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Abstract: This article demonstrated the Au nanoparticles-doped polymer all-optical switches based
on photothermal effects. The Au nanoparticles have a strong photothermal effect, which would
generate the inhomogeneous thermal field distributions in the waveguide under the laser
irradiation. Meanwhile, the polymer materials have the characteristics of good compatibility with
photothermal materials, low cost, high thermo-optical coefficient and flexibility. Therefore, the Au
nanoparticles-doped polymer material can be applied in optically controlled optical switches with
low power consumption, small device dimension and high integration. Moreover, the end-pumping
method has a higher optical excitation efficiency, which can further reduce the power consumption
of the device. Two kinds of all-optical switching devices have been designed including a base
mode switch and a first-order mode switch. For the base mode switch, the power consumption
and the rise/fall time were 2.05 mW and 17.3/106.9 µs, respectively at the wavelength of 650 nm.
For the first-order mode switch, the power consumption and the rise/fall time were 0.5 mW and
10.2/74.9 µs, respectively at the wavelength of 532 nm. This all-optical switching device has the
potential applications in all-optical networks, flexibility device and wearable technology fields.

Keywords: all-optical switches; Au nanoparticles; polymer nanocomposite materials; photothermal
effects; mode switches; all-optical networks; wearable technology; flexibility device

1. Introduction

Polymer materials are widely used in the field of thermal optical switches due to the characteristics
of low cost, high thermo-optical coefficient and flexibility [1–3]. Currently, realizing the optically
controlled devices with low optical losses, low power consumption and fast response time are becoming
the tendency and research highlight because of the application of the optical switches in all optical
networks [4–7].

To improve these performances of the device, various nanocomposite materials of polymer-doping
functional materials have been studied such as the erbium-doped material, Nd-doped polymer, NaYF4:
Yb3+, Er3+ doped polymer and graphene doped polymer material [8–11]. In 2018, Xing proposed a
NaYF4: 18% Yb3+, 2% Er3+ doped polymer thermal optical (TO) switch, realizing the loss compensation
in the waveguide. The electrode-driving power and the loss compensation were 7 mW and 3.8 dB,
respectively. In 2019, Cao proposed a monolayer graphene doped polymer TO switch with low power
consumption and fast response time. The power consumption and rise/fall time are 7.68 mW and
40/80 µs, respectively. At present, these nanocomposite materials are mainly used in the field of optical
amplifiers or electrode-driving optical switches.
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However, for the optically controlled optical switches, they are mainly achieved by saturated
absorption [12], Kerr effect [13,14] and photothermal effect [15–17]. For the modulation method of
saturation absorption, a large modulation depth will cause a large loss of the device [18]. For the optical
switches based on the Kerr effect, the weak nonlinearity of the conventional waveguide materials
requires a high pump power and large waveguide dimension, which are not conducive to device
integration. Recently, the all-optical switches based on the photothermal effect have been applied to
realize a small device dimension and high integration of the device [19].

To realize the all-optical switch based photothermal effects, the polymer-doping functional
materials could be applied in the devices. However, there are three crucial factors limiting the
performance of the device: photothermal properties of the materials, compatibility with devices and
the pumping method. First, The photothermal materials such as semiconductors, graphene, noble
metals and metal oxides have been studied in all-optical switch areas [20–22]. In 2013, Cameron
Horvath reported a graphene–silicon resonant switch increasing the effective index compared to the
bare silicon switches [23]. In 2019, Ting Hao proposed a graphene MZI all-optical switch. The pump
power was 5.3 mW with a graphene coating of 5 mm long. The rise and fall time was 30 ms and 50 ms,
respectively [24]. In 2019, Xinghua Yang realized an all-fiber switch integrated with Au nanorods with a
spectral shift efficiency of 0.16 nm/mW [19]. Among these materials, the Au nanoparticles (NPs) could
produce a strong electric field under the laser irradiation because of the large electric dipole absorption
by surface plasmon polaritons (SPP). The thermal energy would be generated due to the charge carrier
transfer inside the NPs. Due to the strong photothermal effects of the Au NPs, the application of the
nanocomposite material based on nanogold has great potential in the all-optical switch areas. Second,
compared with the inorganic waveguide, polymer materials are of benefit to doping or integration
with photothermal materials, which helps compatibility with polymer waveguide. Finally, compared
with the side pumping method, the end-pumping method has higher optical excitation efficiency to
the photothermal materials, which could reduce the power consumption of the optical switches [25].

