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Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in
atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular in�ammation. AP is a cellular
catabolic process involving the delivery of cytoplasmic contents to the lysosomalmachinery for ultimate degradation and recycling.
Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes
dysfunctional in the more advanced stages of the pathology and its de�ciency promotes vascular in�ammation, oxidative stress,
and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence
demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for
therapeutic utility.

1. Introduction

Atherosclerosis-related cardiovascular diseases are the lead-
ing cause of mortality worldwide. In addition to lipid dys-
function and arterial lipid accumulation, immune-in�am-
matory responses are major factors in directing the initiation
and development of atherosclerosis [1, 2]. Macrophages
play a central role in each stage of disease pathogene-
sis [3]. Interestingly, recent investigation into macrophage
autophagy (AP) has demonstrated a novel pathway through
which these cells contribute to vascular disease [4–7]. In this
paper, we will discuss the role of macrophages and AP in
atherosclerosis and the contribution of macrophage AP to
vascular pathology. Finally, we will discuss how AP could be
targeted for therapeutic utility in atherosclerosis.

2. The Origin of Vascular Macrophages

Macrophages are de�ned as diverse, scavenging, and bacte-
ricidal tissue-resident cells with critical immune functions.
ey are present in every endothelial and epithelial surface of

the body, exhibit stellate morphology, and express markers
including F4/80, CD11b, CD115, macrosialin (CD68), and
CD83. ey also express an array of Fc receptors, recep-
tors for complement components, scavenging receptors, and
pathogen recognition receptors such as Toll-like receptors
(TLRs) and Nod-like receptors (NLRs). When activated,
tissue macrophages phagocytose and kill microorganisms
and secrete proin�ammatory cytokines. In addition, the
proin�ammatory cytokines and chemokines they release
upon activation contribute to the recruitment and activation
of lymphocytes. However, it is these very functions that drive
their well-established role in in�ammatory conditions such
as atherosclerosis.

e origin of tissue macrophages has been receiving
much attention recently, with many long-held concepts
proving incorrect. Indeed, many tissue macrophage popul-
ations do not arise from blood monocytes but maintain
themselves locally in tissues aer they are seeded by yolk sac
macrophages [8, 9]. However, to our knowledge, the origin
of vascular macrophages in the steady state is unclear and
during in�ammation, it is clear that input from circulating
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monocytes is critical [10]. Monocytes originate from
common CSF-1R+CX3CR1+Flt3+ macrophage/dendritic
cell precursors (MDPs) [11] and expand in response to
macrophage colony-stimulating factor (M-CSF) [12]. Mono-
cytes in the mouse can be divided into 2 subsets, classical
(Ly6Chi CCR2+) and nonclassical monocytes (Ly6Clo
CCR2lo) [13], with analogous subsets present in humans
[14]. Classical monocytes exit the bone marrow in a
CCR2-dependent manner to seed sites of in�ammation
[15], whereas it is as yet unclear how and if nonclassical
monocytes arise from the bone marrow [16].

A central feature of atherosclerosis is the accumulation
in the lesion of monocyte-derived, lipid-laden macrophages
termed foam cells and, indeed, monocyte recruitment into
plaques is critical for, and increases with, disease progression
[10, 17, 18]. Consistent with this, mice de�cient in M-CSF-
derived macrophages (op/op) have reduced development
of atherosclerosis [19]. However, perhaps the most com-
pelling evidence of the role of monocyte-derived cells in
atherosclerosis is borne out of successful therapeutic studies
inmice targeting chemokine/chemokine receptors critical for
monocyte chemoattraction to the plaque [20, 21]. Activation
of blood vessel endothelium results in the arrest and extrava-
sation of circulating monocytes into the plaque [22], and the
extent of recruitment is regulated at least in part by blood
monocyte levels [23]. Hypercholesterolemia correlates with
an increase in the frequency of classical monocytes, and it
is primarily this subset of monocytes that seeds the plaque
[24]. Nevertheless, the capacity of nonclassical monocytes
to patrol blood vessel walls [11] could be pertinent to the
in�ammatory process during atherosclerosis, and indeed this
subset has been demonstrated to enter plaques [25, 26].

3. The Role of Macrophages in Atherosclerosis

Upon entry into the vascular wall, monocytes undergomatu-
ration intomacrophages that are critical for the in�ammatory
response. Although there is undoubtedly heterogeneity in
plaque macrophages, the majority of macrophages in the
plaque are classically rather than alternatively activated,
and this is discussed in recent reviews [27]. Concomi-
tant with this maturation process, macrophages engulf vast
amounts of lipid in the form of apoB-containing lipopro-
teins into membrane-bound droplets to form foam cells
[3]. Macrophages utilize scavenger receptors like CD36 and
scavenger receptor type A inter alia to recognize modi�ed
low-density lipoproteins (LDL) [28, 29], and uptake of
oxLDL alone can drive in�ammatory gene expression in
macrophages through a novel recognition pathway involving
a CD36-dependent TLR4-TLR6 heterodimer [30]. In addi-
tion, signals through scavenging and c-type lectin-like recep-
tors, TLRs, and numerous intracellular sensors can drive
macrophage activation. Intriguingly, several endogenous lig-
ands for TLRs such as heat shock proteins (HSPs) can be
found in high concentration in atherosclerotic plaques [31]
and have been proposed as a potential pathway to activate
macrophages and perpetuate atherosclerosis [32]. Interest-
ingly, recent work focusing on the effects of cholesterol
crystals on macrophages has uncovered a novel pathway of

macrophage activation in atherosclerosis [33, 34]. e intra-
cellular apparatus consisting of NLRP3, ASC, and caspase-1
all cooperate to drive the generation and subsequent release
of active IL-1𝛽𝛽 and IL-18 by macrophages in response to
cholesterol crystals and play an important role in the devel-
opment of atherosclerosis [33]. us, there are a plethora
of described pathways, and additional putative mechanisms,
that drive macrophage activation during atherosclerosis.

