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Chronic graft rejection remains a significant barrier to solid organ transplantation as a
treatment for end-organ failure. Patients receiving organ transplants typically require
systemic immunosuppression in the form of pharmacological immunosuppressants for
the duration of their lives, leaving these patients vulnerable to opportunistic infections,
malignancies, and other use-restricting side-effects. In recent years, a substantial amount
of research has focused on the use of cell-based therapies for the induction of graft
tolerance. Inducing or adoptively transferring regulatory cell types, including regulatory T
cells, myeloid-derived suppressor cells, and IL-10 secreting B cells, has the potential to
produce graft-specific tolerance in transplant recipients. Significant progress has been
made in the optimization of these cell-based therapeutic strategies as our understanding
of their underlying mechanisms increases and new immunoengineering technologies
become more widely available. Still, many questions remain to be answered regarding
optimal cell types to use, appropriate dosage and timing, and adjuvant therapies. In this
review, we summarize what is known about the cellular mechanisms that underly the
current cell-based therapies being developed for the prevention of allograft rejection, the
different strategies being explored to optimize these therapies, and all of the completed
and ongoing clinical trials involving these therapies.

Keywords: transplantation, solid organ transplant, regulatory T cells, myeloid derived suppressive cells, chimeric
antigen receptor, immunoengineering, graft rejection, IL-10-producing B cells Bregs
INTRODUCTION

At present, solid organ transplantation remains the only curative treatment for patients with end-stage
organ disease. Organ transplantation has evolved over the past 60 years to become the predominant
treatment option for end-organ failure, as advancements in immunosuppressive therapies have led to
significantly reduced rates of acute organ rejection with improvement in 1-year graft survival (1).
However, long-term survival of grafts and the prevention of chronic rejection has remained a
Abbreviations: AMR, Antibody-mediated rejection; APC(s), Antigen presenting cell(s); B10 Cell, IL-10 secreting B cell; BCR,
B cell receptor; CAR, Chimeric antigen receptor; EAE, Experimental autoimmune encephalomyelitis; iNOS, Inducible nitric
oxide synthase; iTreg, Induced Treg; M-MDSC(s), Monocytic MDSC(s); MDSC(s), Myeloid derived suppressor cell(s); NK
Cell, Natural killer cell; PMN-MDSC(s), Polymorphonuclear (granulocytic) MDSC(s); TCR, T cell receptor; Tr1 Cell,
T regulatory type 1 cell; Treg(s), Regulatory T cell(s).
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significant hurdle in the success of solid organ transplant therapy.
While the long-term survival rate of grafts has not seen significant
improvement, the burden of lifelong immunosuppressive
regimens contributes to the morbidity and mortality transplant
recipients (1). The most commonly used maintenance
immunosuppressive drugs used in solid organ transplant include
steroids, calcineurin inhibitors (CNIs), antiproliferative agents (i.e.
mycophenolate mofetil) and drugs that inhibit the mammalian
target of rapamycin (mTOR). All of these drugs have drug-specific
side-effects that can lead to nonadherence, as well as common use-
restricting toxicities such as nephrotoxicity, increased
cardiovascular risk, and systemic overimmunosuppression that
can result in opportunistic infections as well as some malignancies
(2). Given the significant side-effect burden of current
immunosuppressive therapies and a persistent rate of chronic
graft rejection, there is a need for minimization strategies that
reduce (or eliminate) the amount of immunosuppressive drugs
required for graft survival, with the ultimate goal being
immunologic tolerance (i.e. stable graft tolerance in the absence
of any systemic immunosuppression).

In solid organ transplantation, graft rejection occurs by two
main pathways: the direct pathway and the indirect pathway. It
is generally believed that the direct mechanism of T cell
activation predominates early in graft rejection as there is an
abundance of APCs present in the graft (i.e. donor passenger
leukocytes), but that progressive depletion of the donor
passenger leukocytes over time ultimately leads to a
predominance of the indirect mechanism of T cell activation
(3–7). Thus, it is the indirect pathway that ultimately persists
leading to chronic graft rejection by priming effector T cells to
induce cellular rejection, while also promoting a delayed-type
hypersensitivity reaction that drives antibody-mediated
rejection (AMR) and the inflammatory response of the innate
immune system (5–10). Given this knowledge, it is logical to
pursue adoptive cell-based therapies that have indirect allo-
specificity to combat the progression of chronic allograft
rejection and promote immune tolerance.

Much of the research involving the induction of graft
tolerance has focused on cell-based therapies that use
regulatory cell types belonging to both the innate and adaptive
immune systems. Of particular interest have been regulatory T
cells (Tregs), which were identified in a landmark study in 1995
showing a subpopulation of CD4+ T cells that expressed the IL-2
receptor (CD25) and were responsible for preventing the
development of autoimmune disease (11). Other regulatory cell
types have been identified, including myeloid-derived suppressor
cells (MDSCs), immunosuppressive IL-10 secreting B cells (B10),
tolerogenic dendritic cells (DCs), and natural killer cells (NKs).
Each of these cell types act by distinct and sometimes synergistic
methods, with varying degrees of promise for clinical utility in
the setting of solid organ transplant. A number of studies have
focused on either expanding these cell types in vivo in transplant
recipients, while others have developed protocols for expanding
regulatory cell types ex vivo and adoptively transferring them
into transplant recipients (12–20). The bulk of the published
research thus far has focused on Tregs, MDSCs, and B10 as the
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most promising candidates, and each of these potential
therapeutic strategies are reviewed here.
REGULATORY CELL TYPES AND HOW
THEY DEVELOP

Regulatory T Cells
One of the most heavily investigated types of regulatory cells are
a subset of CD4+ cells that primarily act to promote tolerance of
both self and non–self-antigens, commonly known as Tregs.
Naturally occurring Tregs are produced either in the thymus
(central Tregs) or can be induced in the periphery (iTregs).
While there is some heterogeneity in the markers expressed by
specific subsets of Tregs, in both humans and mice they can
generally be identified by co-expression of CD4 and CD25, as
well as Foxp3 which serves as the “master regulator” for Treg
development (21, 22). In their initial 1995 paper identifying the
CD4+CD25+ Treg population, Sakaguchi et al. also showed that
CD25 knockout mice exhibited heightened immune response to
allogeneic skin transplantation, which could be normalized by
reconstitution with CD4+CD25+ cells, collectively showing that
CD4+CD25+ T cells (Tregs) are important for the maintenance
of self-tolerance as well as tolerance to some non–self-antigens
(11). The majority of human Tregs that maintain self-tolerance
develop in the thymus, and their development is dependent on
the strength and duration of T cell receptor (TCR) signaling,
based on interaction with MHC-self peptides, as well as a
combination of cytokines including IL-2, IL-15, and TGF-b
(23–25). Of critical importance to Treg development in both
humans and mice is selective demethylation of an element within
the Foxp3 locus known as the Treg-specific demethylated region
(TSDR) (26, 27). Studies in both humans and mice have
demonstrated that epigenetic imprinting within this region is
initiated during early stages of thymic Treg development,
resulting in long-term stability of Foxp3 expression and
commitment to the Treg lineage (24, 28). Fontenot et al.
showed in a murine model that Foxp3 expression is required
for both the development and suppressor function of Tregs, as
Foxp3 knockout mice developed lethal autoimmune disease, and
ectopic expression of Foxp3 was able to confer suppressor
function to CD4+CD25- T cells (29). Of note, Jeffrey Bluestone
and colleagues showed in 2006 that CD127 (IL-7Ra) serves as an
additional marker to differentiate highly suppressive human
Tregs, as CD127 expression inversely correlates with suppressive
capability (30). Nadig et al. built upon this finding by showing in
2010 that ex vivo expanded Tregs sorted based on low expression
of CD127 (CD127lo) provide a more potent therapy compared to
conventional Tregs in a humanized mouse system modeling
transplant arteriosclerosis (12).

