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Abstract: Emotion recognition, as a challenging and active research area, has received considerable
awareness in recent years. In this study, an attempt was made to extract complex network features
from electroencephalogram (EEG) signals for emotion recognition. We proposed a novel method
of constructing forward weighted horizontal visibility graphs (FWHVG) and backward weighted
horizontal visibility graphs (BWHVG) based on angle measurement. The two types of complex
networks were used to extract network features. Then, the two feature matrices were fused into a
single feature matrix to classify EEG signals. The average emotion recognition accuracies based on
complex network features of proposed method in the valence and arousal dimension were 97.53%
and 97.75%. The proposed method achieved classification accuracies of 98.12% and 98.06% for
valence and arousal when combined with time-domain features.

Keywords: emotion recognition; EEG; directed weighted horizontal visibility graph; feature fusion

1. Introduction

Emotion is the reflection of people’s psychological and physical expressions. It plays
a crucial factor in decision-making, perception, and human-computer interaction (HCI)
systems [1,2] Many studies based on emotion recognition have been conducted in the last
few decades [3,4].

The methods of emotion recognition are usually divided into two categories. One
is based on physiological signals, and the other is based on non-physiological signals.
Non-physiological signals include facial expressions, speech signals, body movements, and
so on [5,6]. Studies based on non-physiological signals have produced significant results.
For example, virtual markers based on an optical flow algorithm were used to classify six
facial emotions (happiness, sadness, anger, fear, disgust, and surprise) [7]. They achieved
a maximum accuracy of 99.81% with the CNN classifier. Niu et al. [8] proposed fused
features using the oriented fast and rotated brief (ORB) features and local binary patterns
(LBP) features to classify seven facial emotions, in which the accuracy is 79.8%. However,
emotion recognition through facial expressions or behavior analyzes is usually built on
fake emotions, including photos of actors instead of faces expressing real emotional states.
Datasets of real facial emotions are scarce. The expression and regulation of emotional
cues are different in different countries [9]. It may affect the accuracy of the emotion
classification. Therefore, research on recognizing emotions through physiological signals is
being actively conducted.

Physiological signals are another approach for emotion recognition. Physiological sig-
nals include heart rate, functional magnetic resonance imaging, electromyography (EMG),
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electroencephalogram (EEG), and so on. Among them, emotion recognition based on EEG
signals has great effects on detecting an emotion directly from brain activity [10]. For exam-
ple, Thammasan et al. [11] proposed a continuous music emotion classification algorithm
based on different features. Arnau et al. [12] used principal component analysis to selected
features, achieving accuracies of 67.7% and 69.6% for valence and arousal. An emotion
recognition model based on a mixture classification technique for physically challenged or
immobilized people was proposed [13]. This model is an asymmetric distribution, which
can help extract the EEG signals with a symmetric or asymmetric form.

In 2008, Lucasa et al. first proposed a visibility graph (VG) to map time series data
into a complex network [14]. With the development of research, many improved VG
algorithms were proposed. One of the modified visibility graphs, the horizontal visibility
graph (HVG), has been submitted by Luque et al. [15]. HVG can represent the chaotic
characteristics of EEG signals. Wang et al. used a limited penetrable visibility graph (LPVG)
to analyze Alzheimer’s disease [16]. Zhu et al. proposed weighted horizontal visibility
(WVG), which introduced the edge weight [17]. Recently, the visibility graph has been
employed to analyze EEG signals. Bhaduri calculated the scale-freeness of the visibility
graph of EEG data patterns varying from normal eye closed to epileptic [18]. This work
provided the first quantitative analysis technique for the degree of fractality. Zhu et al. used
difference visibility graphs to analyze and classify the EEG signals of sleep stages [19]. The
accuracy of the six-state classification is 87.5%. Cai [20] et al. developed a novel multiplex
LPHVG method to explore brain fatigue behavior. This method yields novel insights into
the brain-behavior associated with fatigue driving. By employing the visibility graph
algorithm, Bajestani et al. examined the EEG signals of patients with autism spectrum
disorder (ADS) [21]. The ASD class can be discerned with an accuracy of 81.67%.

The effectiveness of complex network features in the classification of EEG signals has
been demonstrated. However, few studies currently use complex network features for
EEG-based emotion recognition.

In this paper, a novel approach based on complex network features was presented
for emotion recognition. Weighted complex networks based on new angle measurements
were constructed. The innovation of this method is that we use a new weighted method to
construct the directed visibility graph. On this basis, the fusion feature is used to improve
the effectiveness of features. EEG signals were mapped into two complex weighted
networks from different directions: forward weighted horizontal visibility graph (FWHVG)
and backward weighted horizontal visibility graph (BWHVG). Two feature matrices were
extracted from the two weighted complex networks. Then, the fusion feature of two
feature matrices was used to classify the EEG signals. The fusion matrix was fed into three
classifiers for training and testing.

