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Abstract

Objectives

High-speed tooth preparation requires effective cooling to avoid thermal damage, which

generates spray mist, which is a mixture of an aerosol, droplets and particles of different

sizes. The aim of this experimental study was to analyze the efficacy of spray mist reduction

with an intraoral high-volume evacuation system (HVE) during simulated high-speed tooth

preparation for suboptimal versus optimal suction positions of 16 mm sized cannulas and

different flow rates of the HVE.

Material and methods

In a manikin head, the upper first premolar was prepared with a dental turbine, and gener-

ated particles of 5–50 microns were analyzed fifty millimeters above the mouth opening with

the shadow imaging technique (frame: 6.6×5.3×1.1 mm). This setup was chosen to gener-

ate a reproducible spray mist in a vertical direction towards an imaginary operator head

(worst case scenario). The flow rate (FR) of the HVE was categorized into five levels (�120

l/min up to 330 l/min). The number of particles per second (NP; p/s) was counted, and the

mass volume flow of particles per second (MVF; μg/s*cm3) was calculated for 10 sec. Sta-

tistical tests were nonparametric and two-sided (p�0.05).

Results

With increasing flow rate, the NP/MVF values decreased significantly (eta: 0.671/0.678;

p�0.001). Using a suboptimally positioned cannula with an FR�160 l/min, significantly

higher NP values (mean±SD) of 731.67±54.24 p/s (p�0.019) and an MVF of 3.72±0.42 μg/

s*cm3 (p�0.010) were measured compared to those of the optimal cannula position and

FR�300 l/min (NP/MVF: 0/0). No significant difference in NP and MVF was measurable

between FR�250 l/min and FR>300 l/min (p = 0.652, p = 0.664).
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Conclusion

Within the limitations of the current experimental study, intraoral high-flow rate suction with

�300 l/min with an HVE effectively reduced 5–50 μm sized particles of the spray mist

induced by high-speed tooth preparation with a dental turbine.

Introduction

Before the pandemic of SARS-CoV-2, droplets and aerosols were already indicated as possible

risks for infections in dentistry [1], by adequate protective measures for dental staff against

pathogens transmitted via droplets, splatter or aerosols from the patients’ oral cavity were of

only small scientific interest [2, 3]. However, this changed rapidly during the first year of the

pandemic of SARS-CoV-2 in 2020 due to the disruption in health care and dentistry world-

wide [4]. Causes for risks are (a) close contact between the patient’s mouth and dental profes-

sionals and (b) the formation of spray mist during dental interventions. Spray mist is an

inhomogeneous mixture of air, water and solids that is produced by various water-cooled

instruments in dental practice. It contains different particle sizes classified as aerosol, splatter

or droplets [5] with a possible risk for pathogen transmission. Particles of different sizes, espe-

cially those under 50 μm, are not visible to the naked eye and can be suspended in the air for

different times depending on the air temperature, humidity and turbulence [6].

With the advent of SARS-CoV-2 infection, questions concerning the potential for the

spread of infections from this spray mist may arise. Regarding the exact infection dose

required in virus copies to trigger an infection, e.g., with SARS-CoV-2, which is currently

unknown, dental professionals must be protected from any infection through spray mist. An

early investigation in the seventies indicated that intraoral suction systems with a high flow

rate (FR) were favored in dentistry–the so-called high-volume evacuation system (HVE) [7].

According to ISO 10637:2018, a suction system with an FR>250 l/min can be classified as an

HVE and is highly recommended as one of the spray mist reducing procedures in dentistry

with high efficacy [8]. However, dentists often tend to choose devices that offer the greatest

convenience and comfort, e.g., suction systems optimized for high vacuum in combination

with saliva ejectors with small diameter instead of systems with high-flow rates and appropri-

ately sized cannula (e.g.,�10 mm) with noise inherent in the system [9]. Therefore, it is not

surprising that the results of a recently published intervention review found that for all kinds

of suction methods, the evidence is of very low certainty due to heterogeneity, risk of bias,

small sample sizes and wide confidence intervals comparing different methods of dental suc-

tion [10]. This experimental study analyzed the efficacy of spray mist reduction among high-

flow evacuations with 16 mm sized suction cannulas during simulated high-speed tooth prepa-

ration with a turbine in a manikin head. Particle sizes of 5–50 microns were measured in dif-

ferent settings for (1) two intraoral suction positions of the cannulas (optimal vs. suboptimal)

and (2) five levels of the flow rate (120 l/min� x� 330 l/min) of the intraoral HVE.

