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Recent studies have shown that the brain functional connectome constitutes

a unique fingerprint that allows the identification of individuals from a group.

However, what information encoded in the brain that makes us unique

remains elusive. Here, we addressed this issue by examining how individual

identifiability changed along the language hierarchy. Subjects underwent fMRI

scanning during rest and when listening to short stories played backward,

scrambled at the sentence level, and played forward. Identification for

individuals was performed between two scan sessions for each task as well

as between the rest and task sessions. We found that individual identifiability

tends to increase along the language hierarchy: the more complex the task

is, the better subjects can be distinguished from each other based on their

whole-brain functional connectivity profiles. A similar principle is found at the

functional network level: compared to the low-order network (the auditory

network), the high-order network is more individualized (the frontoparietal

network). Moreover, in both cases, the increase in individual identifiability

is accompanied by the increase in inter-subject variability of functional

connectivities. These findings advance the understanding of the source of

brain individualization and have potential implications for developing robust

connectivity-based biomarkers.

KEYWORDS

brain fingerprint, functional connectivity, language hierarchy, fMRI, individual
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Introduction

For a long time, neuroimaging studies on human brains have been primarily
concerned with the generic principles of brain function that are shared across people,
with relatively little attention paid to inter-subject variability. In the seminal work
conducted by Finn et al., individual variability in brain functional organization was
found to be both robust and reliable (Finn et al., 2015). It is possible to identify a target
subject from a sample database by computing the spatial similarity of the target subject’s
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brain functional connectivity (FC) profile against the FCs’ of the
database ones, similar to a “fingerprint.” Following this work,
further studies have detected various brain features that may
act as a “fingerprint” (Liu et al., 2018, 2020; Sareen et al., 2021),
proposed novel methods to improve the accuracy of individual
identification (Amico and Goni, 2018; Cai et al., 2021), and
related the brain fingerprinting features to behavioral traits
(Kaufmann et al., 2017).

Yet, what makes our brains unique remains
poorly understood. Understanding the source of brain
individualization is important for several reasons. First, it will
provide critical information for improving the accuracy of
individual identification. Second, it will help establish the link
between individual differences in brain function and individual
differences in cognition and behavior, which in turn may have
important implications in precision medicine. Finally, it can
provide valuable information for evaluating to what extent
the group-level results about brain function can be applied to
unknown individuals.

Currently, only a few studies have explored factors that
potentially influence individual identifiability, including: (i) the
temporal window used to compute FC profiles. It has been
reported that the greater identifiability occurred at longer time
scales (Van De Ville et al., 2021); (ii) the anatomical loci. Across
the whole brain, the connectivity profiles of the frontoparietal
network and medial frontal networks were most distinctive for
individuals (Amico and Goni, 2018); and (iii) factors affecting
fMRI data which might be unique to individuals and stable
enough across time, including global signals (Chen and Hu,
2018), head motion and brain anatomy (Finn et al., 2015).

The above work has been mainly focused on the
physiological or structural aspects of the brain. Few
studies have examined the roles of the functional aspects
of the brain in individual identification. In particular, are
the high-order functions (such as those supporting story
comprehensions) or the low-order functions (such as those
supporting auditory perception) of the brain more critical for
individual identifiability? There are at least two possibilities:
on the one hand, an individual’s brain involved in low-order
functions may show a high degree of stability across time,
therefore facilitating individual identification; on the other
hand, brains involved in high-order functions may vary greatly
among people, thus making individual discrimination easier.

A further question is, how important are those task-
evoked neural processes compared to task-independent intrinsic
processes in distinguishing individuals? Several studies have
performed individual identifications across resting states and
obtained a high accuracy of above 90% (Finn et al., 2015;
Horien et al., 2019). In comparison, identifications made
across the resting state and a set of tasks typically produced
lower accuracies ranging from about 60% to 85% (Kaufmann
et al., 2017; Amico and Goni, 2018). Among the many factors
(such as the characteristics of head motion and data length)

potentially accounting for the differences in identification
accuracy, one possibility is that, under resting states, subjects are
actually engaged in a set of active mental processes, including
unconstrained verbally mediated thoughts, monitoring, and
episodic and autobiographical retrieval processes (Binder,
2012). Therefore, the results of identification across resting
states might come from a combination of contributions from
both state-independent and state-specific neural processes.
Instead, the results of rest-task identification may better
capture the contribution of state-independent processes to brain
individualization. Yet, no study has systematically investigated
the contribution of state-independent, low-order and high-
order processes to brain fingerprints.

