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a b s t r a c t

Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingre-
dient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute
respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preven-
tative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to
suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus for
which there are currently no effective drugs available. Like all RNA viruses, SARS-CoV-2 encode RNA-
dependent RNA polymerase (RdRp) enzyme which aids viral gene transcription and replication. The pre-
sent study is aimed at understanding the potential of bioactive compounds from H. cordata as inhibitors
of the SARS-CoV-2 RdRp enzyme. We investigated the drug-likeness of the plant’s active constituents,
such as alkaloids, polyphenols, and flavonoids, as well as their binding affinity for the RdRp enzyme.
Molecular docking experiments show that compounds 3 (1,2,3,4,5-pentamethoxy-dibenzo-quinolin-7-
one), 14 (7-oxodehydroasimilobine), and 21 (1,2-dimethoxy-3-hydroxy-5-oxonoraporphine) have a high
affinity for the drug target and that the complexes are maintained by hydrogen bonds with residues like
Arg553, Cys622 and Asp623, as well as hydrophobic interactions with other residues. The lead com-
pounds’ complexes with the target enzyme remained stable throughout the molecular dynamics simula-
tion. Analysis of molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and molecular
mechanics generalized Born surface area (MM-GBSA) revealed the key residues contributing considerably
to binding free energy. Thus, the findings reveal the potential of H. cordata bioactive compounds as anti-
SARS-CoV-2 drug candidate molecules against the target enzyme.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Houttuynia cordata Thunb. is a flowering and perennial herb
native to China, Japan, Korea, and Southeast Asia. It is the single
species in the genus Houttuynia, which belongs to the Saururaceae
family. It thrives in wet, shaded hillside, roadside, and field ridges
between 300 and 2600 m in elevation (Jiangang et al., 2013).
H. cordata has a slender stem and heart-shaped leaves and bears
greenish-yellow flowers. It grows up to an average height of
15–50 cm. When rubbed, it has a fishy odour and a somewhat
astringent flavour. When the stalk and leaves have matured, it is
generally harvested in the summer or autumn (Yang and Jiang,
2009). In Southeast Asia’s indigenous medicine systems, H. cordata
is a well-known traditional medicinal ingredient (Jiangang et al.,
2013). It relieves fever, resolves toxins, reduces edema, drains
pus, and promotes urination (Zheng et al., 1998). It was one of
the components in SARS preventive formulations authorized by
the Chinese Ministry of Health during the epidemic of Severe Acute
Respiratory Syndrome (SARS) (Lau et al., 2008). H. cordata has been
utilized in China as an edible vegetable and an effective traditional
Chinese medicine (TCM) since ancient times (Yang and Jiang,
2009). It has antileukemic (Kwon et al., 2003), antimutagenic
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Fig. 1. Selected compounds belonging to different classes- alkaloids (1–22), flavonoids (23–33) and polyphenols (34–49) isolated from extracts of H. cordata used for virtual
screening.
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(Chen et al., 2003), anti-inflammatory (Chiang et al., 2003), and
antianaphylaxis (Li et al., 2005) properties, as well as the potential
to boost immunologic function. Amino acids, vitamins, and trace
elements such as potassium, zinc, iron, copper, and manganese
are the nutrients present in H. cordata. The active components in
the plant include volatile oils, organic acids, flavonoids, alkaloids,
polyphenols, water-soluble polysaccharides etc (Yang and Jiang,
2009).

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a highly transmissible and pathogenic coronavirus that first
appeared in late 2019 and has since caused a pandemic of an
acute respiratory disease known as coronavirus disease 2019
Table 1
The list of bioactive molecules from H. cordata extract with their physicochemical charact