In this letter, first, we proposed a base-mode switch based on photothermal effects of Au NPs-doped
polymer material. This polymer nanocomposite material was used as the cladding material of the
device. The Au NPs were excited by 532 nm pumping light. Due to the strong absorption of Au NPs
and the large thermal-optical coefficient of polymer, the refractive index of the polymer nanocomposite
material is changed according to the thermal-optical process, realizing the phase shift of the waveguide.
Second, we designed a composite first-mode switching device. The Au NPs layer was embedded
in the center of the core layer. When the pumping light on, the first-order mode in the waveguide
can be controlled by changing the effective refractive index of the first-order mode because of the
strong absorption of the base mode at 532 nm pumping light. Meanwhile, the polarization states of the
first-order mode in waveguide have also been studied for the integrated all-optical switch device.

2. Materials and Methods

2.1. Photothermal Effect of the Au Nanoparticles-Doped Polymer Material

When the Au NPs (Abace Biotechnology, Beijing, China) are illuminated, the interaction of light
with nano-gold results in the generation of localized surface plasmon resonances (LSPRs). The light
gets absorbed at the LSPR frequency and ultimately turned into heat [26,27]. The heat generation
depends strongly on the size and shape of the Au NPs.

The efficiency of the absorption processes of Au NPs can be characterized by the absorption cross
section (σabs). For the spherical Au NPs, the absorption cross section can be analyzed by the Mie
analytical model [28,29]. The polarizability of a spherical Au NPs was calculated by the expression:

α(ω) = 4πR3
Au

εAu − εp

εAu + 2εp
(1)
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where εAu and εp are the relative permittivity of the Au NPs and the polymer material, respectively.
RAu is the nanoparticles radius. ω is the angular frequency of the incident light. The absorption cross
section of Au NPs is determined by the imaginary part of polarizability, which is given by:

σabs = kImα (2)

where k = 2π/λ = nω/c is the wave vector of the incident light. The absorption coefficient of Au NPs is
given by [30,31]:

Aabs =
σabs

S
(3)

where S is the cross-sectional area of the Au NPs. When the irradiance of incoming light is I, the power
of heat generation Q was calculated by the expression:

Q = Iσabs (4)

Q =
ω
8π

∣∣∣∣∣∣ 3εp

2εp + εAu

∣∣∣∣∣∣2ImεAu
8πI0

c√εp
=

ω
8π

E2
0

∣∣∣∣∣∣ 3εp

2εp + εAu

∣∣∣∣∣∣ImεAu (5)

For a single Au NPs, the temperature distribution in the steady-state was calculated by:

∆T(r) =
VAuQ
4πkpr

(6)

where r and VAu are the distance from the center of the Au NPs and the volume, respectively. kp is
the thermal conductivity of the polymer. Due to the large thermal conductivity of Au NPs, the whole
nanoparticle will reach the maximum temperature at the same time. The maximum temperature at
r = RAu is given by:

∆Tmax =
R2

Au
3kp

ω
8π

∣∣∣∣∣∣ 3εp

2εp + εAu

∣∣∣∣∣∣2ImεAu
8πI0

c√εp
=

R2
Au

3kp

ω
8π

E2
0

∣∣∣∣∣∣ 3εp

2εp + εAu

∣∣∣∣∣∣ImεAu (7)

2.2. Devices Design Based on the Au Nanoparticles-doped Polymer Material

According to the strong photothermal effects of the Au NPs, the Au nanoparticles-doped polymer
material can be synthesized, and can be applied in the all-optical switch field. Combining the modulation
region of the Mach–Zehnder interferometer (MZI) waveguide and the nanocomposite material, the
light in the modulation region absorbed by the Au NPs was converted into heat when the pumping light
on. Due to the large thermal optical coefficient of the polymer material, the effective refractive index of
the optical switches can be easily adjusted, realizing the phase modulation of the optical switches.