This study addresses the above two questions by tapping
into the hierarchical nature of language. In our experiment, each
subject underwent a resting-state fMRI scan, then listened to
stories played backward, stories scrambled at the sentence level,
and stories played forward during fMRI scanning. For each of
the three tasks, brain imaging data were acquired from two
separate scan sessions. The three tasks were assumed to involve
increasingly complex cognitive processes, while the resting state
was used to create a baseline condition. For the backward-
played speech, which would appear as meaningless audio
streams, subjects should be mainly engaged in low-level acoustic
analysis. For the sentence-scrambled story, subjects would need
to additionally recognize single words and combine words
into sentences (termed as “middle-level linguistic/semantic
operations”). For the intact story, in addition to the perceptual
and linguistic/semantic computations, subjects would need to
combine single sentences into coherent mental models that
allow for inferences and conceptual associations. We termed
these processes recruited specifically by story comprehension as
“high-level conceptual processes.”

To investigate the contribution of low-order and high-order
functions of the brain to individual identification, we predicted
subjects’ identities across two scan sessions corresponding to the
same task, and then compared the success rates (SRs) among
the three task conditions. The state-independent neural process
(the baseline) is assumed to play a role in both resting and task
states. To assess its contribution, we conducted identifications
between the resting session and each task session. Finally, to
understand why individual identifiability may differ along the
language hierarchy, we compared the degree of within-subject
stability and inter-subject variability of FCs among the four
conditions (including the three task conditions and condition
of rest-task pairs).

We first performed individual identification based on the
whole-brain functional connectomes. To establish a closer
relationship between task-evoked brain functions and individual
identifiability, we further conducted individual identification
using FC profiles of single functional networks. Three
networks known to be critically involved in speech processing
were investigated, including a primary auditory network, a
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perisylvian language network and a frontoparietal network
(Price, 2010). In addition, the default mode networks (DMN)
which have been suggested to be actively engaged in resting
states and a set of high-order functions are also examined
(Yeshurun et al., 2021).

Materials and methods

Subjects

A total of 30 college students (females, aged between 18
to 35 years) who were native Chinese speakers and proficient
in English participated in this study. The criterion applied to
screen participants included: (i) having passed the Test for
English Majors-Band 8; (ii) scoring above 7 on the International
English Language Testing System (IELTS); or (iii) scoring above
95 on the Test of English as a Foreign Language (TOEFL).
The data of three subjects were excluded from further analyses
due to excessive head movements (more than 3 mm or 3
degrees) during one or more sessions of the fMRI scanning. All
subjects were right-handed and had no history of neurological,
psychiatric or language disorders.

Experimental procedure

Stimuli for the experiment were generated from a set of
cartoon stories (each lasting ∼60 s) told by two female Chinese
speakers during fMRI scanning. Each story was told in both
Chinese and English. A noise-canceling microphone (FOMRI-
III, Optoacoustics Ltd., Or-Yehuda, Israel) was used to record
the speech. The recordings were further de-noised offline using
Adobe Audition CS6 (Adobe Systems Inc., United States). Three
types of audio clips (lasting 60–62 s) were created from those
recordings. The first type of audio clip was the raw stories
played forward (intact). The second type (sentence-scrambled)
was created by randomly shuffling the sentences of the first half
of a story and keeping the second half intact. The third type
(backward) was created by presenting the first half of a story
waveform-reversed in time and keeping the second half intact.
For the latter two conditions, the intact parts of the stories were
not included in the analyses. A more detailed description of the
stimuli presentation is provided in the Supplementary material
(Supplementary Figures 1, 2).

Each subject underwent five fMRI scan sessions over 2 days.
On the first day, following an 8-min resting-state scan session,
subjects listened to backward-played stories and sentence-
scrambled stories (presented in separate blocks) during two
successive scan sessions. On the second day, subjects listened to
intact stories during two successive scan sessions (Figure 1). The
contents of stories differed between successive sessions.