Compounds Name CID MW1 Lo

1* Piperolactam D homologue – 301.341 2
2 Analogue of compound 1 – 307.304 3
3* 1,2,3,4,5-pentamethoxy-dibenzo-

quinolin-7-one
– 381.383 3

4* 4-hydroxy-1,2,3-trimethoxy-7H-
dibenzo-quinolin-7-one

– 337.33 2

5 3-methoxy-6H-benzodioxolo-
benzoquinoline-4,5-dione

– 321.287 2

6 3-methoxy-6-methyl-6H-benzodioxolo-
benzoquinoline-4,5-dione

– 335.314 3

7 1,2,3-trimethoxy-4H,6H-
dibenzoquinolin-5-one

– 323.347 2

8 1,2,3- trimethoxy-6-methyl-4H,6H-
dibenzoquinolin-5-one

– 337.374 3

9 Piperolactam D 14,039,008 295.293 2
10 Sauristolactam 131,002 279.294 3
11 Piperolactam C 10,881,419 309.32 2
12* Piperolactam B – 287.314 2
13 Cepharanone B 162,739 279.294 3
14* 7-oxodehydroasimilobine – 277.278 3
15* Lysicamine 122,691 291.305 3
16* Atherospermidine 77,514 305.288 3
17* Liriodenine 10,144 275.262 3
18 Ouregidione 11,958,181 337.33 2
19 Cepharadione B 189,151 321.331 2
20 Cepharadione A 94,577 305.288 3
21* 1,2-dimethoxy-3-hydroxy-5-

oxonoraporphine
– 311.336 2

22* 1,2,3-trimethoxy-3-hydroxy-5-
oxonoraporphine

– 325.363 2

23 Quercetin 5,280,343 302.237 1
24 Rutin 5,280,805 610.519 �1
25 Hyperin 90,657,624 464.378 �0
26 Afzelin 5,316,673 432.38 0
27 Quercitrin 5,280,459 448.379 0
28 Isoquercitrin 5,280,804 464.378 �0
29 Apigenin 5,280,443 270.239 2
30 Kaempferol 5,280,863 286.238 1
31 Isorhamnetin 5,281,654 316.264 1
32 Phloridzin 6072 436.412 0
33 Avicularin 5,490,064 434.352 0
34 Protocatechuic acid 72 154.121 0
35 Chlorogenic acid 1,794,427 354.31 �0
36 Vanillic acid 8468 168.148 0
37* p-Hydroxy-benzoic acid methyl ester 7456 152.149 1
38* Chlorogenic acid methyl ester 6,476,139 368.337 �0
39 Cryptochlorogenic acid 9,798,666 354.31 �0
40 Neochlorogenic acid 5,280,633 354.31 �0
41 Procyanidin B 122,738 578.524 2
42* Catechin 73,160 290.27 1
43* Quinic acid 6508 192.166 �2
44 Caffeic acid 689,043 180.159 0
45* cis-Methyl ferulate 10,176,654 208.212 1
46* trans-Methyl ferulate 5,357,283 208.212 1
47* Methyl vanillate 19,844 182.174 1
48 Vanillin 1183 152.149 1
49* Houttuynamide A 44,521,377 273.287 1

1: Molecular weight in g/mol; 2: Partition coefficient between n-octanol and water; 3: H
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(COVID-19), which poses a threat to human health and public
safety (Hu et al., 2021). SARS-CoV-2 is a new betacoronavirus with
a genomic sequence that is 79 % similar to severe acute respiratory
syndrome coronavirus (SARS-CoV) and 50 % similar to Middle East
respiratory syndrome coronavirus (MERS-CoV) (Lu et al., 2020).
SARS-CoV-2 is a positive-strand RNA virus with a genome of
around 30 kb which encode 14 open reading frames (ORFs)
(Jiang et al., 2021). All RNA viruses encode RNA-dependent RNA
polymerases (RdRps) enzyme which aids viral gene transcription
and replication in collaboration with other viral and host compo-
nents (Gorbalenya et al., 2002). The RdRps are multi-domain pro-
teins that catalyze the formation of phosphodiester linkages
eristics. (* indicates the molecules that have favourable drug-like properties).