Once activated, macrophages produce an array of proin-
�ammatory cytokines such as TNF𝛼𝛼, IL-12, IL-6, IL-1𝛽𝛽
[35], and leukotrienes [36] that drive in�ammation dur-
ing atherosclerosis. is, together with their production of
in�ammatory chemokines such asMCP-1, IL-8, andMIP-3𝛼𝛼,
results in further recruitment of monocytes, neutrophils and
other in�ammatory cells. Macrophage-derived TNF𝛼𝛼 and
IL-1𝛽𝛽 also activate the vascular endothelium to upregulate
adhesion molecules and chemokines [22, 37] and thus pro-
mote monocyte migration as part of a positive feedback loop.
Activation of macrophages is also enhanced by IFN𝛾𝛾 released
by NK cells and T cells, and macrophage-derived cytokines,
such as IL-12 and IL-15, can in turn drive proatherogenic
T cells [38]. In addition to the production of in�ammatory
mediators, macrophage activation results in the induction
of several bactericidal systems such as the NADPH oxidase
enzyme. is converts oxygen into the superoxide anion and
other free radicals, and these reactive oxygen intermediates
(ROIs) are toxic to microbes but can damage host tissue due
to their capacity to cause DNA degradation and inactivation
of metabolic enzymes, and indeed perpetuate atherosclerosis
[39]. Activated macrophages also release nitric oxide (NO)
which combined with superoxide, generate peroxynitrite
which causes cell injury [39, 40]. Further, myeloperoxidase-
(MPO-) generated reactive nitrogen species frommonocytes
contributes to the conversion of LDL to an atherogenic form
[41]. In addition, macrophages express nonspeci�c esterase,
lysosomal hydrolases, and ectoenzymes [42], and secrete
an array of cathepsins [43] and matrix metalloproteinases
(MMPs) [44] that degrade collagens and the extracellular
matrix, likely contributing to thinning of the �brous cap and
plaque instability.

Combined with overzealous macrophage activation in
atherosclerotic plaques is the impairment of macrophage
functions critical for the control and resolution of in�am-
mation. Indeed, an important function of macrophages
under both resting and in�ammatory conditions is the rapid
uptake of apoptotic cells from tissues, termed efferocytosis.
Efferocytosis ismediated by a range of receptors such asCD36
[45] and MerTK [46], and chronic apoptosis of lipid-�lled
foam cells is combined with defective efferocytosis during
atherosclerosis [47], likely contributing to the formation of
the necrotic core. Interestingly, the receptors involved in the
recognition of apoptotic cells, such as CD36 and 𝛼𝛼v𝛽𝛽3, may
also be involved in the recognition of necrotic cells [48]. is
may be pertinent when one considers that the vast majority
of cell death in advanced plaques is the result of necrosis,
a process that drives in�ammation and formation of the
necrotic core [49].

Finally, an increasing body of evidence indicates that
macrophages have developed several strategies to survive
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and proliferate in the atherosclerotic plaque, such as the
unfolded protein response and AP [50]. In particular, recent
investigation into macrophage AP in atherosclerosis has
demonstrated another pathway through which these cells
contribute to vascular pathology [4–7].

4. AutophagyMachinery and Regulation

AP (derived from Greek words, “auto” meaning “self ” and
“phagy” meaning “to eat”) is an evolutionarily conserved
controlled cellular catabolic process involving the delivery of
cytoplasmic contents to the lysosomalmachinery for ultimate
degradation and recycling. In mammalian cells, several types
of AP have been identi�ed; they are differentiated on the
basis of their physiological functions and the mode of cargo
delivery to the lysosomal compartment, such as chaperone-
mediated AP, microAP, macroAP, and others [51]. MacroAP
has been studied most extensively as compared with other
types of AP and this paper will focus on macroAP (herein
referred to as “AP”). e AP mechanism involves the for-
mation of characteristic double-membrane vesicles, called
autophagosomes or autophagic vacuoles, in which cytoplas-
mic material is sequestered. e origins of this structure
remain incompletely understood; it may be generated from
multiple sources including the endoplasmic reticulum (ER)
[52, 53], the outer mitochondrial membrane [52, 54], and
the plasma membrane [55, 56]. e autophagosomes are tar-
geted to lysosomes to form single-membraned autolysosomes
with degradative capacity. During the degradative phase, a
series of lysosomal enzymes (e.g., cathepsins and other acid
hydrolases) digest the contents of autolysosomes, that are
then released to the cytosol for recycling or reuse for anabolic
pathways and to get rid of toxic harmful cellular substances
[57, 58].

