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Germline hemizygous deletion of CDKN2A–CDKN2B locus
in a patient presenting with Li–Fraumeni syndrome
Sock Hoai Chan1,11, Weng Khong Lim2,3,11, Scott T Michalski4, Jing Quan Lim2, Nur Diana Binte Ishak1, Marie Met-Domestici1,
Cedric Ng Chuan Young2, Karen Vikstrom4, Edward D Esplin4, Jennifer Fulbright4, Mei Kim Ang1, Joseph Wee5, Kesavan Sittampalam6,
Mohamad Farid1, Stephen E Lincoln4, Koji Itahana3, Syafiq Abdullah7, Bin Tean Teh2,3,8,9,12 and Joanne Ngeow1,10,12

Li–Fraumeni syndrome (LFS) is a rare cancer predisposition syndrome usually associated with TP53 germline alterations. Its genetic
basis in TP53 wild-type pedigrees is less understood. Using whole-genome sequencing, we identified a germline hemizygous
deletion ablating CDKN2A–CDKN2B in a TP53 wild-type patient presenting with high-grade sarcoma, laryngeal squamous cell
carcinoma and a family history suggestive of LFS. Patient-derived cells demonstrated reduced basal gene and protein expression of
the CDKN2A-encoded tumour suppressors p14ARF and p16INK4A with concomitant decrease in p21 and faster cell proliferation,
implying potential deregulation of p53-mediated cell cycle control. Review of 13 additional patients with pathogenic CDKN2A
variants suggested associations of germline CDKN2A mutations with an expanded spectrum of non-melanoma familial cancers. To
our knowledge, this is the first report of a germline gross deletion of the CDKN2A–CDKN2B locus in an LFS family. These findings
highlight the potential contribution of germline CDKN2A deletions to cancer predisposition and the importance of interrogating the
full extent of CDKN2A locus in clinical testing gene panels.
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INTRODUCTION
Li–Fraumeni-like (LFL) syndrome is a variant of the Li–Fraumeni
syndrome (LFS), a rare autosomal dominant cancer predisposition
syndrome characterised by early onset of cancer and a broad
tumour spectrum.1 Patients with LFS/LFL typically present with
characteristic LFS-associated tumours (soft-tissue sarcoma,
osteosarcoma, breast cancer, brain tumour, leukaemia and
adrenocortical carcinoma). The majority of these patients have
germline mutations in TP53, a known susceptibility gene
associated with LFS/LFL.2 Studies have found that up to 20% of
LFS1,2 and about 60% of LFL3 families are wild-type for TP53.
Germline alterations of other genes such as CHEK2 and CDKN2A in
LFS/LFL families without TP53 mutations have been reported, but
their role as susceptibility genes as yet remains controversial.1,2

Here we describe a specific patient presenting with both
synchronous high-grade malignant peripheral nerve sheath
tumour (MPNST) and head and neck squamous cell carcinoma
(HNSCC). This patient met the diagnostic criteria4 for LFS, but was
wild-type for TP53. Additional sequencing and functional char-
acterisation were performed to investigate other susceptibility
genes potentially contributing to the cancers seen in this patient.

RESULTS
Case report
Patient is a 39-year-old male initially diagnosed with moderately
differentiated laryngeal squamous cell carcinoma (SCC) with

subglottic extension staged as T2N2bM0. Subsequent positron
emission tomography (PET) scan revealed a soft-tissue mass
adjacent to the right humeral head and another large mass in the
left iliopsoas extending to the left inguinal and femoral region,
which was diagnosed as grade III MPNST. Apart from tobacco
usage, the patient had no remarkable personal or medical record
suggestive of high-risk exposure to laryngeal SCC. As his clinical
presentation, together with known family history, met the
Chompret criteria4 for LFS (Figure 1a), clinical genetic testing
was performed for TP53. No pathogenic sequence or copy-number
changes were found. However, in this test, TP53 was part of a
larger gene panel, which revealed a hemizygous deletion of all
three p16INK4A exons of CDKN2A. Given the absence of a personal
or family history of melanoma, which might be expected in
individuals with CDKN2A (specifically p16INK4A) mutations, we
performed germline whole-genome sequencing (WGS) to further
elucidate the basis for this patient’s disease.