gP2 HBA3 HBD4 Mutagenic Tumorigenic Reproductive
Effective

Irritant

.6158 5 2 none none none none

.5685 5 0 high high none high

.4248 7 0 none none none none

.8677 6 1 none none none none

.6483 6 1 high high none high

.0066 6 0 high high none high

.9477 5 1 high high none high

.306 5 0 high high none high

.6831 5 2 high high none high

.1114 4 1 high high none high

.9588 5 1 high high none high

.2643 5 2 none none none none

.0288 4 1 high high none high

.0077 4 1 none none none none

.2834 4 0 none none none none

.4648 5 0 none none none none

.5348 4 0 none none none none

.3969 6 1 high high none high

.8252 5 0 high high none high

.0766 5 0 high high none high

.3148 5 2 none none none none

.5905 5 1 none none none none

.4902 7 5 high high none none

.2573 16 10 none none none none

.3469 12 8 none none none none

.9255 10 6 none none none none

.5798 11 7 none none none none

.3469 12 8 none none none none

.3357 5 3 high none none none

.8359 6 4 high none none none

.7659 7 4 high none none none

.055 10 7 none none low none

.1632 11 7 none none none none

.4533 4 3 high none none none

.7685 9 6 none none none none

.729 4 2 high none none none

.2269 3 1 none none none none

.3406 9 5 none none none none

.7685 9 6 none none none none

.7685 9 6 none none none none

.3016 12 10 none none high none

.5087 6 5 none none none none

.3347 6 5 none none none none

.7825 4 3 high high high none

.4861 4 1 none none none none

.4861 4 1 none none none none

.1569 4 1 none none none none

.1772 3 1 high none high high

.9095 5 4 none none none none

ydrogen bond acceptor; 4: Hydrogen bond donor



Table 2
The inhibition constants and binding energies of selected compounds generated from
H.cordata docked against the target enzyme. BE: Estimated Free Energy of Binding
[BE = Final Intermolecular Energy + Final Total Internal Energy + Torsional Free
Energy- Unbound System’s Energy], where Final Intermolecular
Energy = vdW + Hbond + desolv Energy + Electrostatic Energy; Ki: Estimated
Inhibition Constant [Temperature = 298.15 K].

Molecules Name RdRp

BE
(kcal/mol)

Ki

(mM)

1 Piperolactam D homologue �4.88 266.86
3 1,2,3,4,5-pentamethoxy-dibenzo-

quinolin-7-one
�6.24 26.88

4 4-hydroxy-1,2,3-trimethoxy-7H-
dibenzo-quinolin-7-one

�5.76 60.06

12 Piperolactam B �5.62 75.76
14 7-oxodehydroasimilobine �6.38 21.14
15 Lysicamine �5.85 51.12
16 Atherospermidine �6.06 36.06
17 Liriodenine �6.05 36.50
21 1,2-dimethoxy-3-hydroxy-5-

oxonoraporphine
�6.15 31.31

22 1,2,3-trimethoxy-3-hydroxy-5-
oxonoraporphine

�5.84 52.66

37 p-Hydroxy-benzoic acid methyl ester �4.69 363.94
38 Chlorogenic acid methyl ester �5.98 41.10
42 Catechin �5.61 76.81
43 Quinic acid �4.79 308.10
45 cis-Methyl ferulate �4.76 324.33
46 trans-Methyl ferulate �4.66 381.50
47 Methyl vanillate �4.14 916.44
49 Houttuynamide A �5.41 107.56
Control Remdesivir �5.98 41.10
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between ribonucleotides in the presence of a divalent metal ion
using an RNA template (Jia and Gong, 2019). SARS-CoV-2 RdRp
(also known as nsp12) is an important element of the replication/-
transcription machinery (Pachetti et al., 2020). Nidovirus RdRp-
associated nucleotidyltransferase (NiRAN) domain, interface
domain, and C-terminal RdRp domain are all found in the nsp12
subunit (Gao et al., 2020). The RdRp domain, which is present in
all single-subunit polymerases, is shaped like a right hand, with
fingers, palm, and thumb subdomains (Kirchdoerfer and Ward,
2019). RdRp is one of the most important targets for antiviral med-
ication research, as it is found in a wide range of viruses (Pachetti
et al., 2020). Favipiravir (Furuta et al., 2013), Galidesivir (Lim et al.,
2017), Remdesivir (Agostini et al., 2018), and Ribavirin
(Morgenstern et al., 2005) are several RdRp inhibitors that have
been proposed to target SARS-CoV-2.