Half of the subjects were exposed to the Chinese version
of audio clips and the other half were exposed to the English

version. As bilingualism is not the focus of the current study,
we pooled the two subgroups of data together. This study was
undertaken with the understanding and written consent of each
subject and was approved by the Institutional Reviewer Board of
Beijing Normal University.

MRI acquisition

Imaging data were collected with a 3T Siemens Trio
scanner in the MRI Center of the Beijing Normal University
in China. For the functional scan, a gradient echo-planar
imaging sequence was applied with the following parameters:
repetition time = 2,000 ms, echo time = 30 ms, flip
angle = 90◦, field of view = 220 mm2, 33 interleaved
slice, voxel size = 3.125 mm3

× 3.125 mm3
× 4 mm3.

Additionally, high-resolution T1 structural images
were acquired using an MPRAGE sequence. The
parameters were: repetition time = 2,530 ms, echo
time = 3.39 ms, flip angle = 7◦, FOV = 256 mm2, and
voxel size = 1.0 mm3

× 1.0 mm3
× 1.33 mm3.

Imaging data preprocessing

The fMRI imaging data were preprocessed using DPARSF
(Yan and Zang, 2010),1 which integrates the preprocessing
modules of Statistical Parametric Mapping (SPM12).2 The
steps of preprocessing included slice timing adjustment and
realignment for head-motion correction, spatial normalization
to the Montreal Neurological Institute (MNI) space, resampling
into a voxel size of 3 mm3

× 3 mm3
× 3 mm3, and smoothing

with an isotropic Gaussian kernel (FWHW = 7 mm). The
preprocessed images were further detrended, nuisance variable
regressed, and high-pass filtered (1/128 Hz). The nuisance
variables included the five principal components of signals in the
white matter and cerebrospinal fluid masks (Behzadi et al., 2007)
and Friston’s 24 motion parameters (including each of the six
motion parameters of the current and preceding volume, plus
each of these values squared) (Friston et al., 1996).

Data analysis

Functional connectivity estimation
Identification for individual subjects was made based on

their brain FC profiles and performed across two sessions
of the same task and across the rest and each of the task
sessions. For each task session, the time series corresponding
to the task blocks were extracted. Before the data extraction,

1 http://rfmri.org/dpabi

2 http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1

Experimental design (A) and fMRI scanning scheme (B). Each subject underwent a resting-state fMRI scanning, then followed by three tasks:
listening to short stories presented waveform-reversed in time (backward), stories scrambled at the sentence level, and stories played forward
(intact). The resting state and three tasks were assumed to engage increasingly complex processes along the language hierarchy. For each of
the three tasks, the brain imaging data were collected from two successive scan sessions.

the time series of each brain subregion were normalized in
time using z-score. The data were shifted back in time by 4 s
to account for the hemodynamic lag of blood-oxygen-level-
dependent (BOLD) signals. As previous studies have shown that
data length can influence the accuracy of identification (Van De
Ville et al., 2021), we extracted an equal number of time points
(N = 32) from each session. This number was determined by
the maximum data length of the backward and the scrambled
conditions.

To estimate FC, we partitioned the whole brain into 368
subregions using the Shen-368 Atlas (Salehi et al., 2020; Luo
and Constable, 2022). This was a fine-grained atlas obtained by
integrating the parcellation of cortex from Shen et al. (2013),
subcortex from the anatomical Yale Brodmann Atlas (Lacadie
et al., 2008), and cerebellum from Yeo et al. (2011). Pearson
correlation coefficients between each possible pair of subregions
were computed, resulting in a 368 by 368 connectivity matrix
(Figure 2A). This was done for each subject and each condition,
such that each subject had a total of seven connectivity matrices
representing connectivity patterns during resting and the three
tasks (two matrices for each task).

Identification using whole-brain functional
connectivities

To detect the contribution of the four types of information
to brain individualization, we conducted identification for
individuals across time using the pairing scheme illustrated in

Figure 2B. Specifically, to detect the task-independent intrinsic
processes (the baseline level), identification was conducted
across the resting state session and each of the six task sessions.
To detect the auditory perceptual processes (the low level),
identification was conducted across the two sessions of the
backward condition. To detect the linguistic/semantic processes
(the middle level), identification was performed across the two
sessions of the sentence-scrambled condition. Finally, to detect
the conceptual processes (the high level), identification was
performed across the two sessions of the intact condition. For
each level, the FCs derived from one scanning session served as
the database and another session served as the target. The two
sessions then changed the roles (Figure 2B).