While Tregs that maintain self-tolerance primarily develop in
the thymus, another population of CD4+Foxp3- T cells in the
periphery can be stimulated to become CD4+Foxp3+ Tregs
primarily in response to non–self-antigens, termed induced
Tregs (iTregs) (31). Using a murine model, Kretschmer et al.
demonstrated that repeated, small antigen doses with suboptimal
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dendritic cell activation, along with the addition of TGF-b,
resulted in increased conversion of these cell types (31).
Multiple studies have investigated the signaling required for
the induction of Tregs in the periphery, collectively showing
that CD4+CD25- cells coming from the thymus can be induced
to become antigen-specific CD4+CD25+Foxp3+ iTregs by a
combination of TCR signaling along with TGF-b and IL-2
signaling (32–34). In addition to promoting the differentiation
of iTregs in the periphery, IL-2 also functions to inhibit the
development of Th17 cells, thereby constraining the production
of IL-17 and providing additional tolerogenic function (35).
Using a murine model, Gottschalk et al. further elucidated the
specific strength and duration of TCR stimulation that is
required to induce Tregs in the periphery, and they found that
low dose of a strong agonist in the setting of suboptimal co-
stimulation provided the maximum stimulation for induction of
Foxp3+ Tregs in vivo (33). This suggests that recognition of
antigens by TCRs to which the organism has chronic exposure to
leads to the differentiation of iTregs, resulting in tolerance.

There is a subpopulation CD4+CD25- iTregs in humans known
as T regulatory type 1 (Tr1) cells characterized by their ability to
produce predominantly IL-10 and TGF-b and to transiently
upregulate Foxp3 expression to induce tolerance (36). These cells
are of special interest to the application of transplant therapy as they
were first described in patients who developed tolerance after HLA-
mismatched fetal liver hematopoietic stem cell transplantation and
preliminary clinical trials have shown safety and efficacy of the use
of these cells in human patients (36).While Tr1 cells are not as well-
characterized as Tregs, it has been suggested that Tr1 cells can be
differentiated in both humans and mice based on co-expression of
CD49b and LAG-3 (37). The phenotypic markers that delineate
Tregs and Tr1 cells in both mice and humans are summarized
in Table 1.

Myeloid-Derived Suppressor Cells
MDSCs were first identified by tumor biologists studying how the
tumor microenvironment facilitates tumor evasion from the hosts
anti-tumor immune response (38–40). These cells, which were
initially defined as CD11b+Gr-1+ in mice, displayed robust
immunosuppressive capabilities against the tumor-specific T cell
response, creating an environment that allowed the tumors to grow
Frontiers in Immunology | www.frontiersin.org 3
unopposed (38–41). MDSCs have since been identified in a number
of inflammatory settings in both human and mouse models,
including infection, sepsis, trauma, auto-immunity, and transplant
rejection (42–47). Given their immunosuppressive function,
MDSCs have garnered particular interest in the field of transplant
immunology as potential therapeutic tools to prevent graft rejection.

MDSCs can be subclassified into two main categories:
monocytic MDSCs (M-MDSCs) and polymorphonuclear
MDSCs (PMN-MDSCs, also referred to as granulocytic MDSCs),
named for their phenotypic and morphologic similarities to
monocytes and polymorphonuclear cells, respectively (48). The
relative number of M-MDSCs and PMN-MDSCs has been shown
to vary depending on cancer type and inflammation setting and
can potentially be used to predict risk of graft versus host disease
(49, 50). The importance of the ratio between M-MDSCs and
PMN-MDSCs in the setting of organ transplantation has yet to be
fully elucidated; however, limited data suggests that it is the
monocytic subtype that predominates in mediating transplant
tolerance (46, 51). Scalea et al. review some of the generally
accepted surface markers of MDSCs, which vary between
humans and mice (52). Human M-MDSCs can be characterized
by dual expression of CD11b and CD14, as well as HLA-DRlow/−

and lack of CD15 (52). These cells can be distinguished from
mature human monocytes which share CD11b and CD14
expression but are HLA-DR− (48, 52). Human PMN-MDSCs,
on the other hand, can be characterized by expression of CD11b
and CD15 with no CD14 expression (48, 52). In humans, these
cells have traditionally been distinguished from non-MDSC PMNs
by density gradient centrifugation, but more recent studies have
shown that LOX-1 expression may serve as a reliable marker to
separate MDSC PMNs from non-MDSC PMNs via flow cytometry
(48, 53). It has also been suggested that cytosolic calcium binding
protein S100A9 expression can be used to further distinguish M-
MDSCs from PMN-MDSCs via flow cytometry (54).

In mice, MDSCs are classically characterized by dual
expression of CD11b and Gr1 (the myeloid lineage marker
composed of Ly6C and Ly6G) (52, 55). Like human MDSCs,
mouse MDSCs can be sub-classified as either M-MDSCs and
PMN-MDSCs based on relative expression of Ly6C versus Ly6G
(52, 55). M-MDSCs are characterized by high expression of Ly6C
and lack of Ly6G (CD11b+Ly6G-Ly6Chigh), while PMN-MDSCs
are characterized by expression of Ly6G and low levels of Ly6C
(CD11b+Ly6G+Ly6Clo) (52, 55). Mouse M-MDSCs can further
be distinguished from PMN-MDSCs based on the expression of
CD49d on M-MDSCs (52).

MDSCs can be induced from hematopoietic stem cells under
a variety of inflammatory conditions, as mentioned above.
Normally, hematopoietic stem cells differentiate into common
myeloid precursor cells (CMPs), which then further differentiate
into immature myeloid cells (IMCs). In the absence of
pathological inflammatory conditions, IMCs can migrate to
secondary lymphoid organs and differentiate into mature
macrophages, dendritic cells, or neutrophils (56). However,
under the influence of mediators of chronic inflammation,
these IMCs can develop into immunosuppressive MDSCs,
which correlates with downregulation of interferon regulatory
TABLE 1 | Phenotypic characterization of regulatory cells in mice and humans.

