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Abstract
In this paper, an entropy-based method is proposed to forecast the demographical changes

of countries. We formulate the estimation of future demographical profiles as a constrained

optimization problem, anchored on the empirically validated assumption that the entropy of

age distribution is increasing in time. The procedure of the proposed method involves three

stages, namely: 1) Prediction of the age distribution of a country’s population based on an

“age-structured population model”; 2) Estimation the age distribution of each individual

household size with an entropy-based formulation based on an “individual household size

model”; and 3) Estimation the number of each household size based on a “total household

size model”. The last stage is achieved by projecting the age distribution of the country’s

population (obtained in stage 1) onto the age distributions of individual household sizes

(obtained in stage 2). The effectiveness of the proposed method is demonstrated by feeding

real world data, and it is general and versatile enough to be extended to other time depen-

dent demographic variables.

Introduction
Predicting demographic trends (DT) [1] in the light of emerging complex processes [2] of the
21st Century continues to be an important and open research topic. Understanding develop-
ments and the changes in population is critical in assisting governments in targeting policies
for the future and saving money for education, public health, retirement, transportation,
energy consumption among others [3][4]. Specifically, DT refers to the changes in the joint dis-
tribution between population with time, age or other demographic factors, such as household’s
size, health measures, economic status, religious affiliation, education, marriage, etc [5][6][7].

Forecasting DT is a challenging task, and remains to be a fundamental concern in both
basic and applied ecology [8]. The complexity lies in the DT’S intricate connectivity to the het-
erogeneous activities of a large group of individuals, and it is impacted by observed and
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unobserved time dependent factors [9][10]. Existing methods such as the least square methods
[11][12][13] and Bayesian inference [14], in spite of being the most extensively used proce-
dures in estimating and predicting various engineering problems, fail to capture the driving
mechanisms of complex processes that shapes DT [15]. There are very few literatures on build-
ing optimization models for understanding DT. Typical approaches involve incorporating fac-
tors such as environmental [16][17][18], demographic [19] and/or observer-related covariates
[20]. However, data to support and verify such techniques is often not readily available as
[21]–[23] suggesting that building an optimization model constrained by limited data to char-
acterise DT is fundamentally important with a lot of potential applications.

Entropy-based methods, the measure of the uncertainty in random variables, have been suc-
cessfully applied to many modelling and estimation problems, as seen in [24][25][26][27]. In
this paper, we introduce the entropy-based method to estimate DT. We build the model moti-
vated by our empirical observation that the age distribution of population follows an increasing
entropy trend. The paradigm is based on minimizing the entropy-based objective function and
incorporating some parameters describing the historical trends into the constraints where the
dynamic and intrinsic properties can be reflected. We illustrate this procedure by estimating
the evolution of demographic distributions over ages and household sizes. Our work involves a
three-fold modeling stages. Firstly, an “age-structured population model” based on Leslie
matrix [28][29][30][31] is used to predict the age distribution of a country’s population. This
makes the modelling of the demographic temporal distributions become possible, as one usu-
ally needs to project the age distribution of population into other factors. Secondly, the age dis-
tribution of each household size is estimated based on a proposed entropy-based model, where
we propose an entropy formulated cost function and incorporate the DT into the constraint
conditions. The model applied in this stage is called “individual household size model”. Finally,
the age distribution of the country’s population (obtained in stage 1) is projected onto the age
distributions of individual household size types (obtained in stage 2), which we refer to as
“total household size model”. Note that our estimation does not rely on any observed determi-
nant on the formation of households. The evolution of the household size is estimated based
on the historical information and the entropy principle.

To compare with existing works [3][32], our method predicts DT with limited information
[33]. The output is a joint distribution of age and other demographic variables over time.
Among its applications will be on policy analysis, economic forecasting and urban planning
and so on. For the purpose of illustration, we use the population data from US Census and pre-
dict the age DT for each household size in 2010, based on the historical data in 2000 and 2006.
The remaining parts of the paper are organized as follows. Section 2 lists the definitions and
notations which are used throughout the article. Section 3 presents the three stages for the esti-
mation of DT. The simulation results based US data are illustrated in Section 4 and we con-
clude the article in Section 5.