To predict subjects’ identities, an identifiability matrix was
defined as Pearson’s correlations between the database and the
target (Amico and Goni, 2018). The main diagonal elements
of the matrix represent the FC similarity of the same subjects
across sessions, referred to as I_self. The off-diagonal elements
of the matrix, averaged by columns, represent the FC similarity
of subjects (from the database session) with other subjects (from
the target session). This was referred to as I_other. The result
of I_self minus I_other was referred to as I_diff, which reflects
the identifiability of individual subjects for a given fold of
identification (Figure 2C).

In addition to the I_diff which served as a continuous
variable to quantify the identifiability of individual subjects, we
also calculated the group-level SR of identification. For a given
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FIGURE 2

The procedure of data analysis. (A) The whole brain was partitioned into 368 parcels. Time series corresponding to the task blocks were
extracted and concatenated to compute the functional connectivity (FC). (B) To detect the contribution of task-independent brain processes,
we paired the resting scan with each of the six task scans for the identification. To detect the contribution of low- and high-order brain
processes, for each task condition, we paired the two successive scan sessions corresponding to the same task. (C) To predict subjects’
identities, the FCs from a database set were correlated with the FCs from the target set, resulting in an identifiability matrix. Based on this matrix,
we obtained the within-subject FC similarity (quantified by the I_self), between-subject FC similarity (quantified by the I_other), individual
identifiability (quantified by the I_diff, which is computed by I_self minus I_other), and the group-level success rate of identification.

subject, if the I_self was larger than every other element on
the same row in the identifiability matrix, the identification was
successful, otherwise it failed. In other words, if a subject’s FCs
in the database showed greater similarity with his/her own FCs
than with any other subjects in the target set, the identification
succeeded. This procedure was iterated over all subjects. The
accuracy of identification was measured as the percentage of
subjects whose identities were correctly predicted out of the total
number of subjects in the group (Finn et al., 2015).

We first evaluated the identifiability index (I_diff) and
SR for each pair separately and then averaged the results of
corresponding pairs into one.

Statistical analysis
Non-parametric permutation tests were performed to assess

whether the obtained identification accuracy was significantly
above chance. In the permutation, the subjects’ identities of the
target set were randomly assigned and then the identification
was performed. This procedure was repeated 1,000 times to
create a null distribution for each session pair. Then for each
condition, the null distributions of identification pairs were
combined and the maximum SR from the null distributions
was extracted as the threshold for the given condition. In
addition, Chi-squared tests were applied to compare the SR of
identification among the four conditions.

Comparison of within- and between-subject
similarity

The success of individual identification mainly depends
on how similar was the connectome patterns of a given

subject with his/her own FCs (quantified by the I_self) and
with the FCs of other subjects (quantified by the I_other).
To gain insights into the potential differences in individual
identification along the language hierarchy, we compared the
two variables among the four conditions using paired t-tests.
Multiple comparisons were corrected using a false discovery rate
(FDR) at Q = 0.05.

Identification based on single functional
networks

In the above analyses, the whole-brain connectome
may encode not only task-related information, but also
multiple task-unrelated neurophysiological processes as
well as task-free intrinsic processes. To establish a closer
relationship between task-related processes and individual
identifiability, we further performed the identification
based on the FC profiles of single functional networks.
Currently, most brain functional networks reported in the
literature are created from resting-state fMRI data. To
more accurately detect those functional networks closely
involved in the language task, we conducted brain network
parcellation using an independent data set involving 61
subjects listening to a 10-min real-life story while undergoing
fMRI scanning. Applying a recently-developed technique
(Ji et al., 2019; Barnett et al., 2021), a group-mean 368
by 368 FC matrix was clustered into 15 networks. Details
of network partition are presented in the Supplementary
material. The four networks of interest, including the auditory,
language, DMN and frontoparietal networks were selected
via visual inspection and validated by comparing with
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corresponding templates on Neurosynth3 in terms of spatial
overlap.