In mammalian systems, basal AP is a continuous process
serving as a quality control system to clear and recycle
damaged and/or unwanted components of the cell including
organelles and protein aggregates.is pathway is stimulated
by numerous cellular or subcellular stresses, together with
nutrient or growth factor deprivation, reactive oxygen species
(ROS), hypoxia, DNA damage, protein aggregates, dysfunc-
tional organelles, or intracellular pathogens to counter the
stress for cell survival [58]. AP is mostly considered as a
cell survival and cytoprotective process but under chronic
stress situations, it is also associated with cell death (hence
called “autophagic cell death” rather than “cell death with
autophagic features”), though the meaning of AP in these
situations remains controversial [59]. It is now well acknowl-
edged that AP can exert a critical and decisive in�uence on a
great variety of human physiological and pathophysiological
processes, such as cancer, neurodegenerative disorders and
cardiovascular diseases [60]. Moreover, the AP machinery
also orchestrates various responses to exogenous stimuli such
as microorganisms [61]. For instance, AP plays a key role
in the defense against bacterial infection [62, 63]. AP is also
required for antigen presentation via major histocompatibil-
ity complex (MHC) class II, which plays a key role in immune
driven diseases [64], including atherosclerosis [65].

Recently, progress has been made in characterizing the
AP protein machinery and signaling cascades. It has been
demonstrated that, inmammalian cells, the proteins encoded
by AP-related genes (Atg) generally form multiprotein com-
plexes that are crucial for autophagosome formation. e
core machinery of mammalian AP incorporates �ve func-
tional subgroups: (i) the unc-51-like kinase (ULK) com-
plex, including ULK1/2, Atg13, and FIP200, involved in
AP induction; (ii) the class III phosphatidylinositol 3-kinase
(PI3K) complex, consisting of Vps34, Beclin 1, p150, and
Barkor (Atg14-like protein). e lipid kinase activity of
Vps34 is indispensable for generating phosphatidylinositol
(3)-phosphate (PI3P) at the PAS (phagophore assembly site)
for the recruitment of other Atg proteins and the formation
of the autophagosome; (iii) two ubiquitin-like protein (Atg12
and LC3) conjugation systems involved in the expansion
of autophagosome membranes; (iv) Atg9 and its recycling
system that contributes to the delivery ofmembranes forming
the autophagosome; (v) the proteins needed for the fusion
between autophagosomes and lysosomes for ultimate degra-
dation.e detailed literature concerning these topics can be
found elsewhere [51, 58]. However, several non-Atg proteins
and differentmacromolecular signaling complexes are shown
to contribute in the regulation of this process [51, 66, 67].

Mammalian target of rapamycin (mTOR), and particu-
larly its complex 1 (mTORC1), acts as a major checkpoint. In
normal conditions (presence of growth factors andnutrients),
mTORC1 induces phosphorylation of ULK1/2 and Atg13,
which inhibits ULK complex activity and, in turn, AP. Many
diverse signals, such as growth factors, amino acids, glucose,
energy status, and different forms of stress, regulate the
mTOR pathway [68]. In conditions that trigger AP, such
as nutrient starvation or stimulation with the antibiotic
rapamycin, the mTORC1 serine/threonine kinase activity
is inhibited; mTORC1 dissociates from the ULK complex,
which becomes active. mTORC1 also incorporates upstream
activating signals that inhibit AP via the class I PI3K (and pro-
tein kinase B, PKB, also known as Akt) pathway [69]. AMPK
(adenosine 5′-monophosphate-activated protein kinase) and
Sirtuin1 (Sirt1) also control starvation-induced AP through
a coordinated fashion depending upon the energy status
(ATP/AMP levels) of the system [70], but at the same time
AMPK negatively regulates mTORC1 [71, 72]. A second
regulatory step required for the autophagosome formation
involves the “Beclin 1 core complex.”ere are several Beclin
1 complexes: the UVRAG (ultraviolet irradiation resistant-
associated gene) [73] or the Rubicon (RUN domain and
cysteine-rich domain containing, Beclin 1-interacting) [74,
75] complex, with UVRAG or Rubicon, in place of Barkor,
respectively. ese 3 complexes act differently: the Barkor
complex has a role in the formation of autophagosomes,
the UVRAG complex acts in autophagosome maturation,
whereas the Rubicon complex inhibits autophagosome mat-
uration [76, 77]. Moreover, other Beclin 1 binding partners
have been shown to modulate AP, including ambra-1 (acti-
vating molecule in Beclin 1-regulated AP) [78] or Bif-1 (Bax-
interacting factor 1) [79].Under resting conditions, antiapop-
totic Bcl-2 protein familymembers, such as Bcl-2 and Bcl-X𝐿𝐿,



4 Mediators of In�ammation

constitutively bind Beclin 1 and act as negative regulators of
AP, showing intricate interlinked complex control between
AP and apoptosis processes [80–82]. e tumor suppressor
gene, p53, has been reported to play a dual role in AP [83].
p53 can induce AP through activation of AMPK [84] and
upregulation of DRAM (damage-regulatedmodulator of AP)
[85], where cytoplasmic p53 can inhibit AP (transcription
independent activity) [86]. e NF-𝜅𝜅B transcription factor,
and its certain upstream regulators, connects and integrates
diverse stress response signals including immune signals with
the AP pathway [87–89]. Others regulators that induce AP
include tumor suppressors, such as PTEN, TSC1 and TSC2
complexes, and the death-associated kinase (DAPK); stress-
activated signaling molecules, such as c-Jun N-terminal
kinase 1 (JNK1), and those that respond to endoplasmic
reticulum (ER) stress (PERK, eIF2𝛼𝛼-kinase, and IRE1), and
molecules involved in innate immune signaling, such as TLRs
and immunity-related GTPases [90].