Cell Mouse Human

Tregs CD4+ CD25+ Foxp3+ CD4+ CD25+ Foxp3+

Tr1 CD4+ CD49b+ LAG-3+ IL-
10+

CD25- Foxp3-

CD4+ CD49b+ LAG-3+ IL-10+

CD25- Foxp3-

M-MDSCs CD11b+ Gr-1+ Ly6G-

Ly6Chi

CD49d+

CD11b+ CD14+ HLA-DRlo/− CD15-

S100A9hi

PMN-
MDSCs

CD11b+Gr-1+

Ly6G+Ly6Clo

CD49d-

CD11b+ CD14- HLA-DRlo/− CD15+

LOX-1+

B10 CD1dhi CD5+ CD19hi

TIM-1+
CD1dhi CD5+ CD19hi

CD24hi CD27+
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factor-8 (IRF-8) via a STAT3 transcription factor-dependent
mechanism (56, 57). The main driver of MDSC expansion is G-
CSF/GM-CSF, along with other pro-inflammatory mediators
such as IL-2, IL-6, TGF-b, LPS, TNFa, IFN-gamma, and
CXCL-1/2 (41, 48, 52, 58–60). In a study conducted by Marigo
et al., the authors report that G-CSF, GM-CSF, and IL-6 could be
used to rapidly generate functional MDSCs from human bone
marrow precursor cells (58). However, they found that different
combinations of these cytokines resulted in MDSCs with varying
levels of tolerogenic activity, with MDSCs induced by a
combination of GM-CSF+IL-6 possessing the highest
tolerogenic activity (58). Interestingly, it has been shown that
after MDSCs differentiate from precursor cells in the bone
marrow, they can be maintained by activated T cells (61).
IL-10 secreted from activated T cells promotes STAT3
phosphorylation on MDSCs, which subsequently leads to B7-
H1 expression, a key molecule mediating MDSCs development
and suppressor function (61). The phenotypic markers that
delineate M-MDSCs and PMN-MDSCs in both mice and
humans are summarized in Table 1.
Regulatory B Cells (B10)
B cells classically play a central role in the adaptive immune
response, most significantly as a component of humoral
immunity; however, initial evidence that there exists a subset of
B cells capable of down-regulating T cell-mediated inflammatory
response came from studies with experimental autoimmune
encephalomyelitis (EAE) in mice, showing that recovery from
the Th1-driven autoimmune condition was dependent on B cells
capable of producing IL-10 (62). In these studies, mice with
selective IL-10 deficiency in the B cell compartment (but not the
T cell compartment) exhibited a persistent type 1 autoimmune
condition (62). In a similar murine model, lack of B cells resulted in
delayed induction of Tregs in the CNS (63). Further investigation
to elucidate the role of IL-10-producing B cells, termed “B10” cells,
has shown that a phenotypically distinct CD1dhiCD5+CD19hi B
cell subset exists as a rare population of cells (1%–2% of all splenic
B cells and 7%–8% of peritoneal B cells) that can be significantly
expanded in the setting of T cell-mediated inflammation (64).
Normally, B10 cells predominantly localize to the spleen and
peritoneal cavity and are absent from the lymph nodes and
peripheral blood (64, 65). Using a contact hypersensitivity (CHS)
model in mice, Yanaba et al. showed that B10 cells exit the spleen
and enter circulation and upregulate their IL-10 expression during
the CHS response to downregulate the T cell response (64).

B10 cell development and maturation requires antigen receptor
diversity, as transgenic mice with a fixed B cell receptor (BCR)
exhibit 90% reduction levels of B10 cells (66). Further, both innate
and adaptive signals can promote the expansion and maturation of
B10 cells from B10 progenitor cells, most significantly by LPS and
CD40L, respectively (65, 66). B10 development and activation
appears to be T cell and pathogen-independent (65, 66). Of note,
other regulatory B cells have been identified, including CD5+ B-1a
cells, CD1d+ marginal zone B cells, and transitional-2-marginal
zone precursor B cells (65). However, the bulk of regulatory B cell
research focusses on the IL-10-competent CD1dhiCD5+CD19hi
Frontiers in Immunology | www.frontiersin.org 4
subset (B10s) because these are responsible for the majority of B
cell-derived IL-10 secretion and appear to be the most potent
regulators of the T cell-mediated immune response in mice (65).
Interestingly, TIM-1 (also known as Hepatitis A virus cellular
receptor 1), a co-stimulatory molecule that regulates the immune
response, has been identified as unique identifier of IL-10 producing
regulatory B cells in mice (67). In a model of islet cell allograft
transplant, TIM-1+ B cells were found to be highly enriched for IL-
10 and IL-4 expression, and the subset of B cells expressing TIM-1
was significantly expanded (from 5%–8% up to 10%–15%) after
allograft transplantation (67). These findings suggest that TIM-1
could be used as a unique marker to identify IL-10 competent
regulatory B cells within other established subsets, such as the
CD1dhiCD5+CD19hi subset. In humans, cell surface markers CD24
and CD27 have been identified as additional identifiers of the B10
population (68). The phenotypic markers that delineate B10 cells in
both mice and humans are summarized in Table 1.
HOW THEY EXERT THEIR TOLEROGENIC
EFFECTS

Tregs
Tregs have the ability to suppress the differentiation of naïve
T cells into mature effector T cells, as well as suppress the
functions of differentiated effector T cells and other players of
the both the innate and adaptive immune systems, including
B cells, macrophages, NK cells, and dendritic cells (21, 69). These
tolerogenic effects are mediated through both cell surface
molecules present on Tregs and soluble factors secreted by
Tregs (Figure 1). One of the cell surface molecules that appears
to play a central role in their immunosuppressive capabilities is
CD25, a subunit of the IL-2 receptor (IL-2R), which is an
important component of Treg differentiation and survival, as
mentioned above. In addition to maintaining Treg homeostasis,
the high levels and high affinity of IL-2R expression on Tregs
results in IL-2 deprivation-mediated apoptosis of effector T cells,
as IL-2 is also critical for the maintenance and survival of CD4+