Tests for the robustness of results
Functional connectivities assessed with a different
brain atlas

To test the robustness of the major findings, we re-analyzed
the data by assessing the functional connectomes using the
Schaefer atlas which partitioned the brain into 400 areas
(Schaefer et al., 2018). Then we assessed individual identifiability
along the language hierarchy based on 400 by 400 FC matrices.

Identification using a different strategy of condition
pair and longer data length

To validate the main results, we adopted a different strategy
of condition pair to assess individual identifiability, which
allowed us to use more time points to compute FCs. Given
the hierarchical nature of language, it is reasonable to assume
that, in addition to the state-independent intrinsic activities,
those state-specific processes engaged in the low-level task (e.g.,
listening to the backward-played story) are also engaged in the
high-level task (e.g., listening to the intact story) (as illustrated
in Figure 1A). Thus, the degree of similarity of subjects’ FCs
between the low- and the high-level tasks should mainly depend
on the low-level task, which in turn would largely determine
whether a subject can be identified between the conditions.
Nevertheless, we noted that while the shared components of
low- and high-level tasks can improve the accuracy through
shared state-specific contribution, differences between state-
specific activities could reduce the performance. In this way,
changes in identification accuracy between conditions may
underestimate the contribution of the targeted processes (the
shared state-specific processes).

Following the above logic, we combined one dataset of the
intact condition with the dataset of the rest, the backward,
the sentence-scrambled, and the second intact conditions
separately. Then identification was conducted between the two
datasets for each of the four pairs. We predicted that the
identifications of the rest-intact, backward-intact, scrambled-
intact and intact-intact conditions should follow a similar
pattern as the identification of the rest-task, backward-
backward, scrambled-scrambled and intact-intact sessions.

For each condition, a total of 64 time points were extracted
to compute FCs. For the backward and sentence-scrambled
conditions, this was done by concatenating the corresponding
time series from two scan sessions. For the intact condition, this
was done by concatenating the corresponding time series from
two blocks. For the resting state, the first 64 time points were
extracted. Time series were normalized within a session before
the concatenation.

3 https://www.neurosynth.org

Results

Individual identifiability along the
language hierarchy based on
whole-brain functional connectivities

Based on the whole-brain FC patterns, we predicted subjects’
identities across the rest and each of the six task sessions with
a mean accuracy of 62.9% (the baseline, ranging from 44.44
to 85.19% across pairs), which was much higher than the best
performance (22.2%) from the permutation test (Figures 3A,B).
Across the two sessions for the backward condition, which
was presumed to involve low-level acoustic processing, the
mean SR of identification was 85.2% (ranging from 81.48 to
88.89%). Across the two sessions for the sentence-scrambled
condition, which was presumed to involve additionally middle-
level linguistic and semantic processing, the mean SR of
identification dropped slightly to 83.3% (ranging from 81.48 to
85.19%). The greatest SR was achieved across the two sessions
for the intact condition (mean = 90.74%, ranging from 88.89
to 92.59%), which was presumed to involve further high-level
conceptual processing.

For all three task conditions, the SR of individual
identification across two sessions was significantly higher
than that of the baseline (p < 0.005, by Chi-squared test).
Nevertheless, the differences in SR among the three task
conditions were not statistically significant (p > 0.25).

The analysis of the I_diff revealed a similar pattern: the
individual identifiability increased along the language hierarchy,
and the I_diff for all three tasks was greater than that of the
baseline, but had no statistically significant differences among
the three tasks (Figure 3C).

Changes in within- and
between-subject similarity along the
language hierarchy

To gain insights into why the individual identifiability
varied along the language hierarchy, we compared the degree of
within- and between-subject similarity (quantified by the I_self
and I_other, respectively) in FC patterns across corresponding
sessions. The within-subject similarity (or stability) in whole-
brain FC profiles was the greatest across the two sessions for the
sentence-scrambled condition, next for the backward condition,
and the weakest for the intact condition (Figure 3D). This
pattern was partially consistent with our prediction that the
functional brains involved in the low-order tasks varied less
across time than the brains involved in high-order tasks. The FC
profiles within subjects were the least stable across the rest-task
sessions (the baseline condition), which was significantly lower
than that of all three task conditions (p< 10−4, by paired t-test).
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FIGURE 3

(A) The result of individual identification along the language hierarchy based on whole-brain FCs. (B) The success rate of identification across all
possible pairs of sessions. Grids marked by colors are the interests of this study. The bar plot shows the group-level success rates averaged
across corresponding pairs for the four conditions. (C) Individual identifiability quantified by I_diff. (D) Within- and between-subject similarity
across sessions quantified by I_self and I_other, respectively. The asterisk indicates a significant difference between two conditions at p < 0.05
after FDR correction. The error bars denote the standard deviation of means.