5. AP andMacrophages

In the last decade, it has been established that AP exerts
important functions in many aspects of immune and in�am-
matory responses [91, 92]. AP is under the control of immune
receptors and cytokine signaling [91, 92] and is stimulated
upon microbial recognition by pattern recognition receptors
(PRRs) [93–96] or activation with T helper 1 cytokines [97].

AP plays a critical role in host defense by promoting
the elimination of pathogens via autolysosomes (referred to
as xenophagy) as well as the delivery of microbial nucleic
acids and antigens to endo/lysosomal compartments for
activation of innate and adaptive immune responses [98]. In
vitro, it has been demonstrated that AP has a crucial role
in macrophage phagocytosis of different pathogens, such as
Listeria monocytogenes, Mycobacterium tuberculosis, Herpes
simplex virus type I, Toxoplasma gondii and many others [99,
100]. Immunity-related GTPase family M, an IFN-inducible
GTPase, promotes AP that is involved in the elimination
of mycobacteria in macrophages [101, 102]. Consistent
with this, macrophages lacking Atg7 fail to eliminate live
yeasts in phagolysosomes [103]. In mice, knockout of Atg5
in macrophages and neutrophils increases susceptibility to
infection with L. monocytogenes and the protozoan T. gondii
[104].

It has been shown that AP machinery and pathways
interact with several PRRs. Firstly, TLRs were connected
with AP [61, 103, 105]. Activated TLRs recruit adaptor
proteins such as myeloid differentiation marker 88 (MyD88)
and tumor necrosis factor receptor- (TNFR-) associated
factor 6 (TRAF6), an E3 ubiquitin ligase and scaffold pro-
tein. In macrophages, both MyD88 and another adaptor
protein, TRIF (TIR domain-containing adaptor inducing
interferon-beta), interact with Beclin 1. Exposure of murine
macrophages to a TLR4 ligand (lipopolysaccharide, LPS)
also reduces the association between Beclin 1 and Bcl-2.
TLR4 triggers AP via TRAF6 that ubiquitinates Beclin 1 and
determines the Beclin 1/Bcl-2 dissociation [106]. Further-
more, it has been reported that TLR7-induced AP in murine

macrophage cell lines depends on MyD88 and Beclin 1 [96].
e stimulation of TLR2 with zymosan (a cell component
of fungi) triggers the recruitment of LC3 to the phagosomes
although the signaling pathways seem MyD88-independent
[94]. e soluble TLR2 ligand, Pam3CSK4, only when fused
with latex beads, is able to induce the maturation of phago-
somes in primarymacrophages, suggesting that TLR2 signal-
ing is necessary but not sufficient for the induction ofAP [94].

Others receptors involved in the detection of inva-
sive pathogens, the cytosolic Nod- (nucleotide-binding oli-
gomerization-domain-) like (NLRs) and RIG-I-like (RLRs)
receptors, have been demonstrated to be players in the
autophagic response to bacteria [107]. Among the members
of the NLR family, Nod1 and Nod2 detect intracellular
bacteria through their ability to sense bacterial peptidoglycan
[108]. Activation of Nod1 and Nod2 initiates a proin�am-
matory response dependent mainly on the activation of the
transcription factor NF-𝜅𝜅B and on the recruitment of the
adaptor protein RIP2 [109, 110]. Similar to TLRs, mutations
in genes encoding Nod proteins have been associated with
chronic in�ammatory disorders [111].

Travassos and colleagues demonstrated that, in mouse
macrophages and other cell lines, Nod1 and Nod2 recruited
the AP protein ATG16L1 to the plasmamembrane at the bac-
terial entry site by a mechanism independent of the adaptor
RIP2 and transcription factor NF-𝜅𝜅B [107]. In contrast to
Nod2, NLRC4 (Ipaf) and NLRP4 exert inhibitory effects on
AP. NLRC4 acts negatively at the initiation stage, whereas
NLRP4 acts at both the initiation and maturation stages.
NLRs, including those essential for in�ammasome assembly
and activation such as NRLP3, are found in complexes
with Beclin 1 in several human cell lines including acute
monocytic leukemia cells [112].