The absence of effective treatments for human coronaviral
infections (Jean et al., 2020), as well as the high fatality rates asso-
ciated with the novel coronavirus (2019-nCoV) (Piroth et al., 2021),
has prompted the development of new vaccines. In this study, we
looked at the possibilities of utilizing H. cordata bioactive mole-
cules to halt SARS-CoV-2 replication. We screened out drug-like
molecules from H. cordata using in silico toxicity filters and utilized
molecular docking and molecular dynamics to describe the binding
interaction of the chosen bioactive compounds with the target
enzyme (SARS-CoV-2 RdRp).
2. Materials and methods

2.1. Retrieval and preparation of bioactive alkaloids

The information on the various bioactive compounds of H. cor-
data was obtained from a literature search (Jiangang et al., 2013;
Ma et al., 2017). A total of 49 molecules consisting of 22 alkaloids,
11 flavonoids and 16 polyphenols were chosen for the study. The
3D structures of the molecules were retrieved from the PubChem
7520
database (Kim et al., 2016) and the molecules whose three-
dimensional structures were not available in the chemical data-
bases were sketched using ACD/ChemSketch (Freeware) 2019.1.2
software and were processed into 3D structures using Open Babel
version 2.4.1 software (O’Boyle et al., 2011) and further energy-
optimized using Merck molecular force field (MMFF94) (Halgren,
1996) following our previously described protocol (Gurung et al.,
2016). The molecules were prepared for docking using AutoDock
Toos-1.5.6 by the addition of Gasteiger charges and hydrogen
atoms and torsions for each molecule were optimally defined.

2.2. Virtual screening of drug-like molecules

The bioactive molecules were screened based on various drug-
like filters such as Lipinski’s rule of five parameters (Lipinski,
2004): molecular weight (MW) (<=500), hydrogen bond acceptor
(HBA) (<=10), hydrogen bond donor (HBD) (<=5), partition coeffi-
cient between n-octanol and water (clogP) (<=5) and in silico toxi-
city filters such as mutagenicity, irritancy, tumourigenicity,
reproductive health etc. DataWarrior program version 5.0 software
(Sander et al., 2015) was used to analyze the physico-chemical
characteristics of the selected compounds, such as drug-like prop-
erties and toxicity.

2.3. Retrieval and preparation of structure of drug target

The three-dimensional cryo-electron microscopy structure of
the enzyme target-SARS-CoV-2 RdRp (PDB ID: 7BV2) at a resolu-
tion of 2.50 Å, was retrieved from Protein Data Bank (http://
www.rcsb.org/). This crystal structure contains a ternary complex
of RdRp enzyme (nsp12) with cofactors nsp7 and nsp8 bound to
the template-primer RNA and triphosphate form of remdesivir
(Yin et al., 2020). The target enzyme (nsp12) was prepared by
deleting the cofactors and removing the heteroatoms including
ions, co-crystallized ligands and water molecules. Further, an opti-
mum number of polar hydrogen atoms and Kolmann charges were
added to the target enzyme using AutoDock Toos-1.5.6.

2.4. Evaluation of binding affinity of the compounds with the target
enzyme

The binding affinity of each molecule along with the control
inhibitor was evaluated against the enzyme target using a molec-
ular docking approach. The binding sites for the compounds were
defined by choosing a grid box of dimensions of 60 � 60 � 60 Å3

with a grid spacing value of 0.375 Å centred at x:92.5053,
y:93.2594, z:103.4061 around the bound co-crystallized ligand.
AutoDock 4.2 (Morris et al., 2009) was used for performing molec-
ular docking study using Lamarckian genetic algorithm with fifty
independent docking runs for each molecule including the cocrys-
tal ligand (triphosphate form of remdesivir).