The distribution of between-subject similarity resembled
that of within-subject similarity. That is, compared to the
higher-level intact condition, subjects were more similar to each
other in their brain FCs under the lower-level backward and the
sentence-scrambled conditions (p < 10−3) (Figure 3D). This
pattern was consistent with our prediction that the functional
brain involved in higher-order functions is more variable across
people. Still, compared to three task conditions, the brain FCs
varied more between subjects across the rest and task states
(p < 10−3).

Together, those results suggest that the greater individual
identifiability across the task sessions than that across the
rest and task sessions might be related to the more stable
brain FCs across the task sessions. The greater individual
identifiability under the high-order condition than that under
the low-order conditions might be related to the larger between-
subject variability.

Network-based identification

The whole-brain FCs during tasks may be shaped by both
task-related and task-unrelated processes, such as intrinsic

activities or physiological noises. To gain more insights into
the task-related information that potentially makes our brains
distinguishable, we performed the identification using the FCs
of functional networks.

Among the four examined networks, the auditory network
achieved the lowest identification accuracies (ranging between
14.8 and 48.1%) under all four conditions. Further analyses
showed the within-subject similarity in network FC profiles
was the largest in the auditory network, especially under the
backward condition. At the same time, the between-subject
similarity in FC profiles was also the largest in this network.
In other words, different subjects seemed to have similar FCs
in the auditory network across sessions, potentially leading to
the low SR in identification. The language network achieved
SRs ranging from 32.1 to 59.2%, which also tended to increase
along the hierarchy: the performance was lowest for the
baseline, better for subjects under the backward condition, and
the best for subjects under the sentence-scrambled condition,
which then dropped down slightly for subjects under the
intact condition. The DMN achieved SR ranging from 43.5 to
74.1%. The best performance obtained by this network was
for subjects under the backward condition. The frontoparietal
network performed the best (ranging from 61.1 to 92.6%) in
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distinguishing individuals under most conditions. Consistent
with the performance of the language network and the whole-
brain connectome, the frontoparietal network also distinguished
individuals with increasing accuracies along the hierarchy
(Figures 4A,B).

When averaging the results over networks, the individual
identifiability of the four conditions was ordered as
baseline < backward < scrambled < intact. This pattern
was in line with the results obtained from the whole-brain
connectome (Figure 4C). When averaging the results over
conditions, the SR of networks was ordered as auditory
network < language network < DMN < frontoparietal. Further
analyses showed, compared with the other three networks, there
was significantly lower between-subject similarity (or higher
inter-subject variability) in the FCs profiles of the frontoparietal
network (Figure 4D).

The results of validations

Reproduce the findings with a different brain
atlas

Applying the Schaefer atlas to assess the brain connectivities,
we obtained a similar pattern of individual identifiability as
the main analyses. The SR of identification increased along
the language hierarchy: 56.17% for the baseline, 81.48% for
the backward condition, 85.19% for the sentence-scrambled
condition, and 87.04% for the intact condition.

Identification using a different strategy to pair
conditions

The analyses using a different strategy to pair conditions
for identification yielded a similar picture as the main analyses.
The SR in identifying individuals between the rest and intact
conditions was the lowest (70.37%), which increased to 84.26%
between the backward and intact conditions. It then dropped
slightly to 83.3% between the sentence-scrambled and the intact
conditions and rose to 100% between the two sessions of the
intact condition. We note that the overall SRs were higher than
those of the main analyses, likely due to the use of more data
points to compute the FCs.

Discussion

Establishing the link between individual differences in
the brain with the differences in cognition, behavior, and
dysfunctions is a major goal of cognitive neuroscience. To fulfill
this goal, the neuroscientific community, which has been mainly
focused on the generic patterns of brain activities shared across
the population, is now moving forward to characterize brain
patterns that are robust and unique to individuals. Existing
studies have discovered a set of brain features that can be used to

distinguish individuals from each other and may serve as “brain
fingerprints.” However, what is the information encoded in the
brain that makes us unique remains elusive.