Recently, the autophagic adaptors, sequestosome 1/p62-
like receptors (SLRSs), have been proposed as a new category
of PRRs in order to link AP and innate immunity signaling
[113].e autophagic adaptors, NBR1 and p62, present at the
earliest stages of autophagosome formation, have been stud-
ied independently of AP as complex in�ammatory signaling
platforms [114, 115]. A recent study performed with both
Drosophila blood cells and mouse macrophages show that
constitutive p62-mediated selective AP is required for cell
spreading and Rho1-induced cell protrusions. It is suggested
that p62 may mediate selective autophagic degradation of
a regulator of the Rho pathway. Moreover, it is becoming
apparent that proteins, organelles, and pathogens can be
targeted for autophagic clearance by selective mechanisms,
although the extent and roles of such degradation are unclear.
ese results illuminate a speci�c and conserved role for
AP as a regulatory mechanism for cortical remodeling, with
implications for immune cell function [116]. Moreover, AP
can drive the rapid cellular changes necessary for proper dif-
ferentiation. In fact, it has been shown that this process plays
a crucial role in monocyte differentiation into macrophages
when this differentiation is induced by colony stimulating
factor-1 (CSF-1) as well as by M-CSF [117, 118]. SLRs can
participate in the promotion of autophagic killing of intra-
cellular microbes. e p62 adaptor protein can deliver spe-
ci�c ribosomal and bulk ubiquitinated cytosolic proteins to
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autolysosomes where they are proteolytically converted into
products capable of killing M. tuberculosis. us, p62 brings
cytosolic proteins to autolysosomes where they are processed
from innocuous precursors into neoantimicrobial peptides,
explaining in part the unique bactericidal properties of
autophagic organelles [119]. However, there are also potential
links between AP and conventional antimicrobial peptides,
such as cathelicidin, a peptide obtained by conventional
proteolysis from larger precursors. Cathelicidin expression
and its antimycobacterial action are induced by vitamin D3,
an activator of AP, in human monocytes/macrophages [120].
Moreover, vitamin D3 triggers AP in human macrophages
that inhibit HIV-1 infection [121].

AP and the in�ammasome undergo complex functional
interactions. Indeed, damage-associated molecular patterns
(DAMPs), toxins, and several particulates and nanoma-
terials can induce AP directly or via the activation of
the in�ammasome pathway [113, 122, 123]. Cytokines can
induce AP in some cases or, conversely, suppress it in other
cases (reviewed in [103, 124, 125]). Some of the immune
signals that induce AP include IFN-𝛾𝛾, TNF, and CD40-
CD40L interactions. In contrast, AP is negatively regulated
by the T helper type 2 cytokines, IL-4 and IL-13 [61].
Several observations have revealed a link between autophagic
protein de�ciency and proin�ammatory cytokine secretion
in macrophages. Macrophages lacking Atg16L1 and Atg7
produce high amounts of IL-1𝛽𝛽 and IL-18, but not TNF
or IFN-𝛽𝛽, in response to LPS. In these macrophages, the
enhanced IL-1𝛽𝛽 production is induced by Toll/IL-1 recep-
tor domain-containing adaptor inducing IFN-𝛽𝛽 (TRIF)-
dependent generation of ROS. Further, deletion of Atg5
in macrophages enhances retinoic acid-inducible gene-I-
like receptor- (RLR-) mediated type I IFN production in
response to single-stranded RNA viruses. ese data indi-
cate the importance of Atg in the in�ammatory response
[103, 126, 127]. Increased activation of IL-1𝛽𝛽 and IL-
18 has been observed in macrophages and monocytes
genetically de�cient in Beclin 1 and LC3B� this occurs
through the increased activation of the NLRP3 (NALP3)
in�ammasome pathway [128, 129]. IFN-𝛾𝛾 has also been
reported to induce AP in macrophage cell lines, but less
in primary mouse and human macrophages [97]. Taken
together, this evidence suggests that AP in macrophages
can be triggered directly via at least some PRRs and indi-
rectly via certain cytokines induced upon PRR activation
[130].

In addition, it has been reported that cells undergoing
autophagic cell death can induce a proin�ammatory response
in human macrophages. Indeed, upon engul�ng MCF-7
cells undergoing autophagic cell death, human macrophages
generate a proin�ammatory response involving the secretion
of IL-6, TNF𝛼𝛼, IL-8, and the anti-in�ammatory cytokine
IL-10 [131]. Interestingly, AP also regulates phagocytosis
of dead cells [132, 133]. Importantly, AP can in�uence
adaptive immunity by regulating antigen presentation and
the maintenance of lymphocyte function and homeostasis
[134].

In conclusion, AP can in�uence in�ammatory responses
through several pathways in a cell-intrinsic manner, affecting

both pro- and anti-in�ammatory signaling and subsequent
immune-driven diseases such as atherosclerosis.

6. Role of AP in Atherosclerosis

AP in atherosclerosis has been extensively investigated with
particular focus on vascular smooth muscle cells (SMCs) and
endothelial cells (ECs). Transmission electron microscopy
(TEM) of SMCs in the �brous cap of experimental or human
plaques reveals features of AP such as formation of myelin
�gures [135]. is data is supported by western blot analysis
of advanced human plaques showing elevated levels of LC3-II
[136].