Methodology

Notations
In the following, we list the definitions and notations that will be used throughout the article:

t: The year index.

.T: Matrix transpose.

:̂ : The estimation of a variable.

Aupper: The upper bound age.

Entropy Based Modelling for Estimating Demographic Trends
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i: The age index (i = 0, 1, . . ., Aupper).

Pi(t): The population for the people at age i (older than i but younger than i + 1) in the year t.

P(t) = [P0(t) . . . Pi(t) . . . PAupper
(t)]T: The population vector for the people at all ages in the year t.

Ni(m, t): The population for the male at age i in the year t.

Ni(f, t): The population for the female at age i in the year t.

N(m, t) = [N0(m, t) N1(m, t) . . . NAupper
(m, t)]T: The population vector for the male at all ages.

N(f, t) = [N0(f, t) N1(m, t) . . . NAupper
(f, t)]T: The population vector for the female at all ages.

Di(m, t): The death rate for a male at age i in the year t.

Df(i, t): The death rate for a female at age i in the year t.

Bi(t): The fertility rate for a female at age i in the year t.

Ratiomf(t): The ratio of the number of newly born boys to girls in the year t.

Immig(m, t): The male immigrants vector in the year t.

Immig(f, t): The female immigrants vector in the year t.

Emig(m, t): The male emigrants vector in the year t.

Emig(f, t): The female emigrants vector in the year t.

m0: Total number of household sizes.

j: The household size index (j = 1, 2, . . .,m0).

k0: Number of historical years’ data used in the individual household size Model (12).

κ: An index applied on the historical data for the year t − κ (κ = 0, 1, . . ., k0).

Gn: The people in the age interval [0 An] where An is an upper bound age of this group.

n: The group number index of Gn (n = 1, 2, . . ., n0) (as seen in Formula (10)).

n0: Number of groups (Gn) in the individual household size Model (12).

pjiðtÞ: The probability (percentage) that people at age i in household size j in the year t.

pi(t) = [p0(t) . . . pAupper
(t)]T: Age distribution of the population in the year t.

pjðtÞ ¼ ½pj0ðtÞ ::: pjAupper
ðtÞ�T : Age distribution of household size j in the year t.

qjiðt � kÞ ¼ ½pj0ðt � kÞ ::: pjAupper
ðt � kÞ�T : Age distribution of household size j in the year t − κ.

Entropy(t): The entropy of the population distribution in the year t.

ajnðt þ 1Þ: A ratio of people in group Gn to the population in household size j in Formula (10).

~ajnðt þ 1Þ: A parameter defined in Model (12).

{.}i: The vector that contains the values of the variable {.} by changing subscript i.

o�
0: A weight of the objective function in Model (12).

ω1, . . ., ωk0: The weights defined in Model (12) and Formula (13).

xjkðt þ 1Þ : An error term in Formula (14).

Entropy Based Modelling for Estimating Demographic Trends
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�x : The upper bound of ξk(t + 1) and xkðt þ 1Þ 2 ½��x; �x�.
H: The hessian matrix.

xj(t): The number of household size j (j = 1, . . .,m0) in the year t.

X ðtÞ ¼ ½x1ðtÞ ::: xjðtÞ :::xm0ðtÞ�0 : The vector contains the number of each household size.

W: A weighting matrix in the total household size Model (16).

τ: A parameter in the matrixW in the total household size model (Formula (18)).

u: A small positive weight parameter in the total household size Model (16).

F̂ : Predicted weighting matrix by collecting the predicted age distributions of all household sizes.

Three stages for forecasting the demographic trends
Fig 1 summarizes the three stages for forecasting the DT. Stage 1: using an “age-structured pop-
ulation model” to predict the population in the year t + 1. Stage 2: using an “individual house-
hold size model” to estimate the age distribution for each household size j based on data in the
historical years where the DT reflected in the previous years can be incorporated into the con-
straint conditions. Stage 3: Combining the results from Stages 1 and 2, and employing a “total
household size model” to predict the number of each household size. We detail in the next sub-
sections each of the three stages shown.