and CD8+ effector T cells in vitro (69–72). However, in vivo
studies have shown that IL-2 is actually not required for the
maintenance of effector T cells, and that Tregs are able to exert
their immunosuppressive effects even in mice that lack IL-2R on
effector T cells (69). Another important contact-dependent
mechanism by which Tregs suppress effector T cells via surface
molecules involves an interaction between CTLA-4 on Tregs and
CD80/86 on effector T cells (73–75). In addition to the direct
interaction between Tregs and effector T cells, CTLA-4 on Tregs
also interacts with CD80/86 present on the surface of dendritic
antigen presenting cells (APCs) (76, 77). In this mechanism,
engagement of CD80/86 ligands by CTLA-4, tolerogenic
dendritic cells upregulate tryptophan metabolism via an
indoleamine 2,3-dioxygenase (IDO)-dependent pathway,
thereby inhibiting T cell proliferation (69, 76–78). Similarly,
Tregs express PD-1, which has been shown to play an
important role in suppressing autoreactive B cells in mice via
interaction with PD-L1 expressed on B cells (79). CD39 and CD73
March 2021 | Volume 12 | Article 631365
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are two additional surface molecules on Tregs that suppress
effector T cells by acting as ectonucleotides to convert ATP and
5′-adenosine monophosphate (5’-AMP), generated by pro-
inflammatory cells like neutrophils, into adenosine, an anti-
inflammatory molecule (80–82). Both human and mouse Tregs
can also be induced to express high levels of the surface molecules,
lymphocyte activation gene-3 (LAG-3) and TIGIT, which both
exert their immunosuppressive effects primarily by interacting
with APCs (83, 84). LAG-3 binds MHC II on DCs to suppress
their antigen presenting capabilities, while TIGIT binds to
poliovirus receptor on DCs to modulate their differentiation
towards a more tolerogenic phenotype with enhanced IL-10
production (83, 84).
Frontiers in Immunology | www.frontiersin.org 5
In addition to the surface molecules mentioned above, Tregs also
secrete several soluble factors to exert contact-independent
immunosuppressive functions. In a cytolytic mechanism of
immunosuppression, Tregs secrete granzyme B to induce
apoptosis of effector T cells and APCs (72, 85–87). This
mechanism has been shown to be of particular importance in the
maintenance of transplant tolerance (85). Tregs also secrete TGF-b
and IL-10. As mentioned earlier, Tr1 cells are a subset of inducible
Tregs that appear to be the main contributors of Treg-derived IL-10
production (36, 88, 89). The secreted IL-10 exerts broad
immunosuppressive activity by downregulating MHC II and
costimulatory molecules, suppressing the immunostimulatory
capacity of APCs, and inhibiting the production of various pro-
FIGURE 1 | The immune environment surrounding a transplanted organ. 1) CTLA-4-CD80/86 interaction between Tregs and APCs resulting in increased tryptophan
metabolism by APCs via IDO-dependent pathway. 2) LAG-3 and TIGIT on Tregs directing APCs towards a more tolerogenic phenotype. 3) Treg consumption of IL-
2. 4) CD39 and CD73 acting as ectonucleotidases to break down ATP and 5’AMP to adenosine. 5) Tregs suppressing effector T cells via CTLA-4-CD80/86
interaction. 6) Tregs secreting anti-inflammatory cytokines to reduce the pro-inflammatory response, induce apoptosis of effector T cells, and promote the expansion
of regulatory cell types. 7) MDSCs suppressing effector T cell, B cell, and NK cell proliferation via consumption of L-arginine in an iNOS dependent pathway. This
mechanism is enhanced but upregulation of Arg-1 and HO-1 by MDSCs. 8) IL-10 and TGF-b secreted by MDSCs promoting the activation of Tregs. 9) CCL5
secreted by MDSCs establishing a graft-to-periphery gradient to recruit Tregs. 10) MDSCs promoting the suppressive function of Tregs via interaction between PD-
L1 and PD-1. 11) IL-10 secreted by B10 cells promoting expansion of Tregs and exerting a broad array of anti-inflammatory effects. 12) Tregs inducing apoptosis of
autoreactive B cells via interaction of PD-1 expressed on Tregs with PD-L1 on B cells.
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inflammatory cytokines by macrophages and DCs, overall resulting
in reduced proliferation and activity of effector T cells (90–92).
TGF-b secreted by Tregs appears to predominantly affect the
cytolytic function CD8+ T cells while sparing CD4+ effector T
cells (93–95). Given the importance of TGF-b signaling in the
induction and activation of regulatory cell types, including Tregs
and MDSCs, the TGF-b secreted by Tregs may also promote
tolerance by enhancing these regulatory cell populations (23, 25,
32, 52).

MDSCs
MDSCs, like Tregs, exert their immunosuppressive effects via a
variety of both contact-mediated and soluble factor-mediated
mechanisms (Figure 1). The primary targets of these
mechanisms are effector T cells and NK cells (45, 96). One of
the main mechanisms by which MDSCs act, especially in the
setting of transplant tolerance, involves production of NO by
inducible nitric oxide synthase (iNOS) (44, 45, 51, 97–100). This
iNOS-dependent mechanism has a profound regulatory impact on
effector T cells, B cells, and NK cells by suppressing the
differentiation, proliferation, and various functions of these
effector cell types (101). iNOS also suppresses T cell
proliferation by consumption of L-arginine, an important
substrate for T cell proliferation and the precursor substrate
used by iNOS to produce NO (102). This mechanism is
enhanced by arginase-1 (Arg-1), another enzyme that is
upregulated by MDSCs which cleaves L-arginine to form
ornithine and urea (97). MDSCs also upregulate hemoxigenase-
1 (HO-1), and in a skin allograft transplant model using mice,
MDSC-mediated T cell suppression and prolongation of graft
survival was dependent on HO-1 expression (103).

MDSCs also have substantial interactions with Tregs,
enhancing their migration, proliferation, and function (14, 41,
46, 51, 104–108). One of the main mechanisms involves an
interaction between B7-H1 (PD-L1) on MDSCs and PD-1
expressed on Tregs (51, 108). In a murine model of islet cell
transplantation, B7-H1 knockout mice were unable to exert their
immunosuppressive capabilities or induce Tregs (108).
Additionally, the presence of IFN-g stimulates MDSCs to secrete
IL-10 and TGF-b, thereby activating Tregs (41, 109). MDSCs also
appear to play an interesting role in the setting of organ
transplantation by establishing a graft-to-periphery gradient of
CCL5 chemokine, which directs migration of Tregs from
secondary lymphoid organs to the site of the graft in rat models
of heart and kidney transplantation (106). Given these findings
that MDSCs and Tregs act synergistically, it is reasonable to
suggest that adoptive transfer of both MDSCs and Tregs
together may provide a greater beneficial effect for achieving
transplant tolerance than either one alone. To support this, in a
model using MHC class II disparate allogeneic donor skin
transplantation, mice receiving administrations of either G-CSF
to induce MDSCs or IL-2 to induce Tregs resulted in prolonged
survival of the graft, and the combination of both treatments
resulted in even better survival of the graft (14). Interestingly, this
same study showed that the induced MDSCs were more potent at
suppressing T cell responses compared to naive MDSCs (14).
Frontiers in Immunology | www.frontiersin.org 6
B10 Cells
As their name implies, B10 cells predominantly exert their
tolerogenic effects by producing and secreting the anti-
inflammatory cytokine IL-10 in an antigen-specific manner
(Figure 1). As mentioned above the in the setting of Tr1 cells,
IL-10 suppresses the Th1 response, inhibits the antigen-present
capabilities of APCs, and reduces the production and secretion of
pro-inflammatory cytokines by macrophages and activated
macrophages (65, 90, 91, 110). B10 cells have been shown to
play a critical role in regulating the immune response in multiple
models of autoimmunity in mice, including contact
hypersensitivity, EAE, and collagen-induced arthritis (CIA)
(62, 111, 112). In these models, adoptive transfer of CD40
mAb‐stimulated B cells reversed the autoimmune pathologies,
while transfer of IL-10-/- B cells had no effect, confirming the
critical role of IL-10 production by B10 cells (62, 113).