Material and methods

Experimental setup—manikin head and test tooth

A setup was chosen to generate a reproducible spray mist in a vertical direction towards an

imaginary operator head sitting at a twelve o’clock position behind the manikin’s head in the

lying position (Frasaco, Tettnach, Germany) during high-speed tooth preparation for ten
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seconds with a dental turbine at 400000 rpm (Super-Torque LUX 3 650 B, Kavo, Biberach,

Germany) of an upper right first premolar (Fig 1). No removal of any tooth substance was

done. The dental turbine and suction cannula were fixed by tripods during the tests. The vol-

ume of cooling water for tooth preparation was set to 58 ml/min, which is in line with the

manufacturer’s specifications.

To simulate different settings for suction, 16 mm suction cannulas (selected for each test:

Universal Cannula, Universal Cannula Petito, Aerosol Cannula; DÜRR DENTAL SE, Bietigh-

eim-Bissingen, Germany) were utilized in (1) optimal versus suboptimal positions to the test

tooth and with (2) five different categories of flow rate (l/min) of the HVE (Variosuc, DÜRR

DENTAL SE, Bietigheim-Bissingen, Germany). A suboptimal cannula position for preparation

of an upper right premolar was defined as the buccal side of the left lower first premolar by a

mouth opening of approximately 50 mm (Fig 1). We randomized the start frequency for the

type of cannula in each category of flow rate via https://www.random.org.

The flow rate was controlled by means of a slide on the suction handpiece and categorized

into five levels of flow rate (FR-1:�120 l/min; FR-2: >120�160 l/min; FR-3: >160�250 l/min;

FR-4: >250�300 l/min; FR-5: >300�330 l/min). The flow rate (l/min) was measured at the

cannula tip using a calibrated float volume flowmeter (ROTA G 4.4000 SW = N4 10×, Rota

Yokogawa, Wehr, Germany). All trials for optimal and suboptimal cannula positions in each

of the five categories of flow rates were repeated with all three suction cannulas twice (n = 60).

Overall, with this experimental setup, a worst-case scenario was simulated (e.g., insufficient

working distance between dentist and patient, insufficient suction position of the cannula, low

flow rate of the HVE) to control for different factors influencing particle reduction.

Fig 1. Overview of the experimental setup. Shown on the right side is the overview of the experimental setup with the imaging process

technique (ParticleMaster, Lavision, Göttingen, Germany). As shown on left side, a dental turbine (Super-Torque LUX 3 650 B, Kavo, Biberach,

Germany) was used for tooth preparation of the first right upper premolar, and a 16 mm sized suction cannula (Universal Cannula, DÜRR

DENTAL SE, Bietigheim-Bissingen, Germany) was utilized in a suboptimal position in the opposite jaw (upper left side) and an optimal

position (approximately 10 mm from the tooth (lower left side). The experimental setup was the same for all three types of cannulas. Dental

turbines and cannulas were held in place by tripods during the tests.

https://doi.org/10.1371/journal.pone.0257137.g001
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Particle evaluation

The particle emission was measured by the shadow imaging technique (ParticleMaster, Lavi-

sion, Göttingen, Germany) with pulsed background lighting (image frequency: 12.95 Hz; pulse

duration of the light source: 0.4 μs; shooting method: double frame mode with an exposure

time of 42 μs; interval between two images: 10 μs). Each measurement involved analyzing 127

single images (measurement time: 10 s) using the DaVis software solution (Version

10.1.1.60438, Lavision, Göttingen, Germany) in a frame measuring 6.6×5.3×1.1 mm fifty milli-

meters above the upper right front teeth. Particles between 5 μm (resolution limit) and 50 μm

(cut off) could be analyzed with the described setup.