Whole-genome sequencing
Copy-number analysis of the WGS data revealed a constitutional
focal deletion on chromosome 9 of ~ 270 kb, resulting in a
hemizygous loss of the entire CDKN2A–CDKN2B locus and partially
truncating the flanking MTAP and CDKN2B-AS genes (Figure 1b).
This region is homozygously deleted in the tumour, as seen by the
near-loss of sequencing coverage in the MPNST tumour DNA
(Figure 1b). Quantitative PCR (qPCR) validated the deletions in the
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Figure 1. (a) Family pedigree of the LFL patient. Open and filled symbols represent unaffected and affected individuals respectively, with
diagnosis and age of onset indicated under the symbols. Diagonal lines represent deceased individuals. Proband is marked by the arrow.
(b) Copy-number analysis of sequenced patient germline DNA revealed focal deletion of the chromosome 9 encompassing the entire
CDKN2A–CDKN2B locus. Sequential zooming in of the deleted locus is visualised from top (global copy-number plot) to bottom (sequencing
coverage plot at the telomeric and centromeric breakpoints of locus). Genes affected by the deletion are represented by arrows. The
sequencing coverage illustrated hemizygous and homozygous loss of the region in germline (blue) and MPNST tumour (red) DNA,
respectively. cen, centromeric; tel, telomeric. (c) Real-time qPCR validated the CDKN2A–CDKN2B locus deletion. Coding regions for p14ARF,
p16INK4A and p15INK4B were represented by CDKN2A exon 1b, 1a and CDKN2B exon1, respectively. The reduced gene dosage ratio in patient
germline and tumours (MPNST, laryngeal SCC) DNA compared with a pool of three healthy controls reflected the hemizgygous and
homozygous loss of this locus. Each data point is a mean of quintuplicates with s.e. presented as error bars. P value was computed using
Student’s t-test. **Po0.01, ***Po0.001, ****Po0.0001.
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patient’s germline and tumour DNA, demonstrating a gene
dosage ratio of 0.5 and 0.0, respectively, compared with healthy
controls (Figure 1c). In addition, analysis of WGS data and PCR

detection on the laryngeal SCC tumour (using PGMY-GP
consensus primers,5 data not shown) did not indicate ongoing
human papillomavirus infection.
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Molecular and functional analyses
Hemizygous loss of CDKN2A could affect dosage of two tumour
suppressor proteins encoded by the gene, p14ARF and p16INK4A.
To investigate, we compared the endogenous messenger RNA
and protein expression levels in lymphoblastoid cell lines (LCLs)
derived from the patient versus healthy controls. Reverse
transcription qPCR analysis confirmed that basal gene expression
of p14ARF and p16INK4A was 50% lower than in healthy controls
(Figure 2a, Po0.001 and Po0.01, respectively). Immunoblot
analysis of these two proteins in the patient LCLs did not show
such a significant decrease; however, it should be noted that the
p14ARF and p16INK4A levels in the LCLs of healthy controls were
variable (Figure 2b). Nevertheless, immunohistochemical analysis
of both MPNST and laryngeal SCC tumours were clearly null for
p14ARF and p16INK4A (Figure 2c), consistent with the genomic loss
observed by WGS (Figure 1b).
A germline hemizygous loss of CDKN2A associated with lower

endogenous p14ARF suggests possible p14ARF haploinsufficiency,
which may affect p53-dependent cell cycle control even in the
absence of a TP53 mutation in the patient.6 The observed
significantly higher rate of cell proliferation in the patient LCL
supports the possibility of deregulated cell cycle control
(Figure 2d). To determine the potential consequences of
reduced p14ARF expression on the p53-dependent pathway,
we investigated the expression levels of p53, MDM2 and one
of the p53 downstream targets, p21. Whereas the messenger
RNA and corresponding protein expression levels of MDM2 and
p53 were inconsistent, p21 expression in the patient was
significantly reduced at both messenger RNA and protein levels
(Figures 2a and b). Interestingly, while all three proteins were
expressed in the laryngeal SCC tumour, MDM2 and p21 were not
detectable in the MPNST (Figure 2e).

DISCUSSION
To our knowledge, this is the first report of a hemizygous
CDKN2A–CDKN2B germline deletion in an LFS/LFL family, where
the proband presented with MPNST–HNSCC without a personal or
family history of melanoma. The CDKN2A–CDKN2B locus encodes
three tumour suppressor proteins—p14ARF, p16INK4A and
p15INK4B—all involved in cell cycle via p53 and retinoblastoma
pathways.7 p16INK4A and p15INK4B inhibit cyclin-dependent kinase
(CDK)-mediated phosphorylation of retinoblastoma, thereby
promoting G1 cell cycle arrest.7 On the other hand, upon
oncogenic stress, p14ARF is induced and inhibits E3 ligase activity
of MDM2 towards p53, thus leading to the stabilisation of p53 and
activation of p53-mediated cell cycle arrest. As p14ARF acts
upstream of p53, it is conceivable that the germline hemizygous
deletion of CDKN2A in our patient would phenocopy a hemi-
zygous loss of TP53 in the impaired capacity for arresting cell