Like MDSCs, B10 cells also promote tolerance by inducing the
expansion of Tregs (67, 114, 115). One study demonstrated that
human alloantigen-specific Foxp3-expressing Tregs can be
generated in high frequencies by co-culturing CD4+CD25-

precursor T cells with CD40L-stimulated regulatory B cells
(116). In a study investigating the role of B10 cells in the
induction of oral tolerance, Sun et al. demonstrated that
tolerance to a repeatedly administered antigen could be induced
in mice in a Treg-dependent manner by transferring naïve T cells
as long as IL-10-producing B cells were also present (117).
Expansion of the antigen-specific Treg population, and therefore
induction of tolerance, was absent in B cell-depleted mice, while
co-transfer of B cells and naïve T cells into B cell-depleted mice
restored the Treg population and resulted in tolerance (117). Like
MDSCs mentioned above, these results suggest that co-transfer of
both B10 and Tregs (or all three: B10, Treg, and MDSCs) in
transplant patients could provide a synergistic therapeutic effect in
the reduction of transplant rejection.
THERAPEUTIC POTENTIAL OF
REGULATORY CELL TYPES IN
TRANSPLANT MODELS

Tregs
Tregs have been extensively implicated as therapeutic options in a
variety of organ transplant models, including skin, heart, kidney, islet
cell, and lung (Table 2). The specific therapeutic strategy (ex vivo
expansion versus in vivo induction, adjunctive immunosuppression,
and specific subset of Tregs utilized) varies between studies, and it is
likely that the optimal strategy may depend on the specific organ
being transplanted. In a pivotal study published in Nature Medicine
in 2010, Nadig et al. showed that ex vivo expanded CD127lo Tregs
could be adoptively transferred to inhibit the development of
transplant arteriosclerosis (TA) in a clinically relevant chimeric
humanized mouse system (12). This marked the first time that
human Tregs were used to prevent TA in human arteries, which is
the hallmark of chronic allograft dysfunction (12). In another recent
study, Ratnasothy et al. demonstrated that exogenous administration
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of IL-2 lead to the preferential expansion of adoptively transferred
donor-specific Tregs (specific for the MHC class I molecule Kd), but
not polyclonal Tregs, producing a synergistic effect that resulted in
prolonged skin graft survival (from a mean of 13 days without
treatment to 29 days with Tregs + IL-2) (118). In multiple other
models of skin allograft in mice, Tregs were induced in vivo using
exogenous administration of either interleukin-2 complex (IL-2C) or
interleukin-33 (IL-33), resulting in prolonged survival of the skin
grafts in the absence of immunosuppressive drug therapy (14, 118–
120). In multiple models of kidney transplantation using non-human
primates, adoptive transfer of ex vivo expanded donor-specific Tregs
has been shown to prolong graft survival and prevent acute rejection
(121, 122). Observational data has also suggested the potential
efficacy of adoptive Treg therapy in human kidney transplant
patients. In a retrospective study of human living donor kidney
transplant recipients, flow cytometry analysis revealed significant
increase in frequency of activated Tregs in the first 3 months after
transplantation (123). Additionally, operationally tolerant kidney
transplant patients have a higher frequency of more potent
memory Tregs compared to patients with stable graft function or
with chronic graft rejection, a trend which is also observed in
operationally tolerant liver transplant recipients (124, 125).

Tregs have also been induced in vivo or adoptively transferred to
prevent chronic rejection of heart transplants in mice (15, 16, 126).
Takasato et al. demonstrated that donor-specific Tregs expanded
via the indirect pathway were most effective in prolonging cardiac
allograft survival (16). Interestingly, in the study conducted by Ma
Frontiers in Immunology | www.frontiersin.org 7
et al, low dose of the commonly used immunosuppressive drug
sirolimus appeared to have a synergistic effect with Tregs promoting
their expansion and homing to secondary lymphoid organs in the
setting of heart transplantation (122).

In a humanized mouse model studying the role of Tregs in
lung transplantation, adoptive transfer of allogenic human
peripheral blood mononuclear cells enriched for Tregs resulted
in significantly reduced transplant arteriosclerosis and intimal
thickening (127). Finally, multiple studies have demonstrated the
efficacy of using adoptively transferred human Tregs or inducing
Tregs using adoptively transferred MDSCs to delay islet cell
allograft rejection (17, 108). While minimal studies have utilized
adoptive transfer of Tr1 cells in delaying graft rejection, the
adoptive transfer of donor-specific (but not polyclonal) Tr1 cells
has been shown to be efficacious in preventing islet cell allograft
rejection (128).

Using chimeric antigen receptor (CAR) technology, multiple
groups have developed Tregs expressing HLA-A2-specific CARs
that have more potent immunosuppressive capabilities
compared to polyclonal Tregs in the setting of humanized
mouse models with HLA-A2+ skin xenografts, resulting in
prevention of skin graft rejection (6, 129–131). Utilization of
this technology overcomes several barriers associated with the
use of natural Tregs. Namely, that the induction and expansion
of antigen-specific Tregs involves a technically challenging
protocol requiring repeated stimulation with the antigen of
interest, which may not be feasible in the setting of clinical
TABLE 2 | Animal transplant models utilizing regulatory cells.

Cell Organ Species Cell Origin
(recipient/donor/3rd

party)

Adjunctive
Therapy

Mean Survival Time of Graft:
Treatment vs. Control (Days)

Reference
(Examples)

Tregs Skin Mouse; humanized
mouse

Donor;
recipient

IL-2 (118);
IL-33 (119)

40 vs. 12 (14); 29 vs. 13 (118); >30 vs. 12 (119); 76
vs. 10 (120)

(14, 118–120)

Heart Mouse Donor;
recipient

IL-33 (15) 29 vs. 9 (15); >100 vs. 7 (16); 91 vs. 67 (126); >150
vs. 59 (146)

(15, 16, 126)

Kidney Nonhuman primate Donor Sirolimus (122) 416 vs. 22 (121); 48.5 vs. 22 (122) (121, 122)
Islet
cell

Mouse; humanized
mouse

3rd party;
recipient

Rapamycin +
anti-CD8 (146)

32 vs. 17 (17); >60 vs. 15 (108) (17, 108, 146)

Lung Humanized mouse 3rd party; N/A Intimal thickening: 0.4% vs. 39.9% (127) (127)
Tr1 Islet

cell
Mouse 3rd party N/A >100 vs. 25 (128) (128)

CAR-
Tregs

Skin Mouse 3rd party N/A >40 vs. 37 (129); 14 vs. 8 (131) (129–131)

MDSCs Cornea Mouse Recipient;
3rd party

Glucocorticoids
(135)

22.71 vs. 15.65 (43); 28.3 vs. 15.73 (136) (43, 135, 136, 147)

Skin Mouse Recipient;
3rd party

G-CSF (14);
IL-33 (119)

40 days vs. 16 days (14); 13.9 vs. 8.8 (43);
40 vs. 28 (59); >100 vs. 40 (99);
>100 vs. 29 (109); >30 vs. 12 (119);
15 vs. 11 (132); 45 vs. 23.5 (133);
54.8 vs. 12.7 (148)

(14, 43, 59, 99, 103)
(109, 119, 132, 133,
148)

Heart Mouse Recipient;
3rd party;
donor

Rapamycin (105);
anti-CD40L mAb
(51);
IL-33 (15)

29 vs. 9 (15); 67 vs. 7 (105); 58 vs. 10 (134) (15, 51, 105, 134,
149)

Islet
cell

Mouse Recipient;
3rd party

N/A >60 vs. 15 (100); >60 vs. 15 (104);
>60 vs. 15 (108)

(58, 100, 104, 108)

B10 Islet
cell

Mouse 3rd party Anti-TIM-1-mAb
(67)

>100 vs. 15 (67) (67)
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transplantation (129). These groups working with CAR
technology have developed short transduction protocols that
circumvent the need for extensive in vitro expansion (129).
Additionally, these donor-specific CAR Tregs appear to be
more specific and more potent than natural Tregs (129–131).