Outcomes

The number of particles NP [p/s], between 5 μm and 50 μm, was counted as they passed

through the measurement frame. The mass volume flow of the particles per second MVF [μg/

s�cm3] was calculated.

Statistical analysis

Data acquisition and collection were performed with Microsoft Excel (Microsoft Excel 16,

Microsoft Corporation, One Microsoft Way Redmond, WA, USA). Tables were created and

entered into SPSS Statistics (SPSS Statistics 24, IBM, Chicago, IL, USA) for statistical analysis.

No initial power calculation for the study was performed, as this experimental study was

designed to develop a standardized study protocol for further research questions. The presence

of a normal distribution was tested by Kolmogorov-Smirnov and Shapiro-Wilk tests. The dis-

tribution was not normal. Subsequently, a mean value comparison was performed using the

Kruskal-Wallis test to detect significant differences according to NP and MVP between the

five categories of flow rate. For the difference between the optimal and suboptimal positions of

the cannula, the Mann-Whitney U-test was used. To describe the possible correlation between

categories of flow rate and the NP/MVP values, the eta-coefficient was used. All tests were

two-sided; statistical significance was assumed if p�0.05.

Results

Flow rate FR

Due to software errors during recording in three test trials, only 57 test trials of 60 (95%) could

be analyzed for NP and MVF. Without differentiation of the cannula position, the NP and

MVF values of categories FR-1 to FR-3 were always significantly higher than those of FR-5

(p�0.05; Fig 2). Only in the category FR-5 of the highest flow rate of�300 l/min were zero

particles detectable for NP and MVF. No significant difference could be detected between FR-

4 and FR-5, whether for NP or MVF.

We found a negative correlation between flow rate and NP (effect size eta = 0.671;

p�0.001) as well as MVF (effect size eta = 0.678; p�0.001).

Intraoral suction position of the cannula

After separation for optimal versus suboptimal position of the cannulas, we measured in cate-

gories of FR-1 up to FR-4 always significant lower values for the optimal position compared to

the suboptimal position of the cannula of NP (98.06±184.11 vs. 317.73±312.11; p = 0.008) and

MVF (0.47±0.86 vs. 1.68±1.60; p = 0.007). In the category with the highest flow rate FR-5 of

the intraoral HVE, no particles between 5–50 μm generated by the simulated high-speed tooth

preparation were detectable for either cannula position (Table 1).
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Discussion

It is indisputable that there is a need for effective cooling of the work areas to avoid thermal

damage, which must be carried out for high-speed tooth preparation (approx. 50 ml/min)

[11]. From a clinical point of view, a suction system can be considered sufficient if, in addition

to liquids, solid particles (tooth parts, calculus) also completely eliminate the spray mist with-

out affecting the cooling of the tooth. However, this goal can be reduced intentionally or unin-

tentionally by various situations.

We found under standardized experimental conditions that, with a higher level of flow rate

at the cannula, significantly lower values for NP and MVF occurred. In particular, intraoral

evacuation generates a counterflow, which in turn slows down the emitted particles generated

by high-speed preparation. Ideally, this intraoral suction is so strong that no particles leave the

mouth region. We found in the current study that a flow rate of at least 300 l/min (Table 1,

Fig 2. Comparison of all 16 mm sized cannulas independent of their intraoral position for (a) the number of counted particles/second [NP] and (b) the mass volume

flow of the particles/second [MVF] per category of flow rate [FR]. Distribution of the results (mean±SD) for the (a) number of counted particles per second (p/s) and (b)

mass volume flow of the particles per second (μg/s�cm3) according to the five categories of flow rate (FR-1:�120 l/min; FR-2:>120�160 l/min; FR-3:>160�250 l/min;

FR-4:>250�300 l/min; FR-5:>300�330 l/min) of the high-volume evacuation system (HVE) for all three cannulas (Universal Cannula, Universal Cannula Petito,