proliferation. Indeed, it has been alluded that p14ARF haplo-
insufficiency may predispose to tumour formation.8 It has also
been demonstrated that p14ARF-null and p14ARF-hemizygous mice
are prone to earlier tumour development, especially of the
sarcoma, lymphoma, carcinoma and neural system tumours
spectrum,9–11 but to our knowledge, this patient is the first
human model that includes p14ARF deficiency. The consistent
observation of significantly reduced gene and protein expression
of the p53 downstream target p21 in our patient LCL suggests the
possible deregulation of p21 (Figures 2a and b), supporting this
hypothesis. We note the variability in protein expression among
the LCLs of healthy controls, probably due to the variable effects
of Epstein–Barr virus in the immortalisation of cell lines12 and are
thus interpreted with caution. However, the loss of p21 expression
in the MPNST revealed by immunohistochemical analysis
(Figure 2e) further supports our hypothesis.
The complete genomic loss of the CDKN2A locus together with

ablation of p14ARF and p16INK4A expression in both tumours
(Figures 1b and 2c) is consistent with the observations in
p14ARF-hemizygous mice, whereby loss of the residual wild-type
ARF was observed to accompany tumour development.9 Interestingly,
p21 and MDM2 were also undetectable in the MPNST with
only p53 staining positive in the tumour, unlike the strong
presence of all the three proteins in his laryngeal SCC. This differential
protein expression between the patient’s MPNST and laryngeal SCC
tumours suggests the driving mechanisms in tumorigenesis of these
tumours are potentially distinct. Presence of all three p53
pathway-associated proteins in the laryngeal SCC tumour suggests
that tumorigenesis was probably less dependent on the p53
pathway and could potentially be more driven by deregulation in
the retinoblastoma pathway associated with loss of p16INK4A.13 In
contrast, in the MPNST, expression of p21 appears to be abrogated
even in the presence of p53 (Figure 2e), suggesting deregulation of
p21 potentially could be indirectly mediated by p14ARF via other
transcriptional factors in a p53-independent manner14,15 and
phenocopy LFS. Although it is known that p14ARF predominantly
inhibits MDM2 thereby stabilizing p53 and promoting its activation,16

emerging body of evidences has shown that p14ARF can interact
with a host of proteins that may mediate the tumour suppressor
activities of p14ARF17 independent of p53.
Germline mutations in CDKN2A are associated with

familial melanoma and pancreatic cancer, and infrequently
with neurofibroma,18 HNSCC19 and neural system tumours
(astrocytoma and glioma).20 To date, CDKN2A deletions have
been reported in only a handful of kindreds displaying clustering
of specific tumour spectrum, all of which feature melanoma:
cutaneous malignant melanoma-neural system tumour,20–22

melanoma-HNSCC,19 melanoma-neurofibroma18 and malignant
melanoma.23,24 We reviewed the clinical records for a series of
cancer patients who were found to be positive through gene