Several AP triggers are present in the atherosclerotic
plaque, such as in�ammatory mediators [137], ROS produc-
tion [138] and accumulation of oxidized LDL [139, 140].
TNF𝛼𝛼 stimulation increases the number of vacuolated cells
and the expression of LC3-II and Beclin 1 in SMCs isolated
from atherosclerotic plaques [137]. Osteopontin, a protein
involved in vascular in�ammation, and advanced glycation
end products (AGEs) have been shown to induce AP in
human and rat SMCs, respectively [141, 142]. Similarly,
7-ketocholesterol, one of the major oxysterols present in
atherosclerotic plaques, triggers extensive vacuolization and
intense protein ubiquitination and increases the LC3-II
expression in cultured SMCs [143]. SMCs in the �brous
cap are surrounded by a thick layer of basal lamina and
therefore are subjected to hypoxia, caused by inadequate vas-
cularization [144], and experience nutrient and growth factor
deprivation, well-known conditions leading to the induction
of AP. Dying SMCs in the �brous cap of advanced human
plaques show ubiquitinated inclusions in their cytoplasm and
may undergo autophagic death [143, 145].

AP in vascular endothelial cells can be induced by several
compounds in the circulation or in the subendothelial layer
of the plaque. For example, oxLDL intensi�es AP in human
umbilical vein EA.hy926 cells [139], and mitochondrial-
derivedROS activateAMPK that in turn increases AP leading
to EC survival [146]. AP plays an important role in preserving
vascular endothelial function by reducing oxidative stress,
increasing nitric oxide bioavailability and reducing vascular
in�ammation [147]. Importantly, AP is reduced with ageing
in vascular tissues [147].

e general consensus is that basal AP can protect
plaque cells against oxidative stress by degrading damaged
intracellular material [148] and promoting cell survival.
e protective role of AP in stabilizing the plaque was
con�rmed in vitro showing that SMC death induced by low
concentrations of statins was attenuated by the AP inducer
7-ketocholesterol [149]. Similarly the exposure of ECs in
culture to oxLDL or AGEs [139, 150] induced AP which
protected against EC injury [151]. Moreover, Salabei et al.
[152] showed that the antiproliferative effect of verapamil
in SMCs, bene�cial in controlling vascular-injury-induced
neointimal formation, was associated with the onset of AP.
Although verapamil strongly upregulated AP, it did not
promote SMC cell death yet appeared to suspend cell division
resulting in an anti-proliferative state.
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In contrast to basal AP, excessive stimulation of AP in
SMCs or ECs may cause autophagic cell death [151], leading
to reduced synthesis of collagen, thinning of the �brous cap,
plaque destabilization, lesional thrombosis, and acute clinical
events [136].

7. Macrophage AP in Atherosclerosis

e investigation of macrophage AP in atherosclerosis has
been complicated by the strong phagocytic activity of these
cells. It is difficult to determine via conventional electron
microscopy whether the vacuoles in their cytoplasm result
from autophagocytosis or heterophagocytosis [136, 151].
In addition, the autophagosomal marker protein LC3 is
poorly expressed inmacrophages and overexpression of other
lysosomal marker proteins may give rise to false-positive
signals in immunoelectron microscopy [136, 151].

Importantly, pharmacological modulation of macro-
phage AP has been shown to affect vascular in�amma-
tion. Stent-based delivery of everolimus (mTOR inhibitor;
a well-known AP inducer; see Section 8) in athero-
sclerotic plaques of cholesterol-fed rabbits leads to a marked
reduction of macrophages via autophagic cell death with-
out altering the SMC plaque content [4]. e observed
macrophage cell death was characterized by bulk degradation
of long-lived proteins, processing of LC3, and cytoplasmic
vacuolization, which are all markers of AP [4]. Further,
local administration of imiquimod (TLR7 ligand) to rabbit
atherosclerotic carotid arteries induced macrophage AP,
without affecting SMCs and ECs. However, in this case the
induction of macrophage AP triggered cytokine production
and the upregulation of VCAM-1 and enhanced leukocyte
in�ltration in the artery [5]. e authors speculate that the
moderate AP induced in the macrophages of imiquimod-
treated lesions does not lead to cell death but to plaque
in�ammation. Of note, TLR7 stimulation could lead to the
activation of other immune cells homing to atherosclerotic
vessels such as plasmacytoid dendritic cells, recently shown
to play a key role in promoting experimental atherosclerosis
in mice [153–155].

Two recent elegant papers add new dimensions to the
understanding of the role of macrophage AP in regulating
atherosclerotic plaque development [6, 7]. Razani et al. [6]
demonstrated that during lesion formation, autophagic
markers (p62 and LC3/Atg8) were expressed in the
atherosclerotic plaques of apolipoprotein-E (apoE)−/−
mice, colocalizing mainly with monocyte-macrophages
(MOMA-2, CD11b +ve) and plaque leukocytes (CD45 +ve).
e AP protein, p62/SQSTM1, is known to accumulate
when autophagy �ux through lysosomes is defective [156].
AP induction by prolonged fasting resulted in decreased
levels of p62 protein in the aorta of apoE−/− mice, suggesting
that changes in aortic p62 protein re�ect in vivo AP status.
p62 levels are raised with increasing age/plaque burden
in atherosclerotic aortas, suggesting that initially AP is
functional and becomes severely compromised with disease
progression.