Age-structured population model: for estimating age distribution of the
population
We consider the population as a summation of all the organisms of the same group or species,
who live in the same geographical area, and have the capability of inter-breeding. Quite

Fig 1. Illustration of the three stages for forecasting the demographic trends.

doi:10.1371/journal.pone.0137324.g001
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frequently, the prediction of demographic temporal distributions is highly linked to the popula-
tion’s age-structure. Demographic temporal distribution modeling is achievable using the “age-
structured population model” since it allows projection of the age distribution into other factors.

Assumptions. We apply the Leslie matrix method [28]–[31] that assumes:

a. There is no plague, disaster or war that will lead to abrupt changes in age specific death rate.

b. Statistical variables such as birth rates and birth ratio are slowly changed and predictable.

c. The fertility rate for both local residents and immigrants is the same.

d. All people who are older than Aupper are in the same age group. Here, we set Aupper = 90.

Problem formulation. We first consider the case without immigration and emigration. In
the year t + 1, the number of people at age i + 1 is

Piþ1ðt þ 1Þ ¼ Niþ1ðm; t þ 1Þ þ Niþ1ðf ; t þ 1Þ
¼ ½1� Diðm; tÞ�Niðm; tÞ þ ð1� Diðf ; tÞÞNiðf ; tÞ

ð1Þ

where t and t + 1 denote the current year and the next year, respectively, and i = 0, 1, . . ., Aupper

− 1 is the age index. When i = Aupper, we have

Pi�Aupper
ðt þ 1Þ ¼ ½1� DAupper�1ðm; tÞ�NAupper�1ðm; tÞ þ ½1� DAupper�1ðf ; tÞ�NAupper�1ðf ; tÞ

þ½1� Di�Aupper
ðm; tÞ�Ni�Aupper

ðm; tÞ þ ½1� Di�Aupper
ðf ; tÞ�Ni�Aupper

ðf ; tÞ ð2Þ

Let [i1, i2] be the age interval that a female has the ability to give birth. Then, P0(t + 1) = N0(m,
t + 1) + N0(f, t + 1) and

N0ðm; t þ 1Þ ¼ Ratiomf ðtÞ
1þ Ratiomf ðtÞ

Xi¼i2

i¼i1
BiðtÞNiðf ; tÞ

N0ðf ; t þ 1Þ ¼ 1

1þ Ratiomf ðtÞ
Xi¼i2

i¼i1
BiðtÞNiðf ; tÞ

ð3Þ

where Ratiomf(t) is a ratio of the newly born boys (N0(m, t)) to the newly born girls (N0(f, t)) at
year t. Let

PðtÞ ¼ ½P0ðtÞ P1ðtÞ ::: PAupper
ðtÞ�T

Nðm; tÞ ¼ ½N0ðm; tÞ N1ðm; tÞ ::: NAupper
ðm; tÞ�T

Nðf ; tÞ ¼ ½N0ðf ; tÞ N1ðf ; tÞ ::: NAupper
ðf ; tÞ�T

ð4Þ

be the vectors of the population, male population and female population, respectively, for ages
between 0 and Aupper at year t.

Next, we extend the model to take into account of immigration effects. Let Immig(m, t)/
Emig(m, t) and Immig(f, t)/Emig(f, t) be the respective immigrants and emigrants vector for

Entropy Based Modelling for Estimating Demographic Trends
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males/females at year t. We obtain the “age-structured population model” as follows:

Pðt þ 1Þ ¼ Nðm; t þ 1Þ þ Nðf ; t þ 1Þ

Nðm; t þ 1Þ ¼ AðtÞNðm; tÞ þ Ratiomf ðtÞ
1þ Ratiomf ðtÞ

BðtÞNðf ; tÞ

þ Immigðm; tÞ � Emigðm; tÞ

Nðf ; t þ 1Þ ¼ ½CðtÞ þ 1

1þ Ratiomf ðtÞ
BðtÞ�Nðf ; tÞ

þ Immigðf ; tÞ � Emigðf ; tÞ

ð5Þ

where A(t), B(t) and C(t) are the matrices constructed based on Eqs (2)–(4), and given by