2. Related Works
2.1. Emotion Classification of DEAP Dataset

Emotion datasets with different modalities were established by researchers, such
as the DREAMER dataset, AMIGOS dataset, MAHNOB HCI dataset, and the DEAP
dataset. The DEAP emotion database was used in this paper. There are many emotion
recognition methods proposed based on the DEAP dataset. Lee et al. [22] proposed an
emotion recognition model using a photoplethysmogram (PPG) signal of DEAP for the
short recognition interval. Electrodermal activity (EDA) signals of the DEAP dataset were
used to design a sensor for emotion recognition [23]. They achieved an accuracy of 85% for
four class emotional states. Kim et al. [24] proposed a long short-term memory network
based on EEG signals to consider changes in emotion over time. They performed the
two-level and three-level classification experiments based on valence and arousal. The
classification rates on two-level emotion recognition were 90.1% and 88.3% for valence and
arousal 86.9% and 84.1% on three-level emotion recognition.
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2.2. Emotion Recognition Based on Feature Extraction

Researchers have conducted studies to extract different features in the EEG-based
emotion recognition task. Machine learning and deep learning techniques are applied to
classify emotional states. Numerous attributes include power spectral density features
(PSD), fractal dimension features (FD), entropy features, wavelet features, the differential
asymmetry feature (DASM), the rational asymmetry feature (RASM), and the differen-
tial causality feature (DCAU) have been widely employed to characterize EEG [25,26].
Yin Y.Q et al. proposed a deep learning model fused graph convolutional neural network
(GCNN) and long-short term memories neural networks (LSTM). Differential entropy was
extracted to construct a feature cube as the input of the model. The average classification
accuracies were 90.45% and 90.60% for valence and arousal on the DEAP dataset [27]. A
dynamical graph convolutional neural network (DGCNN) using a graph to model the
multichannel EEG features was proposed in [28]. Five kinds of features including differen-
tial entropy, DASM, RASM, PSD, and DCAU were investigated to evaluate the proposed
method. The accuracy was 86.23% in valence and 84.54% in arousal on the DREAMER
database. Goshvarpour et al. [29] extracted the approximate and detailed coefficients of
the wavelet transform and calculated the second-order difference plot of the coefficients.
The average classification rate was 80.24% on four different emotion classes.

2.3. Emotion Models

A number of researchers have proposed different ways to express emotions, including
the discrete emotion model, the dimensional emotion model, and other emotion models.
In the discrete emotion model, researchers considered the theory of basic emotion, such as
the Ekman emotion model [30] and the Panksepp emotion model [31]. There is a dispute
about the number of basic emotions. Tuomas et al. believe that fear, anger, disgust, and
happiness are the four basic emotions [32]. While Cowen et al. maintain that there are
27 basic emotions [33]. In the dimensional model, emotions are described by multiple
dimensions, such as the circumplex model [34]. It’s a two-dimensional model of arousal
and valence. When dominance is added, it can be extended to a 3D emotion model [35].
Many researchers have proposed different emotion models according to their different
analytical perspectives, such as Ortony-Clore-Collins (OCC) model and hidden Markov
model (HMM) [36,37].

3. Materials and Methods
3.1. Dataset

The DEAP dataset [38], a multimodal dataset created by Koelstra et al., is used in
this paper. The dataset is publically available and many researchers have performed their
analysis on it. The DEAP dataset consists of two parts, namely the online ratings and the
participant ratings, contains 1280 multivariate biosignals, such as electroencephalogram,
photoplethysmogram, electromyogram, and electrodermal activity.

Table 1 describes the participant rating part. The participant ratings were acquired
from 32 participants with an average age of 26.9 years, in which each subject watched
40 one-minute long music videos. After watching each video, participants assessed the
videos at different levels ranging from 1 (low) to 9 (high). The emotional response includes
five dimensions: valence, arousal, dominance, liking, and familiarity. Valence is an indicator
of pleasantness. Arousal is a measure of the intensity of the emotion varying from unexcited
to excited. Dominance represents the feeling of being in control of the emotion. Liking asks
for participants’ liking of the video. Familiarity is the participants’ familiarity with each of
the videos. Familiarity study participants’ tastes, not their feelings, on a scale of 1 to 5. For
valence, arousal, dominance, and liking, the threshold is set as different values in different
researches. The middle of the 9-point rating is used to generate two classes as used on the
DEAP dataset. The label is low when the rating is less than 5, and the label is high when
the rating is greater than or equal to 5.
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Table 1. Description of participant ratings part in DEAP dataset.

Materials Setup

Number of participants 32

Number of videos 40

Rating scales

Valence Indicator of pleasantness
(float between 1 and 9).

Arousal Measure of the intensity of the emotion (float between 1 and 9).

Dominance Feeling of being in control of the emotion (float between 1 and 9).

Liking Liking of the video
(float between 1 and 9).

Familiarity
Familiarity with videos

(integer between 1 and 5).
Blank if missing.

Recordings 32 EEG channels +8 other peripheral channels

Forty physiological channels were recorded for each participant, including 32 EEG
channels and eight other peripheral channels. The data includes 60-s trial data and 3-s
baseline data. 60-s trial data were used in this paper. The DEAP provide the preprocessed
dataset. The data were down sampled to 128 Hz, and a bandpass frequency filter from
4.0–45.0 Hz was applied. Since emotions are generally described by arousal and valence,
we only consider the two factors.

3.2. Emotion Recognition Framework

The block diagram of the proposed method for EEG emotion recognition in this paper
is shown in Figure 1. Thirty-two EEG channels are selected to classify emotional states
in this paper. The procedure is divided into four steps, namely, preprocessing, feature
extraction, feature fusion, and classification. The preprocessing includes data partitioning
and channel selection. For the EEG signal data after preprocessing, time-domain features
and network statistical properties are extracted. And then, the two types of features can
be combined and normalized. Finally, three classifiers are used to train these features to
obtain the results of emotion recognition.
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3.3. Visibility Graph Networks
3.3.1. Horizontal Visibility Graph

VG algorithm can map time series to complex networks. For an EEG signal {x(t)}N
t=1

with N data samples, each sample can be considered as a node of the graph represented in
a histogram. The height of the histogram represents the value of the corresponding data
node. There is a connection between two nodes if the top of two bars is visible. For any
two nodes (ti,xi) and (tj,xj), the edge between ti, and tj is connected if any data node (tk,xk)
between (ti,xi) and (tj,xj) fulfils the following criterion of convexity [14]:

xi − xk
tk − ti

>
xi − xj

tj − ti
, ti < tk < tj, (1)

HVG is a modification of the VG algorithm. In HVG, two data nodes (ti,xi) and (tj,xj)
will have horizontal visibility if they fulfil Equation (2) [15]:

xi, xj > xk, ti < tk < tj, (2)

where (tk,xk) is a data node between (ti,xi) and (tj,xj).
The complex network can be expressed by an adjacent matrix A =

(
aij
)

N×N . If ti and
tj are connected, aij = 1, otherwise aij = 0, as shown in Figure 2.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 2. Horizontal visibility graph of a time series. (a) The histogram of time series; (b) Its corre-
sponding HVG. 