2.5. Evaluation of binding poses and molecular interactions

The binding poses for each molecule was considered based on
the lowest binding energy score. LigPlot + tool version v.1.4.5
was used to analyse the molecular interactions (hydrogen bonds
and hydrophobic interactions) between the target enzyme and
compounds (Laskowski and Swindells, 2011).

2.6. Molecular dynamics simulation

The AMBER16 software, which is accessible on ligand and
receptor molecular dynamics (LARMD) (http://chemyang.ccnu.
edu.cn/ccb/server/LARMD/), was used to simulate the protein–li-
gand complexes for a 4-ns MD simulation in an explicit water

http://www.rcsb.org/
http://www.rcsb.org/
http://chemyang.ccnu.edu.cn/ccb/server/LARMD/
http://chemyang.ccnu.edu.cn/ccb/server/LARMD/


Fig. 2. Best docked molecules with the target enzyme-(A) RdRp_14 (B) RdRp_3 (C) RdRp_21 (D) RdRp_remdesivir. Green dashed lines with the bond distance represent
hydrogen bonds, whereas red arcs with spikes denote residues that contribute to hydrophobic interactions.
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model (Yang et al., 2020). The following equation (1) was used to
determine the binding free energy (DGbind)

DGbind ¼ DEbind � TDSsol � TDScon ð1Þ

where DEbind is the binding energy, TDSsol is the solvation entropy,
and TDSconf is the conformational entropy. The entropy was esti-
mated using the MM/PB (GB) SA technique (Hou et al., 2011), and
the enthalpy was computed using an empirical approach (Hao
et al., 2009; Pan et al., 2008).
3. Results

A total of 49 major bioactive molecules as shown in Fig. 1 com-
prising of 22 alkaloids, 11 flavonoids and 16 polyphenols were
subjected to virtual screening based on Lipinski’s rule of five and
in silico toxicity filters such as mutagenicity, irritancy, tumouri-
genicity and reproductive health. Out of 49 bioactive molecules,
18 molecules (10 alkaloids and 8 polyphenols) successfully passed
the drug-like filters (the rule of five and toxicity filters) (Table 1).
The binding affinities of these drug-like bioactive molecules were
evaluated against the target enzyme-SARS-CoV-2 RdRp using
molecular docking. The docking scores of the molecules were com-
pared with the control inhibitor Remdesivir which is bound as a
co-crystal structure. The top three lead molecules identified for
SARS-CoV-2 RdRp were 7-oxodehydroasimilobine (14), 1,2,3,4,5-
pentamethoxy-dibenzo-quinolin-7-one (3) and 1,2-dimethoxy-3-
hydroxy-5-oxonoraporphine (21) with binding energies of
�6.38 kcal/mol, �6.24 kcal/mol and �6.15 kcal/mol respectively
and their corresponding inhibition constants were 21.14 mM,
26.88 mM and 31.31 mM (Table 2). The best lead molecule 14 binds
to RdRp enzyme through three hydrogen bonds- one with back-
bone nitrogen (N) atom of Asp623, one with side chain OD1 atom
of Asp623 and one with backbone nitrogen (N) atom of Cys622 and
the binding pose further shows the participation of seven residues
(Tyr455, Lys551, Arg553, Tyr619, Pro620, Lys621 and Arg624) in
hydrophobic interactions with SARS-CoV-2 RdRp (Fig. 2A). The
Fig. 3. Plot of root mean square deviation (RMSD) versus time (ps) for (a) RdRp_14 (b) R
atoms, whereas the red line represents the RMSD curve of ligand heavy atoms.
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second lead molecule 3 binds to RdRp enzyme through three
hydrogen bonds-one with backbone nitrogen (N) atom of
Asp623, the second one with backbone nitrogen (N) atom of
Cys622 and the third one with the side chain nitrogen (NH2) atom
of Arg553 and hydrophobic interactions through six residues
(Tyr455, Tyr619, Pro620, Lys621, Arg624 and Asp760) (Fig. 2B).
The third lead molecule 21 binds to the RdRp enzyme through
three hydrogen bonds-one with the side chain oxygen (OD1) atom
of Asp623, two hydrogen bonds with the side chain nitrogen (NH2)
atom of Arg553 and hydrophobic interactions through ten residues
(Asp452, Tyr456, Arg555, Thr556, Val557, Ala558, Arg624, Thr680,
Ser681 and Ser682) (Fig. 2C). The control inhibitor Remdesivir
shows binding energy of �5.78 kcal/mol and inhibition constant
of 41.10 mM with six hydrogen bonds-one with the side chain oxy-
gen (OD2) atom of Asp618, the second one with the side chain oxy-
gen (OD1) atom of Asp761, the third and the fourth one with the
backbone oxygen (O) atom of Asp760, the fifth one with the back-
bone nitrogen (N) atom of Tyr619 and the sixth one with the back-
bone oxygen (O) atom of Tyr619 and hydrophobic interactions via
residues- Arg553, Pro620, Lys621, Cys622 and Lys798 (Fig. 2D).