Two kinds of all-optical switch structures based on Au nanoparticles-doped polymer material
were simulated. One is an inverted ridge waveguide structure with a thin polymer film deposited on
the core layer. This polymer film helps reduce the loss of signal light in the waveguide induced by
the Au nanoparticles. The cladding is Au NP-doped polymer nanocomposite material, which can be
used for signal light adjust after injecting the pumping light. The other is a ridge waveguide structure
based on Au NPs-doped polymer material. The nanocomposite material with continuous arrangement
Au NPs is embedded in the center of the core layer. When pumping light on, the base mode of the
pumping can be absorbed, realizing the control of first-mode with different polarization states in
the waveguide.
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3. Results and Discussion

3.1. Single Au NPs Analysis

The absorption curves of the single Au NPs–polymer nanocomposite illuminated by pumping
light were calculated by finite element analysis software. Figure 1 shows the absorption curves of
the single Au NPs–polymer nanocomposite material when the wavelength changed from 350 to
900 nm, and the radius of the Au NPs increased from 10 to 50 nm. The curves exhibited a maximum
absorption at a wavelength around 530 nm with the Au NPs radius of 40 nm. Due to the increase of
the cross-sectional area, a larger radius will lead to a decrease for the absorption coefficient [32–36].
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Figure 1. Calculated absorption coefficient of single Au nanoparticles (NPs) materials with different
Au NPs radius as a function of wavelength.

To verify the accuracy of the simulation of the Au NPs photothermal effect by finite element
analysis software (COMSOL Inc., Stockholm, Sweden), we calculated the thermal field distributions
of the single Au NPs–polymethyl methacrylate (PMMA, Sigma-Aldrich, MO, USA) nanocomposite
material with incoming light power of 3000 W/cm2, 6000 W/cm2, 9000 W/cm2 and 12,000 W/cm2,
respectively (as shown in Figure 2). The thermal conductivity of the PMMA material was 0.19 W/m*K.
The calculated maximum temperature at steady state was 305.8 K, 318.4 K, 331.1 K and 343.7 K,
respectively. The calculated maximum temperature will increase with the incoming light power
increasing when the radius of the Au NPs was much smaller than the incident light wavelength.
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3.2. All-Optical Switches Based on Au NPs-Doped Polymer

3.2.1. Devices Structure of All-Optical Switches

The all-optical switch structure based on Au nanoparticles-doped polymer material are shown
in Figure 3a,b, which shows the inverted ridge all-optical switch structure based on the base mode
with a thin polymer film deposited on the core layer (the film thickness (d) ranged from 0.1 to 1 µm).
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The cladding is Au NP-doped polymer nanocomposite material. a and b are the width and the thickness
of the waveguide core, respectively. Figure 3c shows the ridge all-optical switch structure based on the
first-mode. The nanocomposite material with continuous arrangement Au NPs was embedded in the
center of the core layer.
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Figure 3. (a) Schematic diagram of the Au nanoparticles-doped polymer MZI all-optical switches;
(b) the cross section of the base-mode switch at wavelength of 650 nm (structure 1: the inverted ridge
waveguide structure waveguide with Au NP-doped polymer cladding) and (c) the cross section of the
first-mode switch at wavelength of 532 nm (structure 2: ridge waveguide structure waveguide with Au
NPs is embedded in the center of the core layer).

3.2.2. Mode Characteristics and Light Field Distributions

The mode in the waveguide is affected by the size of the core layer and the refractive index of
materials using Matlab software (MathWorks.Inc., Natick, MA, USA). Figure 4 shows the curves of the
mode characteristics of the all-optical switch in the non-modulated area with the thickness of the core
from 0 to 5 µm. The calculated refractive index of the structure 1 at wavelength of 650 nm and the
structure 2 at wavelength of 532 nm are shown in Figure 4a,b, respectively. The width of the waveguide
core was set as 2 µm. The refractive index of core and cladding was 1.57 and 1.49, respectively.
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Figure 5 shows the light field distributions of the Au nanoparticles-doped polymer all-optical
switches for structure 1 (a = b = 2 µm) and structure 2 ((a = 2 µm, b = 4 µm)), respectively. The
base mode (defined as E11 mode) and the first-order mode (defined as E12 mode) for the optical
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switch of structure 1 are shown in Figure 5a,b, respectively, and the same for structure 2 are shown in
Figure 5b,c, respectively.
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3.2.3. Optical Losses Analysis

Figure 6 shows the optical loss induced by Au NPs for structure 1 with polymer film thickness (d)
from 0.1 to 1 µm, and with a spacing distance of Au NPs uniform dispersed in the polymer material
from 0.5 to 3.5 µm. The optical loss of the all-optical switch at wavelength of 650 nm will decrease with
the increase of polymer film thickness and the doping ratio. Moreover, the losses of the Ex