To understand the source of functional brain
individualization, we explored the degree of individual
identifiability along the language hierarchy. Subjects were
scanned with fMRI during a resting state and when listening
to backward-played, sentence-scrambled, and intact stories.
For each task, the imaging data were collected from two scan
sessions. Extracting the whole-brain FC profiles as features, we
found that the individual identifiability tends to increase along
the language hierarchy. The identification between the resting
state and each of the task states achieved an average SR of 62.9%
(the baseline). The mean SR across the two sessions for the
backward condition (the low level) increased to 85.2%, which
decreased slightly for the scrambled condition (83.3%) (the
middle level), and then rose to 90.7% for the intact condition
(the high level). This pattern was also observed when using
the FCs of single networks (the language network and the
frontoparietal network) to characterize individuals. In addition,
we obtained a similar pattern by employing a different brain
atlas to compute the brain connectome and by applying a
different strategy of condition pairing for the identification.

Increased individual identifiability
along the language hierarchy

Using whole-brain FCs as features, we identified individuals
across the resting and task sessions with an average SR greater
than 60%. This performance is close to the results of previous
studies which examined the individual identifiability across
resting states and a set of tasks involving emotion, motor,
memory, and language processing (Finn et al., 2015; Kaufmann
et al., 2017). Together with previous studies, our work suggests
that the state-independent, intrinsic processes are the major
contributor to brain fingerprints.

Compared to the baseline, the SR in identifying subjects
under the backward condition (the low-level) improved
significantly by about 22%. One possibility is that this
improvement reflected the direct contribution of low-order
acoustic processing to brain fingerprints. However, when
looking into single functional networks, the auditory network
only obtained an identification accuracy of 44% for this
condition, which was the worst among the four networks.
Instead, it was the DMN that showed the highest SR (74%)
in identifying individuals under the backward condition.
These results seem to argue against the possibility of a
direct contribution, suggesting that the low-order auditory
perceptual process per se may not provide critical information
in characterizing individuals. Alternatively, we propose that the
presence of audio streams may constrain the activities of the
auditory network as well as other brain networks (especially
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FIGURE 4

The results of individual identification based on single functional networks. (A) The spatial map of the selected functional networks and the
individual identifiability, within- and between-subject similarity in the FC profiles of each network. (B) The success rate of each network in
identifying individuals under each condition. (C) The success rate and the within- and between-subject similarity for each condition, averaged
by networks. (D) The success rate and the within- and between-subject similarities for each network, averaged by conditions.

the DMN) as a whole, leading to a high degree of within-
subject stability in brain connectivities across sessions (as can
be seen in Figures 4A,C). This may explain the significant
improvement in identifying individuals based on the whole-
brain FCs.

Compared to the low-level condition, the SR in identifying
individuals under the sentence-scrambled condition (the middle
level) based on whole-brain FCs decreased slightly by about 2%.
However, when taking the FCs of single functional networks
as features, both the language network and the frontoparietal
network performed better in identifying individuals under the
scrambled condition than that under the backward condition.
This pattern was also found in the averaged performance
across the four networks. The increase in identifiability was
accompanied by the increase in within-subject stability and a
slight drop in inter-subject variability. These results suggest
that, compared to listening to the meaningless backward-played
story, comprehending sentences may help to blur irrelevant
features (background noises), therefore enhancing those key

individual features meanwhile making subjects’ FCs more
similar to one another.

The greatest SR was obtained for the identification of
individual subjects under the intact condition (the high
level). Compared to the other two task conditions, there
was greater inter-subject variability and slightly lower within-
subject stability in brain FCs under the intact condition. The
increased individual identifiability may be related to the fact that
comprehending stories requires the integration of information
over a longer time scale than did the two lower-level tasks. This
is consistent with previous findings that the best identification
emerges at longer time scales (Van De Ville et al., 2021).