MDSCs
The therapeutic role of adoptively transferred MDSCs has been
extensively demonstrated in mouse models of skin transplantation
(Table 2). Multiple groups have published protocols for inducing
and activating MDSCs in vitro to be adoptively transferred into skin
transplant recipients, including induction with LPS, TNF-a, human
inhibitory receptor immunoglobulin-like transcript 2 (ILT-2), IFN-
g, or recombinant G-CSF, GM-CSF, or IL-6 (58, 59, 99, 103, 109,
132, 133). MDSCs induced in vivo with administration of G-CSF or
IL-33 have also been shown to promote graft tolerance in skin
transplanted mice (14, 119). Drujont et al. found that a single
injection of LPS-activated MDSCs on the day of skin
transplantation resulted in significant increase in survival of the
graft, while repeated weekly injections resulted in even greater graft
survival, suggesting that the full therapeutic potential of adoptive
transfer of MDSCs may depend on repeated injections of activated
MDSCs (59).

In heart allograft transplantation, both induced and adoptively
transferred MDSCs have been successfully used to prolong graft
survival in animal models. Garcia et al. demonstrated that donor
MDSCs can be adoptively transferred and induced in the recipient
by treatment with anti-CD40L mAb, resulting in MDSCs that
migrate into the transplanted organ to prevent the initiation of the
adoptive immune response and enhance the development of Tregs
(51). Similarly to the skin transplant models described above, IL-
33 has been used to induced in vivo expansion of MDSCs and
Tregs to promote cardiac allograft survival in mice (15). Bryant
et al. demonstrated that apoptotic donor splenocytes could be
treated with the chemical cross-linker ethylcarbodiimide (ECDI)
and preemptively infused into cardiac allograft recipient mice to
induce MDSCs, resulting in long-term allograft survival (134).

He et al. found that sepsis-induced MDSCs could be harvested
and adoptively transferred into mice immediately following corneal
and combined corneal-skin transplantation, resulting in substantial
expansion of MDSCs in the recipients bone marrow and in the
corneal graft and increasing corneal graft survival from a mean of
15.65 days to 22.71 days (43). Glucocorticoids are known to induce
expansion of MDSCs in vitro, and it has been shown that both
systemic administration of glucocorticoids and adoptive transfer of
glucocorticoid-induced MDSCs following corneal transplantation
results in enhanced proliferation and mobilization of MDSCs,
inducing immune tolerance (135). He et al. compared the
tolerogenic capacities of inflammation-induced MDSCs versus
tumor-induced MDSCs in the setting of corneal transplantation
(136). In terms of reducing neovascularization and prolonging graft
survival in the absence of immunosuppressive drugs, they found
that inflammation-induced MDSCs were comparable to tumor-
induced MDSCs when adoptively transferred to transplant
recipients by retroorbital injection (136).

There is also extensive evidence to support the use of MDSCs
to promote the survival of islet cell allografts. Marigo et al.
Frontiers in Immunology | www.frontiersin.org 8
demonstrated that MDSCs generated by treating bone marrow
precursor cells with a combination of GM-CSF and IL-6 could be
adoptively transferred to islet cell transplant recipients with four
weekly injections immediately following transplantation (58).
These MDSC’s inhibited the priming of CD8+ T cells and their
adoptive transfer resulted in long term survival of allogenic islet
cell transplant, with 75% of mice remaining euglycemic 200 days
post-transplantation (58). MDSCs can also be generated ex vivo
by co-culturing bone marrow precursor cells with GM-CSF,
dendritic cells, and hepatic stellate cells (100). These MDSCs
can be adoptively transferred to promote islet cell allograft
survival in a manner that is dependent on iNOS expression
and also results in the expansion and accumulation of antigen-
specific Tregs in lymphoid organs close to the grafts when
MDSCs are co-transplanted (100, 108).

In humans, MDSCs have been implicated as important
regulators of tolerance in kidney and lung transplantation (46,
107, 137, 138). CD14+ M-MDSCs expand in renal transplant
patients following transplantation, and these MDSCs are highly
efficient in suppressing the proliferation of CD4+ T cells in mixed
leukocyte reactions and are also capable of expanding Tregs in vitro.
Additionally, there is a linear relationship between these MDSCs
post-transplantation and circulating levels of Tregs (46, 138). In a
study involving 50 patients with biopsy-proven acute T cell-
mediated rejection (ATCMR), Meng et al. found that higher
circulating levels of MDSCs post-transplantation correlated
positively with allograft function and survival (107). In vitro, the
MDSCs isolated from these patients were capable of expanding
Tregs and inhibiting production of IL-17 (107). In a study
investigating the role of MDSCS in human lung transplantation,
it was found that circulating MDSCs are increased in stable lung
transplant recipients versus non-transplant controls, and that
patients with chronic lung allograft dysfunction (CLAD) had
lower levels of MDSCs compared to stable recipients (137). These
findings in humans, combined with the successful use of adoptive
MDSC transfer in animal models described above, suggest that
adoptive transfer of MDSCs could prolong organ allograft survival
and promote graft tolerance in humans.

B10
While studies involving the therapeutic use of B10 in
transplantation are limited compared to Tregs and MDSCs, there
is evidence implicating them in promoting tolerance in kidney,
heart, skin, and islet cell transplantation (Table 2) (67, 139–144). In
a mouse model of islet cell transplantation, anti-TIM-1 antibody
was used to expand TIM-1+ B10 cells in vivo to significantly prolong
islet cell allograft survival (67). Adoptively transferred TIM-1+ B10
cells exhibited potent tolerogenic activity in an antigen-specific
fashion to prolong islet cell allograft survival while also enhancing
the frequency of Tregs in the recipient (67). In multiple human and
animal models of transplantation, including kidney, heart, skin, and
islet cell, depletion of B cells during the period shortly following the
transplant procedure when tolerance is being induced results in an
enhanced T-cell response and accelerates graft rejection (140–143).