AðtÞ ¼

0 0 0 . . . 0 0 0

1� D0ðm; tÞ 0 0 . . . 0 0 0

0 1� D1ðm; tÞ 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0

0 0 0 . . . 0 1� DAupper�1ðm; tÞ 1� Di�Aupper
ðm; tÞ

2
66666666664

3
77777777775
ð6Þ

BðtÞ ¼

0 . . . 0 Bi1
ðtÞ . . . Bi2

ðtÞ 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . . 0 0 . . . 0

2
66664

3
77775 ð7Þ

CðtÞ ¼

0 0 . . . 0 . . . 0 . . . 0

1� D0ðf ; tÞ 0 . . . 0 . . . 0 . . . 0

0 1� D1ðf ; tÞ . . . 0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . 0 1� DAupper�1ðf ; tÞ 1� Di�Aupper
ðf ; tÞ

2
66666664

3
77777775
ð8Þ

Note that the population data we collected allows us to estimate the values of all the above
parameters (such as the fertility rates and death rates). These parameters change slowly and are
predictable which confirm the validity of our assumption. Thus, the population distribution for
the coming years can be predicted based on the age-structured population Model (5), and its

estimation is denoted as P̂ðt þ 1Þ for the year t + 1 as shown in Model (16) later.

Individual household size model: for estimating age distribution for each
household size
In this section, we will describe in detail our individual household size model that estimates the
age distribution of each household size. The model is operated by minimizing an entropy
based objective function and using the historical trends as constraints, where both the dynamic
and intrinsic properties are reflected.

Entropy Based Modelling for Estimating Demographic Trends
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Let pi(t) be the probability that a person is at age i in year t. We define an entropy function
for year t as follows:

EntropyðtÞ ¼ �PAupper
i¼0 piðtÞlnðpiðtÞÞ ð9Þ

where
PAupper

i¼0 piðtÞ ¼ 1 and pi(t)� 0.
Fig 2 plots the entropy of the age distribution based on the population data collected from

six countries. In general, the entropy of the age distribution increases monotonically with
respect to time in most countries. This observation suggests that we can estimate the age distri-
bution of a particular household size based on entropy concepts. To this end, we divide the
household size into n0 types: i.e., 1 person per household, 2 persons per household, . . ., until n0
persons per household.

Let j be the household size index and assume that we already have the age distributions for
each household size j (j 2 {1, . . .,m0}) in the years t, t − 1, . . ., t − k0, which are denoted as

qjiðt � kÞ for κ = 0,1, . . ., k0. Let p
j
iðt þ 1Þ represent the percentage of persons at age i in house-

hold size j in the year t + 1. This means we group the people whose ages are above 90 years

together. Our objective is to estimate the age distribution pjiðt þ 1Þ in the year t + 1 based on
the historical data.

We group the people from 0 to Aupper years old into n0 groups, i.e., the groups Gn for n = 1,
. . ., n0, where n0 � Aupper. The age interval for the group Gn is [0, An] and 0< A1 < A2 < . . .

< An0 = Aupper. It is easy to see that Gn−1 � Gn. Define aj
nðtÞ as a parameter such that

aj
nðtÞ ¼

PAn
i¼0 p

j
iðtÞ ð10Þ

Fig 2. The age distribution entropy of selected countries as a function of time. Note that there is a slight decrease in the entropy of the Indonesia’s
population from 1990 to 2000 perhaps due to the difference in the statistics method used in the years (1990 vs 2000) considered as indicated in https://
international.ipums.org/international/.

doi:10.1371/journal.pone.0137324.g002
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which means that ajnðtÞ is a ratio of people in group Gn, i.e., in the age interval [0, An], to the
population in household size j. Note that 8j 2 {1, . . .,m0}, αn0(t + 1) = 1 since An0 = Aupper.