3.3.2. Directed Weighted Horizontal Visibility Graph 
HVG with edge weight is known as the weighted horizontal visibility graph 

(WHVG), where the link between two nodes are not binary values (0 and 1). There are 
two commonly used edge weights at present, namely distance [39]Error! Reference 
source not found. and radian function [40]. We proposed a novel directed weighted hor-
izontal visibility graph (DWHVG). The edge weight is related to visibility angle measure-
ment. The weighted complex network can be expressed by a weight matrix ܅  ே௫ே. The edge weight wij is the angle between nodes i and j. It can be described as(ݓ) =
follows: if nodes i and j is visible, the connection of the vertex i and vertex j is called ab, 
and the connection of the vertex i and bottom j is called ac. The edge weight wij is the 
angle between ab and ac, as shown in Figure 3a. Equation (3) is the edge weight of 
FWHVG. Equation (4) is the edge weight of BWHVG: 

arctan + arctan ,j if i
ij i j

j i j i

x x xw t t
t t t t

−
= <

− −
,
 

(3)

arctan + arctan ,i j jb
ij i j

j i j i

x x x
w t t

t t t t
−

= <
− −  

(4)

 
Figure 3. Graphical illustration of FWHVG of the time series. (a) Angle measurement of FWHVG; 
(b) Corresponding FWHVG of the time series. 

1 2 3 4 5 6
• • • • •1 1 1 1

1 1

•1

1

1 2 3 4 5 6
(a) (b)

• • • • •0.180 2.652 0.467 2.251

1.756 1.123

•2.391

1.534

>

> > >> >

>

>

1 2 3 4 5 6

θ

1 2 3 4 5 6

Forward
(a) (b)

a

b

c

Figure 2. Horizontal visibility graph of a time series. (a) The histogram of time series; (b) Its
corresponding HVG.

3.3.2. Directed Weighted Horizontal Visibility Graph

HVG with edge weight is known as the weighted horizontal visibility graph (WHVG),
where the link between two nodes are not binary values (0 and 1). There are two commonly
used edge weights at present, namely distance [39] and radian function [40]. We proposed
a novel directed weighted horizontal visibility graph (DWHVG). The edge weight is related
to visibility angle measurement. The weighted complex network can be expressed by a
weight matrix W =

(
wij
)

NxN . The edge weight wij is the angle between nodes i and j. It
can be described as follows: if nodes i and j is visible, the connection of the vertex i and
vertex j is called ab, and the connection of the vertex i and bottom j is called ac. The edge
weight wij is the angle between ab and ac, as shown in Figure 3a. Equation (3) is the edge
weight of FWHVG. Equation (4) is the edge weight of BWHVG:

w f
ij = arctan

xj − xi

tj − ti
+ arctan

xi
tj − ti

, ti < tj, (3)

wb
ij = arctan

xi − xj

tj − ti
+ arctan

xj

tj − ti
, ti < tj (4)
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Figure 3. Graphical illustration of FWHVG of the time series. (a) Angle measurement of FWHVG;
(b) Corresponding FWHVG of the time series.

The HVG algorithm is undirected, but the edge weight is related to the direction in our
method. For a time series, when it is mapped forward to a weighted horizontal visibility
graph, it can be named forward weighted horizontal visibility graph (FWHVG), as shown
in Figure 3. When it is mapped back to a weighted horizontal visibility graph, it can be
named backward weighted horizontal visibility graph (BWHVG), as shown in Figure 4. For
a random time series given by x = {7.0,4.0,8.0,6.5,7.6,9.0}, the HVG can be found in Figure 2,
and the graphical illustration of FWHVG and BWHVG can be found in Figures 3 and 4.
Figures 3a and 4a show angle measurements of FWHVG and BWHVG between partial
nodes. Figures 3b and 4b show the networks mapped by FWHVG and BWHVG. Edge
weights are different in different directed weighted horizontal visibility graphs.
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Figure 4. Graphical illustration of BWHVG of the time series. (a) Angle measurement of BWHVG;
(b) Corresponding BWHVG of the time series.

The following example illustrates how edge weight is calculated. As it is clear from
Figure 2 that x1 = 7.0 and x3 = 8.0 is visible. The angles between x1 and x3 of FWHVG and
BWHVG are shown in Figures 3a and 4a. The edge weight of FWHVG between the two
nodes is:

w f
23 = arctan

8.0− 7.0
3− 1

+ arctan
8.0− 7.0

3− 1
≈ 1.756, (5)
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Thus, the edge weight between node 1 and node 3 is 1.756 in FWHVG. The weighted
matrix of FWHVG can be calculated as:

WF=



1 0.180 1.756 0 0 0
0.180 1 2.652 0 0 0
1.756 2.652 1 0.467 1.123 1.534

0 0 0.467 1 2.251 0
0 0 1.123 2.251 1 2.391
0 0 1.534 0 2.391 1


The edge weight of BWHVG between the two nodes is:

wb
23 = arctan

8
3− 1

+ arctan
7.0−8.0

3− 1
≈ 0.862, (6)

The edge weight between node 1 and node 3 is 0.862 in BWHVG. The weighted matrix
of BWHVG can be calculated as:

WB=



1 2.573 0.862 0 0 0
2.573 1 0.121 0 0 0
0.862 0.121 1 2.401 1.511 0.927

0 0 2.401 1 0.607 0
0 0 1.511 0.607 1 0.510
0 0 0.927 0 0.510 1


3.4. Feature Extraction

The main objective of feature extraction is to obtain reliable data for emotion recogni-
tion. For this reason, time-domain features and complex network features are extracted
from EEG data.