In human kidney transplant recipients, patients who achieve
operational tolerance exhibit elevated levels of regulatory B cells
compared to stable patients still requiring immunosuppression
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or patients with chronic rejection (139, 145). While there is a
general paucity of studies directly investigating the adoptive
transfer of B10 cells to promote tolerance, all of the above
evidence suggests that B10 cells play an important role in
inducing transplant tolerance and should be pursued as a
potential therapeutic option alongside Tregs and MDSCs.
CLINICAL TRIALS INVOLVING ADOPTIVE
TRANSFER OF REGULATORY CELL
TYPES

In recent years, a number of clinical trials have been initiated to
study the use of adoptive cell therapy in organ transplantation.
Thus far, these studies have focused on the use of Tregs, with a
paucity of trials investigating MDSCs or B10 cells. Kidney and
liver have been the main organs involved in these trials. A
summary of all completed and ongoing clinical trails involving
adoptive transfer of regulatory cell types in the setting of organ
transplantation is presented in Table 3.

Kidney
A number of key phase I trials have been initiated investigating the
use of regulatory cell types in kidney transplant recipients,
including the TASK trial, the TRACT trial, and the ONE study
(18, 150, 151). The TASK trial (NCT02711826) was conducted by
researchers at UCSF to investigate the safety and feasibility of
autologous polyclonal expanded Tregs in three patients with
biopsy-proven subclinical graft inflammation at 6 months post-
transplant (150). The group found no infusion reactions or serious
adverse therapy-related events. The isolated Tregs received two
rounds of stimulation with anti-CD3 and anti-CD28 beads and IL-
2, along with deuterated glucose to label and track the cells (150).
While the patients were maintained on an immunosuppressive
regiment of tacrolimus, mycophenolate mofetil, and prednisone,
the infused Tregs demonstrated persistence and stability
comparable to non-immunosuppressed subjects infused with the
same dose of Tregs (150). These results have set the stage for future
trials testing the efficacy of polyclonal and antigen-specific Tregs in
the setting of subclinical inflammation in renal transplants (150).

In the TRACT trial (NCT02145325), a group from
Northwestern University performed a dose-escalation trial in
living donor renal transplant recipients, with three dosing tiers
(0.5, 1, and 5 × 10 (9) cells) and three recipients per dose (18). The
infused Tregs exhibited high purity (>98% CD4+CD25+) with high
stability of the Foxp3 promoter. In vivo, the infused Tregs resulted
in sustained, elevated levels of circulating Tregs. Like the TASK trial,
this trial reported no adverse events related to the therapy up to 2
years post-transplant when the results were published, providing the
necessary safety data move the trial into phase II efficacy
studies (18).

The ONE study involved seven single-arm trials conducted at
eight different institutions in across five countries, investigating the
use of cell-based protocols to reduce general immunosuppression in
living-donor renal transplant recipients (151). The cell-based
protocols utilized in the various trials included two polyclonal
Frontiers in Immunology | www.frontiersin.org 9
Treg products (NCT02371434, NCT02129881) and two donor-
antigen reactive Treg products (NCT02244801, NCT02091232),
as well as one tolerogenic dendritic cell and one regulatory
macrophage cell product (151). The two polyclonal Treg
products, pTreg-1 (NCT02371434) and pTreg-2 (NCT02129881),
were isolated and expanded using protocols published by Fraser
et al. and Landwehr-Kenzel et al, respectively (19, 152). One of the
donor-specific Treg products utilized conditions of costimulatory
blockade (NCT02091232) while the other product was generated
by stimulating recipient PBMCs with donor B cells that had
been activated by human CD40L expressed on K562 cells
(NCT02244801) (20, 153). All Treg products were delivered as a
single intravenous infusion within 10 days following the day of the
transplant procedure, and all patients were routinely monitored for
the primary endpoint of biopsy-confirmed acute rejection (BCAR)
within 60 weeks following transplantation. Combined data across all
of the cell-based therapy groups revealed no safety concerns
compared to the standard immunosuppressive treatment group,
and the cell-based groups experienced lower infection rates.
Additionally, rates of BCAR were comparable between the
standard immunosuppressive group and the cell-based therapy
group (12% vs. 16%), overall suggesting that adoptive transfer
of Tregs could be a useful therapeutic tool for preventing
rejection in renal transplant patients while reducing the burden
of immunosuppression.

The STEADFAST study (EUCTR2019-001730-34-NL), a
recently initiated phase I/IIa trial, has been initiated in the
U.K. and the Netherlands to evaluate the safety and tolerability
of an autologous HLA-A2-specific Treg therapy (TX200-TR101
product) in living donor renal transplant recipients. This will be
the first clinical trial investigating the use of a CAR-Treg therapy
in the prevention of transplant rejection in humans. As such, the
results of this study are highly anticipated.
Liver
In 2016, Todo et al. published a pilot study on the use of adoptive
transfer of donor-specific Tregs in 10 living donor liver transplant
patients (UMIN‐000015789) (154). Donor alloantigen-specific
Tregs were generated in vitro by coculturing recipient
lymphocytes with irradiated donor cells along with anti-CD80/86
mAbs for 2 weeks. These Tregs demonstrated donor-specific
inhibition in a mixed lymphocyte reaction and were infused in all
10 patients without any significant adverse events. After
transplantation and infusion with Tregs, patients underwent
splenectomy and were subsequently weaned off of traditional
immunosuppression of mycophenolate mofetil and tacrolimus
starting at 6 months until complete cessation at 18 months. The
ultimate goal of stable graft function with complete discontinuation
of immunosuppression after 18 months was achieved in seven out
of the 10 patients, while the other three patients developed mild
rejection during the weaning period and were continued on low
dose immunosuppression. Of note, these three patients all had
autoimmune liver disease.

Several ongoing studies are also utilizing donor alloantigen-
specific Tregs in the setting of liver transplantation, including the
LITTMUS trial (NCT03577431 and NCT03654040), the ARTEMIS
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Status Outcome

te No adverse events related to therapy
te No adverse events related to therapy
te No adverse events related to therapy

te No adverse events related to therapy

N/A

te No adverse events related to therapy
, recruiting N/A
, recruiting (4/2020:
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19)

N/A

, recruiting (2019) N/A

, recruiting (2020) N/A
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, recruiting (2020) N/A

, recruiting (2020) N/A

te No adverse events related to therapy. 7/10 patients
achieved complete cessation of
immunosuppression.

te No adverse events related to therapy

ted Difficulties in manufacturing the cell product

te (2020) N/A

n N/A

, recruiting (2019) N/A

wn Investigational product manufacturing challenges

, recruiting (2020) N/A
te (2020) N/A
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Study Phase Condition Intervention Dosage

NCT02145325 1 Living donor renal transplant Autologous polyclonal expanded Tregs 0.5, 1, 5 × 109 cells Comple
NCT02129881 1/2 Living donor renal transplant Autologous polyclonal expanded Tregs 1–10 × 106 cells/kg Comple
NCT02371434 1/2 Living donor renal transplant Autologous polyclonal expanded Tregs 0.5, 1, 2.5–3 × 106

cells/kg
Comple

NCT02244801 1 Living donor renal transplant Autologous donor-alloantigen-specific
Tregs