Aerosol Cannula) together and independent of their position (optimal and suboptimal). Significant differences between the FR categories are shown in the upper area

(Kruskal-Wallis test with �p�0.05; ��p�0.01; ���p�0.001).

https://doi.org/10.1371/journal.pone.0257137.g002

Table 1. Comparison of the optimal versus suboptimal intraoral suction position of the 16 mm cannulas.

position of the

cannula

FR-1 (mean

±SD)

FR-2 (mean

±SD)

FR-3 (mean

±SD)

FR-4 (mean

±SD)

FR-5 (mean

±SD)

Number of counted particles per second (NP) suboptimal 599.00± 129.04 731.67± 54.24 321.22± 248.12 39.44± 37.61 0

optimal 233.12± 252.37 254.33± 233.81 7.18±11.79 0 0

P-value between the optimal and suboptimal positions� 0.01 0.002 0.001 0.036 n.a.

Mass volume flow of the particles per second

(MVP)

suboptimal 3.28±0.66 3.72±0.42 1.66±1.00 0.23±0.21 0

optimal 0.01±0.01 1.19±1.11 0.80±0.10 0 0

P-value between the optimal and suboptimal positions� 0.009 0.002 0.004 0.035 n.a.

The results (mean±SD) for the number of counted particles per second (NP; p/s) and mass volume flow of the particles per second (MVF; μg/s�cm3) according to the

five categories of flow rate (FR-1:�120 l/min; FR-2: >120�160 l/min; FR-3: >160�250 l/min; FR-4: >250�300 l/min; FR-5: >300�330 l/min).

FR: flow rate (l/min); NP: number of particles counted per second (p/s); MVF: mass volume flow of the particles per second (μg/s�cm3)

�Mann-Whitney U-test

https://doi.org/10.1371/journal.pone.0257137.t001
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Fig 2) caused more noise and intraoral cooling of the air, which could lead to discomfort [9].

Additionally, it has to be assumed that with an excessively small distance between the dental

turbine and suction cannula (<10 mm), the cooling spray is directly eliminated with such high

flow rates. This must be avoided at all costs to reduce potential thermal hazards to the pulp

and supporting tissues [12].

It has long been known that a powerful intraoral HVE with a high flow rate and appropri-

ately sized tubes/cannulas successfully reduces spray mist [7]. Hence, if professionals use only

a saliva extractor or a cannula with a small diameter leading to a low flow rate, the number of

particles leaving the patient’s mouth opening dramatically increase. In the present simulated

treatment situation, a lower flow rate of 160 l/min was not enough to prevent particle emission

immediately above the mouth opening. Irrespective of simple methods for the control of spray

mist already available [13], dentists did not apply those methods mostly before the pandemic

of SARS-CoV-2 because of low awareness of health risks, working habits and economic factors

[14].

Therefore, the flow rate at the suction cannula is the crucial physical parameter for reducing

spray mist. It is surprising that many intraoral HVE are optimized for vacuum and not for

flow rate. Many parameters influence the flow rate, some of which are more complicated to

control (e.g., the suction unit, line diameter and layout, distance between suction unit and the

user), while other parameters are still easy to check, such as the diameter of the cannula

(including blocking with foreign objects) and the intraoral position. As proven before, with

larger cannula diameters, splatter contamination in the dental operatory is significantly

reduced [15]. Additionally, the intraoral position of the cannula and operator’s position signif-

icantly influence the results of spray mist reduction [15, 16]. We found that in addition to the

highest category FR-5 (�300 l/min), all lower categories of flow rate displayed a significant dif-

ference in NP and MVF (p�0.036) between a suboptimal position of the cannula (distance: 50

mm) and an optimal utilized cannula (approximately 10 mm near the tooth). An example

illustration of both simulated situations is given in Fig 3 for a low flow rate of FR-2 with

>120�160 l/min. Therefore, the intraoral position of the cannula should be considered espe-

cially for treatments with high-speed turbines that generate more spray mist [16] or if treat-

ments are carried out without assistance while avoiding suctioning of the patient’s intraoral

soft tissues [17].