3.4.1. Time-Domain Features

Nawaz et al. [41] compared different features in emotion recognition to identify the
features that can effectively discriminate the emotions. Their study showed that the
time-domain features are more suitable for emotion recognition compared with power,
entropy, fractal dimension, and wavelet energy. However, the time-domain features have
received less attention so far. In this paper, we will make a deep analysis of the validity of
time-domain features for emotion recognition.

In the current study, six time-domain features are adapted from [41]. Suppose
{x(t)}N

t=1 represents an EEG signal with N data samples.

(1) Mean: Mean represents the average of the time series:

x =
1
N

N

∑
t=1

x(t) (7)

(2) Standard deviation: It represents the deviation of data compared with mean. The
standard deviation is calculated as a square root of the average of the square of the
difference between the EEG signal sample and the mean:

σx =

√√√√ 1
N

N

∑
t=1

(x(t)− x) (8)
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(3) First Difference: It represents the relationship between the current data and the
previous data, and reflects the waveform dimensionality changes. First difference is
calculated as the sum of the absolute difference between a pair of samples:

dst =
1

N − 1

N−1

∑
t=1
|x(t + 1)− x(t)| (9)

(4) Second Difference: It means the relationship between three adjacent data points and
is a measure sensitive to the variation of the signal amplitude. The calculation of the
second difference is similar to that of the first difference.

dnd =
1

N − 2

N−2

∑
t=1
|x(t + 2)− x(t)| (10)

In following section, X(t) represents the normalized series as below:

X(t) =
x(t)− x

σx
(t = 1, 2, · · · , N) (11)

where x and σx can be found in Equations (7) and (8).
(5) First difference of normalized EEG: It is the relationship between the current data and

the previous data of normalized EEG signal:

Dst =
1

N − 1

N−1

∑
t=1
|X(t + 1)− X(t)| (12)

(6) Second difference of normalized EEG: It represents the relationship between three
adjacent data points of normalized EEG signal:

Dnd =
1

N − 2

N−2

∑
t=1
|X(t + 2)− X(t)| (13)

3.4.2. Network Statistical Properties

The original series {x(t)}N
t=1 is mapped into weighted networks. Then the network

metrics can be extracted.

(7) Average weighted degree

In unweighted networks, the edge number of one node connected with other nodes
is called degree. In general, the larger degree of the node, the greater importance of the
network. In a weighted network, the weighted degree di can be extended to the strength of
node ti [21]. The average weighted degree can be represented as Equation (15):

di =
N

∑
j=1

wij (14)

d =
1
M

N

∑
i=1

di (15)

where wij is the edge weight between node ti and tj.

(8) Deviation of weighted degree
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The deviation of weighted degree can be calculated as follows [42]:

dstd =


N
∑

i=1

(
di − d

)2

N − 1


1/2

(16)

(9) Weighted clustering coefficient

Clustering coefficient and clustering coefficient entropy [43] describes the relationship
between one node and its neighbors. The weighted clustering coefficient of the network can
be calculated from the average weighted clustering coefficient of all nodes in the network,
as shown in Equation (17):

C =
1
M

N

∑
i=1

Ci (17)

Ci =
∑j,k wijwikwjk

∑k 6=j wijwik
(18)

where Ci is the weighted clustering coefficient of node ti, wik is the weight between node ti
and tk, wjk is the weight between node tj and tk, wij is the weight between node ti and tj.

(10) Weighted clustering coefficient entropy

Weighted clustering coefficient entropy EC can be calculated as follows:

EC = −
N

∑
j=1

PC,i log(PC,i) (19)

PC,i = Ci

/ N

∑
j=1

Ci (20)

where PC,i is the probability of the weighted clustering coefficient of node ti.

3.5. Feature Fusion

After extracting the features of complex networks, two kinds of visibility graph
features are fused. The procedure can be described as follows:

(1) Setting a sliding time-window to divide the EEG signals into M segments.
(2) EEG segments are mapped to FWHVGs and complex network features are extracted.

For a feature, we can get the feature vector YFWHVG =
[
y f

1 , y f
2 , · · · , y f

M

]
.

(3) Then we map EEG segments to BWHVGs, and extracted complex network features.

For a feature, we get the feature vector YBWHVG =
[
yb

1, yb
2, · · · , yb

M

]
.

(4) Finally, the fusion feature vector is calculated as Equation (21):

G = YFWHVG + YBWHVG =
[
y f

1 , y f
2 , · · · , y f

M

]
+
[
yb

1, yb
2, · · · , yb

M

]
=
[
g1, g2, · · · , gM

] (21)

where g1, g2, ..., gM is the element of G. y f
1 , y f

2 , · · · , y f
M and yb

1, yb
2, · · · , yb

M are the
elements of YFWHVG and YBWHVG, separately.