Let

~a j
nðt þ 1Þ ¼ aj

nðt þ 1Þ � ajnðtÞ ð11Þ

be the parameter which reflects the percentage change of the ratio aj
nðtÞ from the year t to the

next year t + 1.
From here, we build an individual household size model to predict the age distribution

fpjiðt þ 1Þgi for each household size type j where j = 1, 2, . . .,m0, by optimizing the following:

min
Pk0

k¼0 okþ1

PAupper
i¼1 pjiðt þ 1Þln pjiðt þ 1Þ

qjiðt � kÞ

� �

þo�
0

PAupper
i¼1 pjiðt þ 1Þln pjiðt þ 1Þ

1=Aupper

 !

s:t
PA1

i¼0 p
j
iðt þ 1Þ �PA1

i¼1 q
j
iðtÞ þ ~a j

1ðt þ 1Þ
..
.

PAn
i¼0 p

j
iðt þ 1Þ �PAn

i¼1 q
j
iðtÞ þ ~a j

nðt þ 1Þ
..
.

PAn0
i¼0 p

j
iðt þ 1Þ �PAn0

i¼1 q
j
iðtÞ þ ~a j

n0
ðt þ 1ÞPk0þ1

k¼1 ok ¼ 1

�pjiðt þ 1Þ � 0 for i ¼ 0; 1; ::::;Aupper

ð12Þ

Again, given that the entropy of the population is monotonically increasing with time, we
can minimize an entropy based cost function under some constraints by employing the histori-
cal data. Compared with Eq (9), we omit the minus sign “−” such that the model becomes a
minimization problem. The upper limit of such entropy as t = +1 is a uniform distribution
with a histogram function having a constant 1/Aupper magnitude. Essentially, there are two
parts in this cost function where o�

0 is a small positive weight parameter. The first part is the

cross entropy distance (KL distance [34]) between fpjiðt þ 1Þgi and the historical data, and the

second part is the relative entropy distance between fpjiðt þ 1Þgi and population distribution
when t = +1.

Note that we can never know the value of ~a j
nðt þ 1Þ at the year t as we do not know

ajnðt þ 1Þ. However, it can be estimated from the historical data as:

~̂a j
nðt þ 1Þ ¼Pk0

k¼1 okðaj
nðt � kÞ � ajnðtÞÞ=k

¼Pk0
k¼1 ok

PAn
i¼0 q

j
iðt � kÞ �PAn

i¼0 q
j
iðtÞ

� �
=k

ð13Þ

where ωκ for κ = 1, . . ., k0 + 1 are decreasing weights, which implies that the more recent data

is more valued. Let xjnðt þ 1Þ ¼ ~a jnðtþ1Þ�~̂a jnðtþ1Þ
~̂a jnðtþ1Þ be an error term of the estimation, then we have

~a j
nðt þ 1Þ ¼ ~̂a j

nðt þ 1Þð1þ xnðt þ 1ÞÞ ð14Þ

the distribution of xjnðt þ 1Þ is known and bounded within ½��x; �x�. Usually xjnðt þ 1Þ can be

assumed as a random variable uniformly distributed in ½��x; �x�. We now have that:

Entropy Based Modelling for Estimating Demographic Trends
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Theorem 1. The optimization problem defined in Model (12) is a strict convex
optimization.

Proof. Note that the Hessian matrix H of the objective function is given by:

H ¼

Pk0
k¼0 okþ1

pj1ðt þ 1Þ 0 0 ::: 0

0

Pk0
k¼0 okþ1

pj2ðt þ 1Þ 0 ::: 0

..

...
. ..

. . .
. ..

.

0 0 0 :::

Pk0
k¼0 okþ1

pjAupper
ðt þ 1Þ

2
66666666666666664

3
77777777777777775

ð15Þ

Since pjiðt þ 1Þ � 0 for all i and j, it is easy to see thatH is a positive definite matrix. On the
other side, it is known that the constraints of the optimization problem in the Model (12) are
linear. Therefore, the feasible domain is a convex set. Both the objective function and the feasi-
ble domain are convex, hence the problem is a convex optimization. Note that one only needs
to find a local minimum point of a convex optimization to obtain the global minimum point
[35][36][37][38].

