, and the transmission rate fXY for a susceptible-infected-
recovered model with seasonal forcing, given by equations (2.20)–(2.22) in the main text. Parameter values are as follows
(with time in days): b0 ¼ 10/7, b1 ¼ 0.05, v ¼ 2p/365, g ¼ 1/7, m ¼ 1/25550. The population size, N, was assumed to be
106. Initial conditions: S ¼ 100029.946, I ¼ 142.978, R ¼ 899827.076. (b) The time of sampling for the high prevalence scen-

ario was t ¼ 3465, when I ¼ 384.477 (38.4 per 100 000) (c) and the time of sampling for the low prevalence scenario was t ¼
3649, when I ¼ 140.7068 (14.0 per 100000).
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that some caution is appropriate in applying the above

results on the coalescent in populations of variable

size.

(Donnelly & Tavaré 1995, p. 408)
That coalescence is related to transmission has
important implications when interpreting phylody-
namic patterns in the context of other data, such as
information on the timing of external events or on dis-
ease prevalence. For example, in a recent study of
dengue (DENV-4) in Puerto Rico (Bennett et al.
2009), although both Ne and case counts fluctuated
over time, changes in Ne preceded changes in case
counts by about seven months. This puzzling result
is easily explained when one recognizes that the
coalescence rate is a measure of incidence; as shown
in our simple model of an oscillating epidemic, we
expect incidence and prevalence to be out of phase,
and in general, peaks of incidence precede peaks of
prevalence. There was also no simple relationship
between the amplitude of the fluctuations in Ne com-
pared with the amplitude in case counts; in order to
derive a meaningful comparison between these data,
we would have to compare fluctuations in estimated
incidence with Ne. Multiple studies have interpreted
the timing of changes in phylodynamic patterns in
the context of changes in other factors. For example,
a decline in a skyline plot obtained from hepatitis A
sequences sampled in France coincided with the intro-
duction of vaccination (Moratorio et al. 2007), while a
massive expansion in the ‘effective number of infec-
tions’ of hepatitis C virus in Egypt fell within a time
period when the general population was treated with
rans. R. Soc. B (2010)
parenteral antischistosomal treatment (Pybus et al.
2003). Such external forces have a more immediate
impact on transmission than prevalence.

The phylodynamic patterns can also be affected by
sampling; sampling a higher fraction of the infected
individuals at a time results in more recent coalescent
times, and shorter terminal (external) branches of the
tree, and a different tree shape (Mooers 1995; Rannala
et al. 1998; Pybus et al. 2000, 2002; Purvis & Agapow
2002; Huelsenbeck & Lander 2003; Volz et al. 2009).
As many viral phylodynamic studies employ serial
samples of viral sequences, it is important to correct
for possible differences in sampling depth, which will
be a function ofthe temporal pattern of the sampling
and the number of infected individuals. In a hetero-
geneous epidemic, the extent to which specific
subpopulations are over- or under-sampled also has
to be taken into account. The model framework we
present here can be extremely informative to help
understand the potential effects of sampling on phylo-
dynamic patterns, and offers a more computationally
faster approach to studying sampling effects than
approaches based on full epidemic simulations
coupled with computationally intensive Bayesian
approaches for estimating Ne (Stack et al. in press).

Deterministic models of the phylodynamics of
infectious disease can be very informative due to
their relative simplicity. However, in some cases,
such as the very early stages of an epidemic, or an
endemic infection in a small population, a stochastic
model may be more appropriate. In the simple case
of a susceptible-infected (SI) model in a closed popu-
lation (i.e. equations (2.5) and (2.6) with L ¼ m¼ 0),
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the timing of the coalescent events coincides with each
transmission, and hence in this case, we can use the
widely studied stochastic version of the SI model to
model changes in ancestral lineages through time.
However, in general, we cannot simply borrow from
the epidemiological or population genetic literature.
Most work on coalescent theory in finite populations
has focused on birth–death processes (Hey 1992;
Nee et al. 1994; Rannala 1997), either homogenous
or non-homogenous, which are too simple for our pur-
poses, while stochastic epidemiological models
generally consider the dynamics of the process forward
in time, rather than backwards, and do not consider
the number of lineages. Unlike the deterministic
models, in general we cannot simply run the nonlinear
epidemiological models backwards in time from the
present; for example, the stochastic version of the
model (2.5) and (2.6) reaches a quasistationary state,
at which point, the system has no ‘memory’ of when
the first infection occurred.

The simple nature of the epidemiological models
considered here allowed us to draw direct comparisons
between population genetics models such as the
Wright–Fisher and the Moran model, and epidemiolo-
gical models. The correspondence between population
genetic and epidemiological models becomes more
complex in the case of heterogeneous populations; the
models described here can be extended to consider het-
erogeneous populations, such as different contact rates,
different infectivities, spatial structure and so on. For
example, previously we considered a model of HIV
infection which assumed two stages of infection, a
brief, highly infectious acute period, followed by a
long, less infectious chronic period (Volz et al. 2009),
such that there is no longer a single rate of coalescence
that applies to all individuals. In addition, for the simple
models discussed here, the shape of the tree is captured
by the dynamics of the number of lineages over time.
However, phylogenetic trees contain more information
than simply the number of lineages over time, for
example tree balance, the distribution of the length of
the terminal branches, and in the case of a hetero-
geneous population, the relative distribution of
subpopulations across the tree. The development of
new phylodynamic models will help to elucidate the
role of epidemiological processes in generating these
patterns.

S.D.W.F. is supported in part by a Royal Society Wolfson
Research Merit Award. E.M.V. gratefully acknowledges
support from the National Institutes of Health (grants T32
AI07384 and U01 GM087719). We would like to thank
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