Molecular dynamics simulations in an aqueous environment
with a simulation period of 4 ns were used to investigate the sta-
bility of the best-docked molecules with the RdRp enzyme. The
root mean square deviation (RMSD), radius of gyration (Rg), and
percentage of native contacts (Q) values of the protein–ligand com-
plexes were computed to determine the system’s stability. The
RMSD estimates the measurement of root mean square deviation
of atomic positions which is used to determine the average dis-
tance between the atoms of superimposed structures of protein
and ligand over a period of time (Maiorov and Crippen, 1994).
The average RMSD of Ca atoms of RdRp and heavy atoms of 14
in RdRp_14 complex was found to be 1.491471829 ± 0.22338225
4 Å and 0.227194732 ± 0.085059128 Å respectively (Fig. 3a).
Whereas, RdRp_3 complex has an average RMSD of 1.508672829
± 0.250546445 Å for Ca atoms of RdRp and 0.545165463 ± 0.13
4428523 Å for heavy atoms of 3 (Fig. 3b). The average RMSD of
Ca atoms of RdRp and heavy atoms of 21 in RdRp_21 complex
dRp_3 (c) RdRp_21. The black line represents the RMSD curve of protein backbone
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was found to be 1.769013366 ± 0.305136961 Å and 0.245875439
± 0.105217219 Å respectively with respect to the starting struc-
tures (Fig. 3c). Rg can be explained as the root mean square dis-
tance from each atom of the system to its centre of mass
(Lobanov et al., 2008). The Rg values for protein–ligand complexes:
RdRp_14, RdRp_3 and RdRp_21 show stable fluctuation between
28.8 and 29.2 Å, 28.6 to 29.2 Å and 28.7 to 29.1 respectively
(Fig. 4). With a folding free energy barrier, the Q (fraction of native
contacts) represents conformational dynamics and transition
states of a protein (Best et al., 2013). The Q values RdRp_14,
RdRp_3 and RdRp_21 were found to be 0.963516973 ± 0.010784
854, 0.970136286 ± 0.009314162 and 0.961349858 ± 0.01155158
1 respectively (Fig. 5). Essential dynamics (ED) or Principal
component analysis is a reliable approach for grouping protein
conformations and distinguishing large concerted patterns of fluc-
tuations fromMD simulation trajectories (Gurung et al., 2021). The
Fig. 4. Plot of radius of gyration (Rg) versus time

Fig. 5. Plot of native contacts (Q) versus time (p

7523
contribution of eigenvector 1 (PC1) towards the total mean square
fluctuations were found to be 140.626 Å2 (19.051%), 200.317 Å2

(24.243%) and 225.722 Å2 (25.526%) for RdRp_14, RdRp_3 and
RdRp_21 respectively (Fig. 6). Eigenvector 2 contributions to the
total mean square fluctuations RdRp_14, RdRp_3 and RdRp_21
were calculated to be 78.101 Å2 (10.581%), 118.850 Å2 (14.384%)
and 121.656 Å2 (13.758%), 81.949 Å2 respectively. Whereas eigen-
vector 3 (PC3) also shares significant contributions to the total
mean square fluctuations in RdRp_14, RdRp_3 and RdRp_21 com-
plexes with their corresponding eigenvalues as 66.559 Å2