Total household size model: for estimating the number of each
household size
In this section, we build a total household size model to further estimate the number of each
household size j for j = 1, 2, . . .,m0 based on the predicted age distribution of population and
age distribution of each individual household size. Here, our objective is to estimate the num-
ber of household size j for j = 1, 2, . . .,m0 in the year t + 1.

Let xj(t) be the number of household with size j in the year t and denote that

XðtÞ ¼ ½x1ðtÞ ::: xm0ðtÞ�T . We hope to estimate the vector

Xðt þ 1Þ ¼ ½x1ðt þ 1Þ ::: xm0ðt þ 1Þ�T . As mentioned, the first stage is to obtain the estimated

total population distribution P̂ðt þ 1Þ based on the current fertility rate and death rate. The
second stage is then to obtain the estimated age distribution of each household type j denoted
as p̂jðt þ 1Þ. Now we estimate the household number distribution by solving the following
total household size model:

min ð1� uÞ 	 jjF̂ 	 Xðt þ 1Þ � P̂ðt þ 1ÞÞjj2 þ u 	 jjW 	 Xðt þ 1Þ � XðtÞÞjj2

s:t Xðt þ 1Þ > 0
ð16Þ

where jj.jj is the L2 norm, and X(t + 1)� 0 means each component of X(t + 1) is nonnegative,

and F̂ is a weighting matrix collected from the the predicted age distributions of all household
sizes:

F̂ ¼

1 	 p̂1
1ðt þ 1Þ 1 	 p̂1

2ðt þ 1Þ . . . 1 	 p̂j
Aupper

ðt þ 1Þ
2 	 p̂2

1ðt þ 1Þ 2 	 p̂2
2ðt þ 1Þ . . . 2 	 p̂2

Aupper
ðt þ 1Þ

..

. ..
.

. . . ..
.

m0 	 p̂m0
1 ðt þ 1Þ m0 	 p̂m0

2 ðt þ 1Þ . . . 1 	 p̂m0
Aupper

ðt þ 1Þ

2
66666664

3
77777775

ð17Þ
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andW is a diagonal weighting matrix for different household size type given by

W ¼

1 0 . . . 0

0 2t . . . ..
.

..

. ..
.

jt ..
.

0 0 . . . mt
0

2
6666664

3
7777775

ð18Þ

The above objective function contains two parts with u being a small positive weight param-
eter. The first part is the distance between the estimated age distribution for population and the
accumulative of the age distribution for all household sizes. The other part is the weighted dis-

tance of the estimated X(t + 1) (denoted as X̂ðt þ 1Þ) to X(t). As there are j persons in the
household size j, we construct a diagonal weighting matrixW with a given power τ> 0 in Eq
18. As shown in Theorem 2, the optimization of Eq (16) is also convex.

Theorem 2. The optimization problem defined in Model (16) is convex.
Prof. The proof is similar to Theorem 1. The Hessian matrix of the objective function in Eq

(16) is

H ¼ ð1� uÞF̂ T F̂ þ uWTW ð19Þ

Obviously H is a positive definite matrix and we have this theorem holds.

Simulations
In this section, we illustrate the procedure we have discussed above using the US’s Census pop-
ulation data. We predict the demographic distribution in the year 2010 based on the historical
data in years 2000 and 2006. The prediction is then compared with the actual Census data in
the year 2010. We show that the method we described here accurately captures the actual statis-
tics. As mentioned, there are three stages in the estimation:

Stage 1: Estimating the age distribution of the population by employing the age structure based
population model in Section 3A.

Stage 2: Estimating age distribution for each household size type by employing the individual
household size model in Section 3B.

Stage 3: Estimating the number of different household size type by employing the total house-
hold size model in Section 3C.