Beclin 1/Atg6 heterozygous-de�cient (Beclin-Het)
mice on the apoE−/− background showed similar extent

of atherosclerosis compared to apoE−/− mice that were
wild-type at the Beclin locus, demonstrating that autophagy
haploinsufficiency had no effect on pathology. On the
contrary, complete de�ciency of macrophage AP increased
vascular in�ammation and plaque formation. To pursue
this notion, the authors used macrophage-speci�c Atg5-
null (Atg5-m𝜙𝜙KO) mice with complete absence of an AP
gene in macrophages. Plaque formation, serum IL-1𝛽𝛽
levels, and aortic IL-1𝛽𝛽 expression were all increased in
Atg5-m𝜙𝜙KO/apoE−/− mice fed a high-fat diet (HFD) as
compared to apoE−/− controls. In addition, AP de�ciency
was associated with elevated plaque macrophage content.

Given the increased levels of IL-1𝛽𝛽 observed in Atg5-
null mice, the authors suggest a link between AP de�ciency
and in�ammosome hyperactivation. Indeed, de�cient AP,
through mechanisms that might include lysosomal leakage,
generation of ROS, and impaired mitophagy, could result in
the activation of the in�ammasome. However, the effects of
AP on IL-1𝛽𝛽 production are complex and context dependent
and the assumption that AP suppresses the in�ammosome in
vascular in�ammation merits further investigation.

e protective role of macrophage AP in atherosclerosis
was con�rmed by Liao et al. [7]. e authors provide evi-
dence that AP prevents macrophage apoptosis and defective
efferocytosis, both promoting plaque necrosis in advanced
atherosclerosis. Firstly, authors demonstrated, in primary
macrophages from mice transgenic for a GFP-tagged ver-
sion of the AP effector LC3-II, that several proatheroscle-
rotic stimuli induced AP and promoted autophagic �ux
through lysosomes. Inhibition of AP by silencing Atg5
or in Atg5-de�cient macrophages enhanced apoptosis and
NADPH oxidase-mediated oxidative stress, rendering the
apoptotic cells less recognizable to efferocytosis. Impor-
tantly, the same �ndings were con�rmed in vivo. Aortic
root lesions of HFD-fed GFP-LC3/low-density lipoprotein
receptor (LDLr)−/− mice contained macrophages express-
ing Atg5 and displaying the punctate pattern of GFP-LC3
�uorescence typical of AP. e number of macrophages
expressing p62 increased as lesions progressed. ese data
con�rm the presence of AP in atherosclerotic vessels and
suggest that autophagic �ux through lysosomes decreases as
disease progresses. Lesion size and necrotic area were higher
in Atg5�/�Lysmcre+/−/LDLr−/− versus control mice. e
number of lesional macrophages was not increased, however,
macrophage-rich regions of the Atg5�/�Lysmcre+/−/LDLr−/−
plaques had more apoptotic cells positive for TUNEL, acti-
vated caspase-3, DHE, and p47. In summary, macrophage
AP de�ciency increased apoptosis and oxidative stress
in plaque macrophages, promoted plaque necrosis, and
impaired lesional efferocytosis in LDLr−/− mice. ese data
complement results obtained by Razani et al. [6], con�rming
a protective role played by macrophage AP in the two most
widely used mouse models of atherosclerosis.

Another important aspect to consider is the contribution
of lipophagy to vascular pathology. As recently reviewed
[157–159], lipophagy, a special kind of AP, contributes
in cholesterol egress from lipid-laden cells to high-density
lipoprotein (HDL) via lysosomal lipases. AP can play a role in
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the hydrolysis of stored cholesterol droplets in macrophages,
thus facilitating cholesterol efflux [160]. Interestingly, Wip1
phosphatase, a known negative regulator of Atm-dependent
signaling, has been recently shown to play a major role
in controlling AP and cholesterol efflux in apoE−/− mice.
Deletion of Wip1 resulted in suppression of macrophage
conversion into foam cells, thus preventing the formation of
atherosclerotic plaques [161].

In conclusion, macrophage AP becomes dysfunctional in
atherosclerosis and its de�ciency promotes vascular in�am-
mation, oxidative stress, and plaque necrosis, suggesting
a mechanism-based strategy to therapeutically suppress
atherosclerosis progression.

8. Pharmacological Manipulation of
Autophagic Pathways

Several pharmacological agents that are able to modulate
AP have already been identi�ed, such as mTOR inhibitors,
AMPK modulators, IP3 and calcium lowering agents, and
lysosome inhibitors [162, 163].

mTOR inhibitors are the most studied AP inducers,
and among them, rapamycin (also known as sirolimus)
was the �rst drug to be identi�ed. Rapamycin, a lipophilic
macrolide antibiotic already in use to prevent the rejection
of transplanted organs and to block restenosis aer angio-
plasty, binds to the immunophilin FK506-binding protein
of 12 kDa (FKBP12) inhibiting the kinase activity of mTOR,
particularly TORC1 [164, 165]. AP inductionwith rapamycin
enhances the clearance of toxic substrates, such as intra-
cellular aggregate-prone proteins associated with neurode-
generative diseases, and protects against toxicity of these
substrates in cell and animal models [166–168]. However,
rapamycin also regulates numerous physiological processes
that are independent of AP [68]. Indeed, rapamycin inhibits
the translation of numerous proteins, causes immunosup-
pression and cell cycle arrest and alters cell size [169]. ese
side effects may be unwelcome consequences if rapamycin is
used as an AP enhancer, and consequently there is a need
for nonimmunosuppressive AP-inducing drugs. Of note,
rapamycin and its analogs (temsirolimus, everolimus, and
deforolimus) have had limited success as anticancer drugs,
may be because they inhibit mTORC1, but not mTORC2
[170]. Consequently, a more complete blockade of the mTOR
pathway has led to the development of ATP-competitive
mTOR inhibitors of both mTORC1 and mTORC2 (e.g.,
PP242, AZD8055, WYE132, and Torin 1). Although these
compounds clearly show preclinical evidence of antitumor
activity, their effectiveness in the clinical setting has yet to be
demonstrated [171–174].