The values of different features may vary greatly, so it is necessary to normalize the
features to reduce the difference. Mapping the feature vector between 0 and 1 to avoid the
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classification error caused by the large difference of features. The normalized result gm is
expressed by Equation (22):

gm =
gm − gmin

gmax − gmin
, (m = 1, 2, · · · , M) (22)

where gm is the element of G; gmin and gmax represent the maximum and minimum values

of G. The normalized feature vector is
¯
G = (g1, g2, · · · , gM). For four complex network

features, the normalized feature matrix can be represented as
¯
Gall = (gim)4×M. For six

time-domain features, the normalized feature matrix is
¯
Eall =

(
ejm
)

6×M. The normalized

feature matrix of combined features can be represented as
¯
Y =

 ¯
Gall
¯
Eall

 = (ynm)10×M.

3.6. Classification

Support vector machines (SVM), optimized fitted k-nearest neighbors (OF-KNN) and
decision tree (DT) classifiers are used for classification in this part. Based on promising
empirical results of the three classifiers, we used them for emotion classification [41,44–46].
Besides, in the Section 4.4.1, the effectiveness of different scenarios based on [41] were
compared. We used the same classifiers as this reference. Complementary information
from different classifiers may lead to higher accuracy.

3.6.1. Support Vector Machines (SVM)

We use a library for support vector machines (LIBSVM) in our work. It is a further
improvement made on the SVM [47]. LIBSVM can solve the two-class problem by con-
structing an optimal separating hyperplane. This hyperplane is linear, and the distance
between the two groups is maximized. There are two important parameter, kernel function
parameter γ and penalty factor C. Kernel function transfers the training samples into a
higher dimensional feature space. penalty factor represents degree of penalty to misclas-
sification of samples. C is 2 and γ is 1 in this paper. SVM is a small sample learning
method with simple algorithm and good robustness. However, this algorithm is difficult to
implement for large-scale training samples.

3.6.2. Optimized Fitted K-Nearest Neighbors (OF-KNN)

KNN is a popular machine learning algorithm, which is very reliable for EEG data
classification. KNN looks for a number k of samples (called k-neighbors) nearest to the
incoming training sample and then predicts its class based on the most common class of
its nearest neighbors [48]. The KNN classifier’s performance is mostly dependent on the
choice of the distance parameter and the number of nearest neighbors k. In this paper, we
used a variant of KNN called optimized fitted KNN. This algorithm can find hyperpa-
rameters that minimize five-fold cross validation loss by using automatic hyperparameter
optimization. To pick the best estimate, the Bayesian optimization acquisition function
‘expected-improvement-plus’ is used. It calculates the best estimated feasible point using
the ‘best-point’ function. This algorithm has high accuracy and is insensitive to outliers.
However, when the sample is unbalanced, there will be a large prediction bias.

3.6.3. Decision Tree (DT)

DT can change the complicated decision-making problems into simple processes with
minimum computation time [49]. The advantages of the algorithm include that they are
relatively easy to interpret and have good classification performance on many datasets.
It performs the learning by splitting the input data into finer subgroups and assigning
decision rules to the subgroups in model outputs. DT can produce feasible and effective
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results for large data sources in a relatively short time. It is not suitable for data with the
strong correlation.

4. Results
4.1. Evaluation Metrics

Three classification metrics including accuracy (Acc), sensitivity (Sen), specificity (Spe),
and precision (Pre) are used in this study [50].

(1) Accuracy
Accuracy is the most commonly used evaluated guideline. It represents the proportion

of the sample that is classified correctly:

Acc =
TP + TN

TP + TN + FP + FN
× 100% (23)

(2) Sensitivity
Sensitivity, also called Recall, means the probability percentage that positive samples

are classified as positive samples by the model:

Sen =
TP

TP + FN
× 100% (24)

(3) Specificity
Specificity means the probability of correctly classified negative instances:

Spe =
TN

TN + FP
× 100% (25)

(4) Precision
Precision refers to the probability of true positive to the positive determined by

the model.
Pre =

TP
TP + FP

× 100% (26)

where TP, TN, FP and FN stand for true positive, true negative, false positive and false
negative, respectively.

4.2. Preprocessing

EEG signals are usually collected with noise in real life, which makes it challenging to
design algorithms for emotion classification. EEG recording equipment may be affected
by the surrounding environment. Muscle activity and eye movement can also bring the
noise. The input signal used for emotion recognition should be the noise-filtered signal.
The DEAP database provides a preprocessed version. The data has been down-sampled to
128 Hz, and a bandpass frequency filter from 4.0–45.0 Hz was applied in this version. We
set a 10-s long sliding time-window with 50% overlap to divide the one-minute long EEG
signals. Following this segmentation, a one-minute long EEG signal is divided into eleven
10-s long EEG segments.