In Stage 1, we collect the population data from the US Census and get the values of all
parameters that are required in Model (5). By solving this model, we obtain the estimation of
the population in the year 2010 based on the the data in the year 2000 and 2006 in Fig 3.

In Stage 2, by letting ω = [0.95 0.025 0.025] and assuming that the error term bound �x ¼ 0,
we divide the population into 9 groups (Gn, n = 1, 2, . . ., 9) and let An = n	10. By solving the
individual household size model (12), the age distributions for the household sizes j = 1 and
j = 2, . . ., 7 are obtained in Figs 4–10, respectively. It is seen that the individual household size
model predicts accurately the age distribution of all household sizes.

In stage 3, the numbers of each household size are estimated by solving the total household
size Model (16). As seen in Fig 11, the difference between the estimation and the real values is
quite close, which again shows the accuracy of our proposed method.

In addition, we also look at the cases when the error term bound �x 6¼ 0. Let’s say, �x ¼ 2

implying that �xkðt þ 1Þ is randomly distributed in the interval [−2 2]. By repeating the
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Fig 3. The predicted age distribution of US population for the year 2010 based on the population data
in the years 2000 and 2006.

doi:10.1371/journal.pone.0137324.g003

Fig 4. The estimated age distribution for household size type 1 in the year 2010 (x axis is the age index
and y axis is the probability).

doi:10.1371/journal.pone.0137324.g004
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simulations many times over (200 times in our case), we can verify the robustness of our esti-
mations. We take the household size 1 as an example. As seen in Fig 12, most of the real values
of the age distribution are located inside the red area generated by the estimations.

To investigate how the parameters τ and u affect the performance of the estimation, we set

different values for them and see how the error term ErrorðX̂ðt þ 1ÞÞ ¼ kX̂ ðtþ1Þ�Xðtþ1Þk1
kXðtþ1Þk1 changes,

Fig 5. The estimated age distributions for household size 2 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g005

Fig 6. The estimated age distributions for household size 3 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g006
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Fig 7. The estimated age distributions for household size 4 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g007

Fig 8. The estimated age distributions for household size 5 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g008
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where k.k1 denotes the L1 norm. Fig 13 shows the error term against different values of τ. We
observed that when τ is around 0.5, the proposed algorithm achieves its best performance. This
is reasonable since the diagonal elementsWTW is just the number of persons in each house-
hold size when τ = 0.5. On the other hand, Fig 14 shows how the parameter u impacts the

Fig 9. The estimated age distributions for household size 6 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g009

Fig 10. The estimated age distributions for household size 7 in the year 2010 using US data.

doi:10.1371/journal.pone.0137324.g010
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Fig 11. The prediction of number of household size distribution for US in the year 2010.

doi:10.1371/journal.pone.0137324.g011

Fig 12. The illustration of the robustness of the estimation compared with their real values for
household size 1.

doi:10.1371/journal.pone.0137324.g012
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Fig 13. Error term with respect to the parameters τ.

doi:10.1371/journal.pone.0137324.g013

Fig 14. Error term with respect to the parameters u.

doi:10.1371/journal.pone.0137324.g014
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estimation error. By setting different values for u in the interval [0 0.2], we observe that the per-
formance of the algorithm provides the best fit when u 2 [0.005 0.01].

Discussion and Conclusions
In this paper, we have demonstrated a new method that estimates the development of age and
household’s size distributions. The procedure consists of three models in three coupled stages,
we referred to as: the age-structured population model in stage 1 where the age distribution of
countries’ population was predicted; the individual household size model in stage 2 where the
age distribution of each individual household size was estimated; and the total household size
model in stage 3 where the number of different household sizes was derived by projecting the
age distribution of total population onto the age distributions of individual household sizes.
The procedure described here indicates that demographic trends can be accurately estimated
using entropy as an optimisation variable, which we believe will be of potential interest to both
academics and practitioners alike. We have illustrated and validated the correctness and accu-
racy of the proposed method using US data. While we have considered age and household size
distributions in this article, we note that the method we have demonstrated is general and ver-
satile enough to be extended to other time dependent demographic variables.
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