3, 9 × 106 cells Comple

NCT02091232 1 Living donor renal transplant Autologous donor-alloantigen-specific
Tregs, cocultured with belatacept

N/A Active

NCT02088931 1 Renal transplant Autologous polyclonal expanded Tregs 320 × 106 Comple
NCT02711826 1/2 Renal transplant Autologous polyclonal expanded Tregs 550 × 106 Ongoing
ISRCTN-
11038572

2b Living donor renal transplant Autologous polyclonal expanded Tregs
(TR001 cell product)

5–10 × 106 cells/kg Ongoing
recruitin
COVID-

NCT03867617 1/2 Living donor renal transplant Autologous Tregs + donor bone marrow
+ Tocilizumab

N/A Ongoing

NCT03943238 1 Living donor renal transplant Autologous expanded Tregs + donor
HSC’s

25 × 106 cells/kg Ongoing

NCT01446484 1/2 Living donor renal transplant
in children

Autologous polyclonal expanded Tregs 2 × 108 cells Unknow

NCT03284242 1 Renal transplant in patients
on Everolimus

Autologous polyclonal expanded Tregs N/A Ongoing

EUCTR2019-
001730-34-NL

1/2a Living donor renal transplant Autologous Antigen-Specific CAR-Tregs
(TX200-TR101 cell product)

N/A Ongoing

UMIN-
000015789

1/2 Living donor liver transplant Autologous donor-alloantigen-specific
Tregs

3.39 × 106 cells/kg Comple

NCT02166177 1/2 Liver transplant Autologous polyclonal expanded Tregs
(TR002 cell product)

1, 4.5 × 106 cells/kg Comple

NCT02188719 1 Liver transplant Autologous donor-alloantigen-specific
Tregs

50, 200, 800 ×106

cells
Termina

NCT02474199 1/2 Living donor liver transplant Autologous donor-alloantigen-specific
Tregs

400 × 106 cells Comple

NCT01624077 1 Living donor liver transplant Autologous donor-alloantigen-specific
Tregs

1 × 106 cells/kg Unknow

NCT03577431 1/2 Liver transplant Autologous donor-alloantigen-specific
Tregs with costimulatory blockade

2.5–500 × 106 cells Ongoing

NCT03654040 1/2 Liver transplant Autologous donor-alloantigen-specific
Tregs

100–500 ×106 cells Withdra

NCT03444064 1 Islet cell transplant Autologous expanded polyclonal Tregs 400–1600 × 106 cells Ongoing
NCT03162237 N/A Porcine islet cell

xenotransplant
Autologous polyclonal Tregs 2 × 106 cells/kg Comple
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trial (NCT02474199), and the deLTa trial (NCT02188719). The first
arm of the LITMUS trial (NCT03577431) involved the use of donor
alloantigen-specific Tregs cultured and stimulated in the presence of
costimulatory blockade, while the second arm of the study
(NCT03654040) intended to use Tregs without costimulatory
blockade but was withdrawn due to difficulty manufacturing the
cell product. The deLTa trial set out to give three cohorts three
different doses of donor alloantigen-specific Tregs (50, 200, and 800
×10 (6) cells) but the study was terminated due to difficulties
manufacturing the cell product. The ARTEMIS trial, which
specifically investigated the use of Tregs in weaning patients off of
calcineurin inhibitors (CNIs), was completed in January 2020 and
results are still pending.

Trials involving liver transplant recipients have also investigated
the use of polyclonal Tregs. One of these studies, known as the
ThRIL trial (NCT02166177), was a phase I/IIa trial evaluating the
safety, tolerability, and efficacy of polyclonal expanded Tregs and
was completed in January 2018 (155). This study utilized a
CliniMACS-based cell isolation protocol and expanded the Tregs
using a co-culture containing anti-CD3/CD28 beads, IL-2, and
rapamycin (155). Preliminary safety data from this trial was
presented in abstract form at the 2017 American Transplant
Congress meeting, reporting no dose-limiting toxicities in patients
receiving the polyclonal Tregs (156). Results are still pending
regarding the efficacy of the treatment.

Islet Cell
Two studies are currently being conducted to investigate the use
of polyclonal Tregs to induce tolerance of islet cell allografts and
xenografts (NCT03444064, NCT03162237) in patients with type
1 diabetes. Results of both of these studies are still pending.
DISCUSSION

The bulk of research published so far on adoptive cell therapy in
the setting of solid organ transplantation has implicated regulatory
cell types as potential therapeutic options for reducing the burden
of systemic, lifelong immunosuppression in transplant recipients.
As described in this review, each of these cell types have distinct
mechanisms by which they exert their tolerogenic effects; however,
there is also considerable interaction between these cell types. To
date, the vast majority of animal model studies and all of the
clinical trials have utilized the adoptive transfer of only a single cell
type. Given the synergistic effect that these cells exert on one
another, we suggest further investigation into using the adoptive
transfer of multiple cell types together to induce tolerance in a
single transplant recipient. This will require further research into
the optimal combinations, ratios, and timing of when to transfer
these cells. Additionally, thus far, clinical trials utilizing the
adoptive transfer of regulatory cell types in the setting of solid
organ transplantation have focused almost exclusively on Tregs.
We suggest that further studies be conducted using other
regulatory cell types, such as MDSCs and B10 cells, given the
promising data that has been generated with their use in
animal models.
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Other questions that require answering before adoptive cell
therapy can become a widely utilized therapeutic approach in
transplantation include the optimal timing, dosing range, and
dosing frequency for the different cell types and for the different
organs being transplanted. This will require large-scale studies
with multiple cohorts to be able to accurately compare the
different strategies. Similarly, further research should be
conducted to establish the most efficient and universally
applicable isolation and expansion protocol for each of the
different cell types, especially given that the requirement of
repeated, prolonged antigen stimulation to produce antigen-
specific Tregs is a limitation in many settings. This may
require further pursuit of the use of CAR technology to design
CAR-Tregs for clinical trials.

Immunoengineering offers promising new avenues for
optimizing adoptive cell therapy. Using gene transfer
technology, Tregs can be transduced with antigen-specific
TCRs or CARs. While already widely used in the treatment of
hematological malignancies, CAR-T cells have gone through
multiple generations of optimization to increase their efficacy
and limit off-target toxicities. Similar optimizations will be
required for CAR-transduced Tregs before they can be widely
applied to human transplant patients, including optimal co-
stimulatory molecules, appropriate antigen specificity
(including CARs with bi-specificity), and the possible inclusion
of suicide genes to improve the safety profiles of these therapies.
The high cost of these engineered cell products is also a barrier
that will need to be addressed moving forward.

It should be noted that other regulatory cell types exist and
have shown promise as potential therapeutic tools, including
tolerogenic dendritic cells, natural killer cells, and regulatory
macrophages. As the novel field of adoptive cell therapy
continues to grow, these cells may emerge as important players
along with Tregs, MDSCs, and B10 cells. Overall, the therapeutic
potential of regulatory immune cells in the setting of solid organ
transplantation is incredibly promising and will be exciting to
follow as the foundational research outlined in this review is
translated to the clinic.
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