Fig 3. Example illustration of the distribution of the particles in a spray mist cloud by low flow rate (FR-2) of the HVE for (a) suboptimal versus (b) optimal positioned

16 mm sized cannula. Of the distribution of the particles in a spray mist cloud caused by a dental turbine and an intraoral high-volume evacuation system (HVE) set to a

low flow rate of FR-2>120�160 l/min with the imaging process technique (ParticleMaster, Lavision, Göttingen, Germany); (a) suboptimal positioned 16 mm sized

cannula in the opposite jaw versus (b) optimal positioned 16 mm sized cannula near tooth preparation. The imaging software determined the number and size of

particles as well as the velocity of each individual particle between 5 μm and 50 μm.

https://doi.org/10.1371/journal.pone.0257137.g003
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In vitro investigations have shown high efficacy of spray mist reduction during dental treat-

ments [18, 19], leading to minimization of contaminated area to such an extent that not even

the treatment team comes in contact with the spray mist [3]. Nevertheless, the results of the

studies that measured spray mist and droplets via indirect techniques such as coloring the

cooling water [3, 15] or counting droplets on filter paper [20, 21] as well as a combination of

both systems [22] have not alone been suitable to provide evidence-based recommendations

for safety against aerogenic transmission of infections. However, investigations measuring

small particles under five microns directly could fail to indicate differences between various

suction devices due their inherent measuring technique [16].

Different limitations of the current study can be pointed out. Our in vitro results cannot be

transferred 1:1 to a clinical setting according to the experimental nature of the data, including

a low number of samples, and do not permit a detailed analysis of which factors may have the

most deleterious influence on the efficacy of spray mist reduction. For instance, as other exper-

imental studies tested for various spray mist generating procedures [21, 23], our simulation

included only one high-speed tooth preparation with a dental turbine without destruction of

the test tooth and no breathing of the manikin. It must be assumed that additional particles as

a result of tooth preparation and breathing airflow will further increase the total number of

countable particles. Additionally, minimal changes in the room conditions (e.g., air ventila-

tion, temperature) can have an unknown effect on the direction of the particle [6]. This must

be noted, as our measuring method used a small frame of 6.6×5.3×1.1 mm for particle count-

ing. The restriction of the particle resolution of 5–50 microns also has to be mentioned as a

limitation. The infectivity of virus-laden particles correlates with their sizes, and smaller parti-

cles are potentially more infectious than larger particles; e.g., the coronavirus RNA genome

was detected in 40% of aerosol particles smaller than 5 μm and in only 30% of larger particles

(>5 μm) [24]. However, for particles larger than 50 μm, it can be assumed that they fall rela-

tively rapidly [15] and have to be managed with adequate surface disinfection after treatment

[25]. Furthermore, due to the border lines of measurable particles in our investigation, the suc-

tion efficacy of an intraoral HVE is overestimated when directly compared with other particle

measurement methods [16]. Therefore, to control all particles, additional protective measures

(e.g., use of eye protection, masks, gloves, clothing coverage, and preprocedural antiseptic

mouthwash) are strongly recommended in dentistry [25, 26]. As we chose a case scenario with

reproducible spray mist in a vertical direction towards an imaginary operator head (worst case

scenario) and a fixed particle measuring frame, we were unable to present data to detect differ-

ences in the direction of spray mist. Previous investigations found that scenarios where the

spray mist is frequently directed towards the air of the operatory are the most difficult to con-

trol [3, 15, 16].

Overall, experimental research data are necessary to generate a hypothesis or develop meth-

ods for clinical studies, which are required promptly, as the influence of airborne microorgan-

ism transmission is still unclear. Therefore, every effort should be made to further improve the

knowledge to develop procedures and safety protocols in dentistry [27].

Conclusions

Within the limits of the in vitro study design and the chosen experimental setup, intraoral high-

volume suction had a beneficial effect on reducing particles sized 5–50 microns induced by the

spray mist of high-speed tooth preparation, and this effect was improved with higher flow rates.
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