4.3. Analysis of Visibility Graph Networks

The emotion classes are assigned according to arousal and valence ratings done by
subjects. It can be predetermined as two classes, i.e., low or high, based on the threshold
of 5 on each dimension [51]. The labels are low valence and low arousal when the rating
is less than 5. The labels are high valence and high arousal when the rating is greater
than or equal to 5. The adjacency matrices of networks obtained from the EEG signal with
high valence and low valence by applying VG are shown in Figure 5. As mentioned in
Section 3.3.1, when a time series is mapped to an unweighted complex network, it can be
expressed by an adjacent matrix. When two nodes are visible to each other, the value of the
adjacent matrix is 1, otherwise, the value is 0. The white dots in Figures 5 and 6 indicate the
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corresponding pair of nodes that are visible to each other, and the black portions represent
no visibility. For each set of the data, 1280 samples were selected. The network connections
of the EEG signal with low valence (Figure 5a) are tighter, and the clusters are much bigger.
This indicates that its clustering characteristic is more obvious than the EEG signal with
high valence (Figure 5b) in the control group.
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The adjacency matrixes of networks based on the HVG method are shown in Figure 6.
The information got from Figure 6 is similar to that in Figure 5. The network connections in
Figure 6a are tighter compared with Figure 6b, and the clusters are much bigger. There are
fewer white dots in Figure 6 than in Figure 5, which means that the number of connected
edges in Figure 6 is less than that in Figure 5. This indicated that the network mapped
by VG is more complicated than that mapped by HVG. From the above analysis, we can
get that the visibility network is effective in emotion recognition. HVG retains part of the
information in the VG. And its structure is more straightforward. So, the HVG method is
chosen as the basis in our process.
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Figure 7 shows a local refinement of weight matrices based on forward weighted
complex networks and backward weighted complex networks. When a time series is
mapped to a weighted complex network, it can be expressed by a weight matrix. The
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color represents the weighted edge, the larger the value, the darker the color. 128 samples
were selected for easier comparison. The following four images are all from the same
time series. The figures show the different edge weights of different methods. The weight
matrices were normalized. Figure 7a,b are the weight matrices of the forward weighted
visibility graph (FWVG) and backward weighted visibility graph (BWVG). Figure 7c,d are
the weight matrices of the forward and backward weighted horizontal visibility graph.
The edge weights of the elements nearby the diagonal part of the matrixes are much larger
than those far away from the diagonal. In different graphs, elements with large weights
are located in different places.
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As mentioned above, 32 EEG channels are used to classify emotional states. That’s
means, for a complex network feature, we can get 32-dimensional feature matrices. In this
paper, four network properties were used for emotion recognition, as listed in Section 3.4.2.
For one feature, the feature matrix of 32 EEG channels is 440 (segments)× 32 (channels). For
four features, the feature matrix of 32 EEG channels is 440 (segments) × 128 (32 (channels)
× 4 (features)). There was little difference in the classification results of the four features
separately. Now, we randomly select a feature to compare the effectiveness of the different
methods. The average weighted degree feature was selected here. Figure 8 shows box plots
of the feature of 32 EEG channels based on HVG and DWHVG. The abscissa represents
32 EEG channels. Red box plots are the average weighted degree feature of EEG signals
with low valence. Black box plots are the feature of EEG signals with high valence. It can
be observed from the box plot that the differences in terms of median and quartiles in
Figure 8b are more obvious than those in Figure 8a.
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4.4. Classification Results

Five-fold cross validation and 10-fold cross validation were performed to evaluate
participant’s samples and the mean of them was taken as the result of the subject. The
average performance of all participants was calculated as the final results.

4.4.1. Comparison of Time-Domain Features

In [41], only 14-channels were selected for classifying emotional states. The selected
EEG channels are located on AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4, and
AF4. The first 20 s of data were excluded from EEG samples and the remaining 40-s long
EEG signal was divided into four 10-s long segments without overlap. Grid searching
was used to scan the available set of parameters for identifying the best parameter. The
parameters of SVM and KNN were {C,γ} ∈ {10−4,10−3,10−2,10−1,1,10,102,103,104,105106}
and k ∈ {5,4,3,2,1}. To find out the effectiveness of different data lengths and the sliding
window types, four scenarios were compared in this section. The same EEG channels and
classifiers were used for classification. Five-fold cross validation was used as in [41].

Scenario 1: The plan used in [41].
Scenario 2: The remaining 40-s long EEG signal was divided by a 10-s long sliding time-
window with 50% overlap.
Scenario 3: A 10-s long sliding time-window partitioned one-minute long EEG signal into
six segments without overlap.
Scenario 4: One-minute long EEG signal was segmented by a 10-s long sliding time-window
with 50% overlap.

In Scenario 1, there are 160 (40 (videos)× 4 (segments)) features for each participant on
each channel. With 5-fold cross validation method, the numbers of training data and testing
data are 128 and 32. In Scenario 2, 280 (40 (videos) × 7 (segments)) features are divided
into five equal data with the number of 56. There are 240 (40 (videos) × 6 (segments))
features in Scenario 3. 5-fold cross validation method splits the data into 192 training data
and 48 testing data. In Scenario 4, 440 (40 (videos) × 11 (segments)) features are divided
into 352 training data and 88 testing data.

Average accuracies of the different scenarios for the valence and arousal classification
tasks are presented in Table 2. When the sliding time window with an overlap rate of
50% is used for data segmentation, the classification accuracy is higher and the average
sentiment recognition rates on 60-s long EEG signals are better than those on the remaining
40-s long EEG signal. In scenarios four, the classification accuracies are 95.68%, 94.60%,
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85.19% for valence with SVM, KNN, and DT. The classification accuracies of arousal are
93.41%, 94.22%, 81.23%, respectively.

Table 2. Comparison of average sentiment recognition rates (%) on different scenarios.

Valence Arousal

Classifiers S1 S2 S3 S4 S1 S2 S3 S4

SVM 77.62 94.43 88.13 95.68 78.96 93.64 85.45 93.41
KNN 75.06 92.57 87.17 94.60 74.71 90.57 83.36 94.22

DT 71.48 82.59 77.15 85.19 72.93 81.40 75.04 81.23

4.4.2. Analysis of Complex Network Features

In this section one-minute long EEG signal was divided by a 10-s long sliding time-
window with 50% overlap. 32-channel EEGs were used for classifying emotional states.
10-fold cross validation method was used in following experiments. The performance
estimation for complex network features of HVG and the proposed method are shown in
Tables 3 and 4.

Table 3. Performance estimation for complex network features of HVG (%).