The differences among networks in
distinguishing individuals

Among the four networks, the auditory networks
consistently showed the lowest SR in discriminating subjects

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.982905
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-982905 September 14, 2022 Time: 7:56 # 10

Zhang et al. 10.3389/fnhum.2022.982905

under all four conditions. Further analyses revealed that,
while the within-subject FC similarity was the greatest, the
inter-subject FC variability was the least in the auditory network
among the four networks. The low inter-subject variability (or
high inter-subject similarity) in the auditory network across
the language hierarchy is consistent with previous findings
(Lerner et al., 2011), which likely explains the comparatively
poor performance of this network in distinguishing individuals.

The condition-averaged SR derived from the language
network was higher than that derived from the auditory network
but lower than that derived from the DMN. In comparison with
the auditory network, both the language network and the DMN
were characterized by greater inter-subject variability but lower
within-subject stability.

The frontoparietal network consistently showed the best
performance in identification under all conditions except for the
backward condition. Under the intact condition, identification
using the FCs of the frontoparietal network alone performed
even better than that using the whole-brain FCs. Moreover,
similar to the whole-brain FC profiles, the SR obtained using the
FC profiles of the frontoparietal network also increased along
the language hierarchy. Still, this increase was accompanied
by the increase in inter-subject variability rather than within-
subject stability of FCs. These findings are consistent with
previous reports about a high degree of individualization (Finn
et al., 2015; Amico and Goni, 2018; Horien et al., 2019) and
inter-subject variability in the frontoparietal network (Mueller
et al., 2013). Our study extends previous work by suggesting
that the special role of the frontoparietal network in individual
identification is likely owing to its function rather than its
anatomical features.

Limitations and implications

One limitation of the current study is the small sample of
subjects and the short data length used to compute the FC.
Despite that we have validated the main results with the analysis
using a different data length (32 versus 64 time points), future
studies based on a larger sample size are required to replicate
our findings and evaluate the effect of data length (stimuli
duration). Besides, all the subjects recruited in this study are
females. Whether the results can be extended to males remains
to be tested. Finally, while we observed that the more complex
cognitive task and the network associated with higher-level
cognitive functions tended to better distinguish individuals,
most of the changes in identification accuracy did not reach
statistical significance. Although this trend was reproducible
across the analyses with different brain atlas and different
strategies of condition pair, more work is needed to establish that
this trend is meaningful rather than arbitrary.

Despite the above limitations, the current study may provide
useful implications for future research. First, we demonstrated
that, during the high-order story comprehension task, the brain

functional connectivities are quite different across subjects but
stable enough across time within the same subjects. Meanwhile,
on the low-order perceptual task, the brain connectivities were
quite stable across time and similar across individuals. These
results imply that, for low-order functions, conclusions about
the brain obtained from a relatively small pool of subjects can be
generalized to larger groups. However, for high-order functions,
averaged brain patterns obtained from a small sample may not
well represent the general principles of brain function. However,
if properly exploited, individual differences in brain activities on
high-order tasks can provide useful information that is beyond
what can be captured by those group-mean focused approaches
(Liu et al., 2020).

Second, in line with previous work (Mueller et al.,
2013; Finn et al., 2015; Amico and Goni, 2018), this study
highlights the special role of the frontoparietal network in
characterizing individuals. In addition, we found that the
individual distinguishing ability of the frontoparietal network
increased with the complexity of tasks. Based on these findings,
we speculate that executive processes, which are the typical
function of the frontoparietal network and demands for it
usually increase with the complexity of tasks, might be the
core factor underlying inter-individual differences in the brain
and behavior. Future studies aiming to manipulate brain states
to maximize individual differences may give priority to tasks
involving executive processes.

Conclusion

This study demonstrated that individual identifiability
tended to increase along the language hierarchy: the more
complex the task was, the better subjects were distinguished
from each other based on their functional brain data. A similar
principle was also found at the functional network level:
compared to the low-order network (the auditory network),
the high-order network was more individualized (the DMN
and frontoparietal networks). Moreover, in both cases, the
increase in individual identifiability was accompanied by the
increase in inter-subject variability of the FC profiles. The two
folds of results together suggest that, compared to the low-
order functions, the high-order functions of the brain are
more important in making us unique. At the same time, task-
independent neural processes seem to contribute more than
task-evoked neural processes to brain individualization. What
is exactly encoded in the task-independent brain activities and
its function in cognition and behavior remain an open question.
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