(9.017%), 52.241 Å2 (6.322%) and 54.767 Å2 (6.193%).
The binding free energies between RdRp and 14 (DPB = -3.75 k

cal/mol, DGB = -5.02 kcal/mol), 3 (DPB = 11.80 kcal/mol, DGB = 10.
99 kcal/mol) and 21 (DPB = -7.71 kcal/mol, DGB = -11.95 kcal/mol)
were calculated using Molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) and molecular mechanics generalized
(ps) for (a) RdRp_14 (b) RdRp_3 (c) RdRp_21.

s) for (a) RdRp_14 (b) RdRp_3 (c) RdRp_21.



Fig. 6. Principal component analysis (PCA) for (a) RdRp_14 (b) RdRp_3 (c) RdRp_21.
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Born surface area (MM-GBSA) methods. (Table 3). In all the three
protein–ligand complexes except RdRp_3, the major contribution
to the binding energy is by the van der Waals energy component.
The top ten residues contributing towards the binding interaction
between RdRp and 14 include Asp452, Tyr455, Ser549, Lys551,
Arg553, Pro620, Lys621, Cys622, Asp623 and Arg624 (Fig. 7a).
The residues such as Tyr455, Lys551, Arg553, Asp618, Tyr619,
Lys621, Asp623, Asp760, Asp761 and Lys798 contribute signifi-
cantly to the total binding energy between RdRp and 3 (Fig. 7b).
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Similarly, the top ten residues contributing towards the binding
interaction between RdRp and 21 include Asp452, Tyr455,
Arg553, Thr556, Val557, Asp623, Arg624, Ser681, Ser682 and
Thr687 (Fig. 7c).
4. Discussion

Medicinal plants have long been recognized as a source of ther-
apeutics, and they continue to be a valuable resource for discover-



Table 3
Summary of the binding free energy of protein–ligand complexes (in kcal/mol).

Protein-
ligand
complexes

ELE1 VDW2 GAS3 PBSOL4 PBTOT5 GBSOL4 GBTOT5 -TS6 4GPB
7 4GGB

7

RdRp_14 �3.37 ± 2.49 �25.62 ± 2.11 �28.99 ± 3.55 11.07 ± 3.93 �17.92 ± 2.75 9.80 ± 2.43 �19.19 ± 1.79 14.17 ± 1.94 �3.75 �5.02
RdRp_3 �48.71 ± 11.17 �25.82 ± 3.77 �74.53 ± 12.36 65.94 ± 11.97 �8.59 ± 4.81 65.13 ± 10.48 �9.40 ± 3.27 20.39 ± 3.48 11.80 10.99
RdRp_21 �8.40 ± 1.99 �30.20 ± 2.94 �38.60 ± 3.95 17.56 ± 3.17 �21.04 ± 3.02 13.32 ± 1.77 �25.28 ± 2.99 13.33 ± 1.93 �7.71 �11.95

1Electrostatic energy as calculated by the MM force field; 2Van der Waals contribution from MM; 3Total gas-phase energy; 4Non-polar and polar contributions to solvation
based on PB/GB model; 5Final estimated binding free energy calculated from GAS and PBSOL/GBSOL; 6Entropy; 7Binding free energy with entropy