Valence Arousal

SVM OF-KNN DT SVM OF-KNN DT

Acc
Mean 80.17 96.51 64.84 80.38 96.21 66.39

STD 3.82 0.80 4.57 4.14 1.48 5.78

Sen
Mean 69.19 98.42 59.55 63.04 97.67 57.15

STD 20.23 1.32 9.61 27.80 2.46 13.96

Spe Mean 84.65 98.60 66.99 80.69 97.24 66.31

STD 11.28 1.02 7.76 21.92 2.44 13.94

Pre
Mean 82.42 98.32 59.38 82.88 97.75 56.91

STD 6.57 0.84 9.22 8.48 2.13 14.09

Table 4. Performance estimation for complex network features of proposed method (%).

Valence Arousal

SVM OF-KNN DT SVM OF-KNN DT

Acc
Mean 96.74 97.53 76.55 96.65 97.75 76.99

STD 2.16 2.44 3.87 2.12 2.21 4.85

Sen
Mean 95.11 97.51 72.67 93.45 96.27 69.71

STD 3.82 2.32 6.57 6.02 2.87 10.43

Spe Mean 97.44 97.43 78.36 96.89 97.77 77.84

STD 2.22 2.06 5.71 2.61 2.14 8.53

Pre
Mean 97.53 97.34 72.80 97.32 96.27 69.63

STD 2.45 2.34 6.75 2.46 2.82 10.74

As seen in Tables 3 and 4, it is obvious that the OF-KNN method outperforms SVM
and DT to classify valence and arousal. DT has the worst performance. With OF-KNN, we
obtain the average classification accuracies for valence and arousal as 97.53% and 97.75%
separately of proposed method. The performances of the HVG algorithm are 96.51% and
96.21% for valence and arousal. The classification accuracies of the proposed method in
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valence and arousal are respectively 1.02% and 1.24% higher than that of the HVG method.
Most of the evaluation metrics in Table 3 are better than those in Table 4.

4.4.3. Performance of Combined Features

In Section 4.4.1, only 14-channel EEGs were selected. In order to analyze the data more
objectively, the remaining 18-channel EEG recordings were added for emotion recognition
in this section, like Section 4.4.2. Table 5 shows the performance estimation for time-
domain features of one-minute long EEG signals of 32 channels. Table 6 is listed the
classification performance of combined features based on the proposed method and time-
domain features. The combined features include time-domain features and complex
network features of the proposed method.

Table 5. Performance estimation for time-domain features (%).

Valence Arousal

SVM OF-KNN DT SVM OF-KNN DT

Acc
Mean 97.51 97.78 86.07 97.18 97.37 86.35

STD 1.77 1.79 3.40 2.13 2.35 4.08

Sen
Mean 95.87 97.70 84.22 94.16 96.63 82.25

STD 2.72 2.09 4.65 5.83 3.85 7.22

Spe Mean 98.43 97.79 86.67 96.66 97.47 87.04

STD 1.48 1.70 4.73 3.80 2.37 5.6

Pre
Mean 98.47 97.60 84.08 98.10 96.45 82.03

STD 1.07 1.74 4.28 1.47 3.45 6.80

Table 6. Performance estimation for combined features (%).

Valence Arousal

SVM OF-KNN DT SVM OF-KNN DT

Acc
Mean 91.40 98.12 85.10 89.70 98.06 85.18

STD 4.36 1.79 4.02 4.69 1.81 4.20

Sen
Mean 81.52 97.98 83.13 74.85 97.44 80.54

STD 17.70 1.86 4.46 23.04 2.13 7.52

Spe Mean 92.24 97.14 85.93 82.03 98.12 85.74

STD 6.69 2.21 5.30 15.00 1.38 6.12

Pre
Mean 94.24 97.97 83.04 93.84 97.51 80.74

STD 4.58 1.63 4.87 5.94 2.09 6.81

The OF-KNN method is superior to SVM and DT in the classification of time-domain
features and combined features. It has been observed from the results that the overall
average accuracies of time-domain features are 97.78% and 97.37% under valence and
arousal, with OF-KNN. Those of combined features are 98.12% and 98.06% separately. The
classification accuracies of combined features in valence and arousal are respectively 0.42%
and 0.69% higher than those of time-domain features, which are 0.59% and 0.31% higher
than those of the proposed method (listed in Table 4). With OF-KNN, most the evaluation
metrics of combined features are more stable compared with time-domain features. For
example, in arousal dimensions, the STD of Acc, Sen, Spe and Pre based on time-domain
features in the Table 5 are 2.35%, 3.85%, 2.37%, and 3.45%. Those of combined features in
the Table 6 are 1.81%, 2.13%, 1.38% and 2.09%.
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4.4.4. Effectiveness of Different Classifiers

The final experimental results for valence and arousal are shown in Figures 9 and 10.
The OF-KNN classifier can best distinguish EEG signals in valence and arousal dimen-
sions than the other two types of classifiers. The emotion recognition method gets the
lowest classification accuracy with the DT classifiers. When the SVM classifier is used, the
classification accuracies of combined features are dropped compared with time-domain
features and visibility graph features. The combination of the two types of features may
not improve the classification accuracy. The evaluation metrics of OF-KNN is better than
those in SVM and DT, and fluctuate less. The values of evaluation metrics of OF-KNN are
smaller than those of SVM. But these metrics of SVM fluctuate a lot. This result partially
reflects that the OF-KNN classifier outperformed SVM and DT in EEG-based emotion
recognition in this paper.
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5. Discussion

Many researchers have extracted features from EEG signals to identify the emotional
state. Among these methods, time-domain features, entropy, and wavelet transform are
widely used. In this study, we investigated the effectiveness of complex network metrics
and time-domain features on emotion recognition.