11 (the TE
polarization) mode and the Ey

11 mode were calculated with similar values when Au radius lower than
40 nm. The loss of the Ex

11 mode and the Ey
11 mode was 0.29 dB/mm and 0.33 dB/mm, respectively

with d of 0.5 µm, RAu of 40 nm and Au NPs spacing distance of 1 µm (the sectional area ratio of Au
NPs was 0.48%).
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For the proposed first-mode switch (structure 2), the optical losses as a function of the core layer
thickness (b) with the Au radius of 2 nm, 5 nm, 10 nm and 15 nm and the wavelength of 532 nm were
calculated (as shown in Figure 7). The losses of the Ex

12 mode and the Ey
12 mode will decrease with

the increase of the core layer thickness. Moreover, the polarization losses were sensitive to the size of
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Au radius and the core layer thickness. The calculated losses of the Ex
12 mode and the Ey

12 mode were
1.07 dB/mm and 3.6 dB/mm, respectively with RAu of 10 nm and b of 4 µm. Therefore, by designing the
device size and the Au radius, there is only TE polarization mode transmission in the all-optical switch
before pumping light on, which the mode switch of Ex

12 polarization state can be realized.
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3.2.4. Photothermal Analysis of the Proposed Devices

For the proposed devices of Au NPs-doped polymer all-optical switches, the photothermal effect
of the Au NPs affected by the light field distributions in the waveguide was simulated. Due to the
inhomogeneous distribution of the electric field in the waveguide (the electric field energy in the center
of the core layer is the highest, as shown the electric field contours in the inserted picture of Figure 8),
the heat generated by Au NPs was inequable at different positions in the waveguide. Figure 8 shows the
temperature distributions of the structure 1 and structure 2 optical switches, respectively (multiphysics
mode of the finite element analysis method). The results show that the Au NPs would produce higher
heat at high electric field energy. The maximum temperature was 293.4 K and 306 K for the structure 1
and structure 2 optical switches, respectively with the incoming light power of 5 µW/µm2. It shows
that the photothermal conversion efficiency of structure 2 was higher than structure 1 at the same
incoming light power.
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Figure 9 shows the curves of the relationship between the power consumption (p) and the phase
change (∆ϕ = (2π/λ) × ∆N × L). N and L represent the effective refractive index change and the length
of the modulation region, respectively. The phase change of the Ex
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and structure 2, respectively at π of phase shift. The results indicate that the optical switch of structure
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The response time of the Au NPs-doped polymer all-optical switches for structure 1 with b of
2 µm, d of 0.5 µm and RAu of 40 nm and for structure 2 with b of 4 µm and RAu of 10 nm was shown in
Figure 10. For structure 1, the calculated rise time and fall time were 17.3 µs and 106.9 µs, respectively,
and for structure 2, the calculated rise time and fall time were 10.2 µs and 74.9 µs, respectively.
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4. Conclusions

In conclusion, we proposed the Au nanoparticles-doped polymer all-optical switches based on
photothermal effects. The calculated maximum optical absorption of Au NPs was at a wavelength
around 530 nm with the gold radius of 40 nm. There were two kinds of all-optical switches we designed.
The first was the base mode switch based on photothermal effects of Au NPs-doped polymer material,
which was used as the cladding material of the device. The loss of the Ex

11 mode and the Ey
11 mode

was 0.29 dB/mm and 0.33 dB/mm, respectively with d of 0.5 µm, RAu of 40 nm and Au NPs spacing
distance of 1 µm (the sectional area ratio of Au NPs was 0.48%). The calculated power consumption
was 2.05 mW at π of the phase shift and wavelength of 650 nm. The calculated rise time and fall time
were 17.3 µs and 106.9 µs, respectively. The second was the first-order mode switch based on the Ex

12

polarization state. The Au NPs materials were integrated with a waveguide core layer. The calculated
losses of Ex

12 mode and the Ey
12 mode were 1.07 dB/mm and 3.6 dB/mm, respectively with RAu of

10 nm and b of 4 µm. The loss of the Ey
12 mode was much larger than Ex

12 mode, which the mode
switch of Ex

12 polarization state could be realized. The calculated power consumption was 0.5 mW for
at π of the phase shift and a wavelength of 532 nm. The rise time and fall time were 10.2 µs and 74.9 µs,
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respectively. Compared with the based mode switch, the first-order mode switch had the lower power
consumption and fast response time even though it had the larger optical losses.
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