Fig. 7. The decomposition of binding free energy for the top ten residues depicted in a heatmap for (a) RdRp_14 (b) RdRp_3 (c) RdRp_21.
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ing new drug candidates (Atanasov et al., 2015). Many of these
plants have been used in traditional medicine to treat diseases that
are viral in origin (Ben-Shabat et al., 2020). Besides gaining a better
understanding of pathological processes, the pharmaceutical
industry has been concerned about the source of molecules. Natu-
ral medicines are gaining popularity due to several advantages,
including lower costs, acceptability due to a long history of usage,
better patient tolerance, and fewer or no adverse effects (Akram
et al., 2018). In the present study, we explored the potential of
three major classes of phytochemicals-alkaloids, flavonoids and
polyphenols from H. cordata as inhibitors of the SARS-CoV-2 RdRp
enzyme. H. cordata (Saururaceae) is a traditional Chinese medicine
(TCM) that has been used for hundreds of years to treat
pulmonary-related problems such as abscesses, phlegm, cough,
and dyspnea and is effective in the treatment of pneumonia, infec-
tious disease, and other respiratory disorders (Lau et al., 2008).
Besides, the plant has anti-inflammatory (Park et al., 2005), anti-
allergic (Kim et al., 2007), virucidal (Chiang et al., 2003), anti-
oxidative (Ng et al., 2007), and anti-cancer properties (Kim et al.,
2001). RdRp, one of the most important drug targets found in sev-
eral viruses is a major component of the SARS-CoV-2 replication/-
transcription machinery (Pachetti et al., 2020). In our present
studies, compounds 14 (7-oxodehydroasimilobine), 3 (1,2,3,4,5-p
entamethoxy-dibenzo-quinolin-7-one) and 21 (1,2-dimethoxy-3-
hydroxy-5-oxonoraporphine) were found to be the most potent
bioactive molecules interacting with the enzyme target with a
binding affinity higher than the control (remdesivir). The com-
plexes of these lead molecules with the target enzyme remained
stable throughout the simulation time in terms of the root mean
square deviation (RMSD), radius of gyration (Rg), and percentage
of native contacts (Q) plots. Remdesivir, an adenosine analogue
first designed for hepatitis C and later investigated for Ebola is a
competitive inhibitor of RdRp enzyme (Triggle et al., 2021). All
the three best-docked molecules of H. cordata in our studies belong
to the alkaloids class. Alkaloids are a class of natural compounds
produced from plants that have potent antiviral properties and
therefore, represent potential candidates for finding effective
COVID-19 therapies (Majnooni et al., 2021). Compound 14 had
substantial protein tyrosine phosphatase 1B (PTP1B) inhibitory
action with an IC50 value of 2.672 mM while 3 (10 mM) had modest
hepatoprotective efficacy against D-galactosamine-induced WB-
F344 cell injury (Ma et al., 2017). PTP1B is a validated therapeutic
target for type 2 diabetes since it acts as a negative regulator of
insulin signalling pathways (Shrestha et al., 2019). Previous studies
investigating the immunological and antiviral aspects of SARS-
preventive mechanisms of H. cordata found that the HC water
extract stimulates significant proliferation of mouse splenic lym-
phocytes, increased the proportion of CD4 + and CD8 + T cells,
and a significant increase in the secretion of IL-2 and IL-10, and
exhibited significant antiviral properties by inhibiting SARS-CoV
RdRp and 3C-like protease (3CLpro) enzymes (Lau et al., 2008). Fur-
ther, the anti-SARS-CoV-2 potential of H. cordata was recently
demonstrated by Das et al. (2021) whose studies suggested 6-
Hydroxyondansetron and Quercitrin as a new therapeutic drug
against COVID-19. Both these compounds showed good binding
with three SARS-CoV-2 protein receptors such as main protease
(Mpro), papain-like protease (PLpro) and ADP-ribose phosphatase
(ADRP).
5. Conclusion

The binding of drug-like bioactive compounds of H. cordata to
the RdRp, an enzyme involved in the replication and transcription
of SARS-CoV-2, was investigated using molecular modelling tech-
niques such as molecular docking and dynamics simulation. Com-
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pounds 14 (7-oxodehydroasimilobine), 3 (1,2,3,4,5-pentamethoxy-
dibenzo-quinolin-7-one) and 21 (1,2-dimethoxy-3-hydroxy-5-oxo
noraporphine) were found to be best docked to the target enzyme
and formed stable protein–ligand complexes throughout the simu-
lation time. These compounds may be developed into promising
drug candidates for SARS-CoV-2 infections.
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