For time-domain features, four scenarios were compared to find out the effectiveness
of different data lengths and the sliding window types for emotion classification. The
results showed that the method reached the highest accuracy when EEG signals were
segmented by a 10-s long sliding time-window with 50% overlap. As mentioned above,
each participant watches 40 one-minute long videos. At the same time, each participant
has 40 one-minute long EEG recordings. As mentioned above, each participant watches
40 one-minute long videos. At the same time, each participant has 40 one-minute long
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EEG recordings. When six time-domain features are extracted from each channel, 192-
dimensional (32 (channels) × 6 (features) = 192) feature matrices can be produced.

In the case of complex network metrics, we constructed the DWHVG based on a
new angle measurement method, in which the undirected network is relevant to the
direction. EEG signals were mapped into FWHVGs and BWHVGs from different direc-
tions. On this basis, the fusion feature is used to improve the effectiveness of features.
Extracting four network metrics on each channel of EEG data produces 128-dimensional
(32 (channels) × 4 (features) = 128) feature matrices. It can be found that the proposed
method is effective in recognizing emotion.

SVM, OF-KNN, and DT classifiers were used for classification. The results reflected
that the OF-KNN classifier outperformed SVM and DT in our method. The combination
of the two types of features was fed into the three classifiers. Only OF-KNN shows a
better classification rate. It is confirmed that the complex network features are effective in
recognizing emotion. It provides a new research idea in emotion recognition.

The comparison of the proposed method with the existing methods is presented
in Table 7. The emotion recognition problems in the references of Table 7 are all binary
classification. The EEG signals used in the table all come from the DEAP database. Different
feature extraction methods were compared in [41]. With the KNN classifier, the time-
domain statistical characteristics achieved accuracies of 77.62% and 78.96% for valence
and arousal respectively. Gao et al. [52] proposed a channel-fused dense convolutional
network (CNN) for EEG-based emotion recognition. The deep-learning framework can
obtain recognition accuracies over 92% for both valence and arousal classification tasks.
Cui et al. [53] used an end-to-end regional-asymmetric convolutional neural network
(RACNN) to reach accuracies of 96.65% and 97.11% under valance and arousal. An
emotion recognition system transforming 1D chain-like EEG vector sequences into 2D
mesh-like matrix sequences was proposed in [54]. The experimental results demonstrated
that the classification accuracies of hybrid neural networks achieved 93.64% and 93.26% in
valence and arousal dimensions. According to Liu et al. [55], a multi-level features guided
capsule network (MLF-CapsNet) was used. A one-second long sliding time window
divided the one-minute long EEG signal into 60 segments. The maximum recognition
rates on valence and arousal were separately 97.97% and 98.31%. When combined with
time-domain features, the proposed method showed the accuracies of 98.12% and 98.06%
for valence and arousal.

Table 7. Comparison of the proposed work with previous works (%).

Methods Input Number of
Channels

Length of
Signal Classifier

Average Accuracy

Valence Arousal

[41] Time domain features 14 40s KNN 77.62 78.96

[52] DE features 32 60s Dense CNN 92.24 92.92

[53] Spatial encoding of
EEG signals 32 60s RACNN 96.65 97.11

[54] 2D PSD mesh sequence 32 60s CNN-RNN 93.64 93.26

[55] Raw EEG signals 32 60s MLF-CapsNet 97.97 98.31

Proposed method Complex network features 32 60s OF-KNN 97.53 97.75

Proposed method Complex network features +
Time-domain features 32 60s OF-KNN 98.12 98.06

According to values of arousal and valence, emotion states can also be divided into
4 types, high arousal high valence (HAHV), high arousal low valence (HALV), low arousal
high valence (LAHV), and low arousal low valence (LALV). Zhang et al. [45] employed
an empirical mode decomposition (EMD) strategy to decompose EEG signals, and then
calculated corresponding sample entropies of the first 4 intrinsic mode functions (IMFs).



Sensors 2021, 21, 1870 19 of 21

The average accuracy for the 4-class task was 93.20%. Nonlinear features were extracted
from EEG signals, and a feature selection method was used to enhance the classification
performance [26]. MLP, KNN, and SVM combined through the voting algorithm as a
combined classifier. A classification rate of 84.56% was achieved on the DEAP dataset, 90%
on their dataset. The highest classification accuracy achieved by ANN for 4-class emotion,
entropy-based features, and implementation is 93.75% in [56].

The limitations of this study are as follows. The preprocessed dataset provided by the
DEAP database was used in this paper. We didn’t take into account the effect of noise. A
study on noise robustness should be considered in future work. What more, the proposed
method is only verified in the DEAP dataset, it should be performed and experimented
with in different datasets. Besides, only two-level classification experiments of valence and
arousal were considered in this paper. The multi-classification problem should be taken
into consideration.

6. Conclusions

This paper proposed a novel method based on an improved visibility graph network to
recognize the emotion model, which classified the two emotional dimensions of arousal and
valance. In this model, a weighted visibility graph construction method based on visibility
angle measurement transforms an undirected network into a directed network. Then, the
feature matrices extracted from different directions based on DHVG were integrated into
new feature matrices through feature fusion.

Thirty-two channel recordings of EEG signals were used in this implementation.
Besides, we also extracted the time domain features. Three different machine learning
classifiers were used to compare the feature extraction methods, which were SVM, OF-
KNN, and DT.

In the valence and arousal domain, the average emotion recognition rates based
on complex network features of our proposed method achieved 97.53% and 97.75% with
10-fold cross validation. When combined with time-domain features, the average accuracies
reached 98.12% and 98.06%. It is confirmed that the proposed method is effective in
recognizing emotion.

In the process of emotion recognition, the combinations of different channels have
different recognition results. In the future, we will explore how to use fewer EEG channels
to achieve higher classification accuracy. Moreover, the multi-category of the emotional
dimension is also worth studying.
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