Recently, further mTORC1 inhibitors, such as perhexi-
line, niclosamide, and rottlerin, have been identi�ed as com-
pounds that increase autophagosome number but further
work is required to completely understand their activity
[175].

Interestingly, several other drugs with well-known phar-
macological actions can induce AP by mTOR-independent
pathways. For example, mood-stabilizing drugs, such as

carbamazepine, valproic acid, and lithium have been iden-
ti�ed as AP inducers by reducing IP3 levels [176, 177].
Furthermore, L-type calcium channel antagonists (e.g., ver-
apamil), and antiarrhythmic drugs (e.g., amiodarone) induce
AP by inhibiting levels of calcium [162]. e anticancer
drug tamoxifen appears to function in part by upregulating
the level of Beclin 1 and inducing AP [178]. Finally, the
antidiabetic drug metformin has been shown to induce AP
of several cancer cell types by activating AMPK [179–181].

Auseful strategy for pharmacologicalmanipulation ofAP
based on additive effects of drugs could be obtained using
mTOR inhibitors in combination with mTOR-independent
AP enhancers. It has been demonstrated that trehalose and
small molecule enhancer rapamycin (SMERs) exerted an
additive effect on the clearance of aggregate-prone proteins
associated with Huntington’s disease and Parkinson’s disease
when associated to rapamycin [168, 182].

AP inhibitors can be classi�ed in: (i) early stage
inhibitors including 3-methyadenine (3-MA), wortmannin
and LY294002 that target the class III PI3K; (ii) late
stage inhibitors, including chloroquine (CQ) or hydrox-
ychloroquine (HCQ), ba�lomycin A1, and monensin that
prevent fusion of autophagosomes with the lysosomes [183].
Currently, several ongoing clinical trials registered with
the National Cancer Institute (http://www.cancer.gov/clini-
caltrials) are evaluating the efficacy of the combination of
HCQ with cytotoxic drugs in a variety of cancers.

Importantly, many of the aforementioned pharmacolog-
ical agents have been shown to be effective in the treatment
of cardiovascular disorders, including cardiomyopathy, and
heart failure in which AP is involved [184]. For exam-
ple, reduction of infarct size has been demonstrated in
mice treated with rapamycin [185]. Rapamycin, AICAR,
and metformin improve cardiac function, reduce cardiac
hypertrophy, and delay the onset of heart failure during
overload pressure [186, 187]. On the other hand, a strong
activation of AP, due to Beclin 1 upregulation, is observed
in response to severe pressure overload, and this could be
responsible for the transition from compensatory ventric-
ular hypertrophy to pathological remodeling [188]. Finally,
several indications support AP as a therapeutic target in
experimental atherosclerosis [189]. Sirolimus and everolimus
are antiatherogenic in mice [190–193]; on the other hand,
AP induction by calorie-deprivation reduced atherosclerosis
[194]. However, no clinical data are available regarding the
efficacy of AP modulators in cardiovascular diseases.

In conclusion, several drugs that regulate AP have been
identi�ed, suggesting that the autophagic signaling may be
manipulated to treat human disease. However, considering
the dual role of AP in cytoprotection and cell death, there
is a need for more speci�c molecules in order to target the
pathways that control AP.

9. Conclusions

is paper summarizes recent evidence showing a protec-
tive role played by macrophage AP in atherosclerosis. AP
becomes dysfunctional in atherosclerosis and its de�ciency
promotes vascular in�ammation, oxidative stress, and plaque
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necrosis. However, further work is needed to obtain a better
understanding of this phenomenon in all stages of the
pathology. We need to understand how AP is induced in
atherosclerotic lesions, how lipophagy contributes to the
pathology, the mechanisms governing the crosstalk between
AP and apoptosis within the arterial wall, how they could
in�uence plaque stability, and if theymay prove to be effective
therapeutic targets.

What degree of AP de�ciency is proatherogenic? Is AP
induction anti-atherogenic? e answer to these questions
requires further investigation. Importantly, to date no studies
have addressed the potential effect of AP on the multiple
leukocyte subsets which have been shown to in�ltrate the
na�ve and in�amed vessels playing a signi�cant role in plaque
formation and development [1, 195–197]. For example, AP
regulates antigen presentation [198], T-cell development and
homeostasis [113, 199], T-cell and dendritic cell activation
[200, 201], and degranulation of mast cells [202]. However,
none of these AP functions have been investigated in the
context of vascular in�ammation. As these studies progress
we can expect to learn more about whether AP is indeed a
good target for therapeutic intervention in atherosclerosis.
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