Figure 2. (a) Lower basal messenger RNA (mRNA) expression of CDKN2A and p53 pathway genes in LCL of the LFL patient (III-2) compared with
a pool of three healthy controls. Fold change in mRNA was normalised against endogenous GAPDH and then compared against the mean of
healthy controls. Each data point is a mean of triplicates with s.e. presented as error bars. P value was computed using Student’s t-test.
*Po0.05, **Po0.01, ***Po0.001, ****Po0.0001. (b) Basal protein expression of p14ARF, p16INK4A, p53, MDM2 and p21 detected in whole-cell
lysates derived from LCLs of the LFL patient compared with three healthy controls. GAPDH was used as loading control. N1, N2 and N3
represent healthy controls; III-2 represents LFL patient with CDKN2A–CDKN2B deletion. (c) Tumour sections of the LFL patient’s MPNST
and laryngeal SCC were negatively stained for p14ARF and p16INK4A, implying loss of the protein expression in these tumours.
(I–III) Immunohistochemical (IHC) for p14ARF; (IV–V) IHC for p16INK4A. III and VI are tonsil and breast specimens, respectively, used as reference
for positive control of the antibody staining. (d) Cell viability assay of the LFL patient compared against a pool of three healthy controls
demonstrated significantly higher rate of cell proliferation. Assay was performed in quintuplicates. For healthy controls, LCLs from three
healthy volunteers were used and the averaged value from these three lines were represented. Error bars: s.e. P value was computed using
Student’s t-test. *Po0.05. (e) Differential MDM2 and p21 expression profiles in MPNST and laryngeal SCC tumours. These two proteins were
undetectable in MPNST but expressed in laryngeal SCC tumour, suggesting distinct mechanisms potentially involved in tumorigenesis of the
two tumours. However, p53 expression was observed in both tumours. (I–III) MPNST; (IV–VI) laryngeal SCC. (f) The tumour spectrum of
additionally reviewed 13 patient cases with CDKN2A pathogenic/likely pathogenic variants presented in a lollipop schematic. The frequency of
each phenotype is 1, unless indicated within the lollipop.
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panel testing for germline CDKN2A mutations to better under-
stand the phenotypic and mutation spectrum. In this series, there
were a total of 29 cancers reported among the 14 patients from 12
unique families with germline CDKN2A mutations. The most
common cancer was melanoma occurring in seven patients
followed by sarcoma, pancreatic and breast cancers each
occurring in two patients (Figure 2f, Supplementary Table 1).
The overall average age at first cancer diagnosis was 34 years (age
range 9–60 years) and the average age at diagnosis of first
melanoma was 27 years. Three patients had a history of multiple
melanomas and one developed pancreatic cancer 25 years after a
melanoma diagnosis. One homozygous individual presented with
Hodgkin’s lymphoma at age 12 years and had family history of
early-onset lymphoma, jaw tumours, pancreatic, breast and lung
cancers. A family history that would suggest hereditary cancer risk
was reported in 13 out of 14 patients. Importantly, 2 out of 14
patients met the Chompret criteria and 11 out of 14 reported a
family history of cancers characteristic of LFS/LFL spectrum.
A review by Baker et al. highlighted a rare contiguous deletion
in chromosome 9p21.3 obliterating ~ 25 genes including CDKN2A,
CDKN2B and MTAP in a melanoma-prone family with additional
tumour spectrum (neural system tumours, leukaemia, chondro-
sarcoma, pontomedullary PNET and cervical cancer),25 supporting
our findings that genetic alterations involving CDKN2A could
potentially underlie hereditary predisposition to cancers beyond
melanoma. In our patient with hemizygous germline deletion of
CDKN2A, it is prudent to extend melanoma screening given the
increased risk of melanoma in families with CDKN2A alterations.
Recent reports revealed that loss of MTAP, a gene flanking and

frequently co-deleted with CDKN2A, can render cancer cells
sensitive to PRMT5 inhibition, thus opening up opportunities to
exploit this vulnerability for treating tumours with MTAP–CDKN2A
co-deletion.26 For affected individuals with large deletions
involving CDKN2A and MTAP, such as our patient and the family
described by Baker et al.,25 the possibility of targeting this PRMT5
dependence raises potential for therapeutic strategies.
Currently, not all clinical testing panels include the entire

CDKN2A locus (encompassing both p14ARF and p16INK4A genes).
Our study suggests the importance of interrogating the full extent
of this locus as alterations to p14ARF may account for a small
subset of germline TP53 wild-type LFS/LFL cases and should be
included in clinical testing gene panels.
In summary, our study highlights the contribution of CDKN2A

germline deletion to cancer predisposition in LFS/LFL patients and
expands the non-melanoma phenotypic spectrum of cancers
associated with germline CDKN2A mutations. Clinicians should
consider genetic testing, including the entire CDKN2A locus,
in their patients with LFS/ LFL or those with personal history of
sarcoma, and family history of cancers beyond the traditional
spectrum of CDKN2A. To the best of our knowledge, this is also the
first report of a human p14ARF deficiency model, providing insights
into the potential role of p14ARF and deregulation of the p53
pathway in sarcoma tumour development.

MATERIALS AND METHODS
This study was approved by the SingHealth Centralised
Institutional Review Board (IRB 2011/826/B). Signed informed
consent was given by the patient.

Genetic analysis
Clinical genetic testing was performed at Invitae as previously
described.27 WGS of patient genomic DNA purified from
peripheral blood and MPNST tissue was performed on an Illumina
Hiseq2000 (Illumina Inc., San Diego, CA, USA) to a mean coverage
of 72 × , data analysed by in-house pipeline and deposited
in the European Nucleotide Archive (accession no. PRJEB13761).

The genomic deletion was validated by qPCR. For detailed
methods, refer to Supplementary Information.

Functional studies
LCLs established by Epstein–Barr virus immortalisation of
peripheral blood mononuclear cells of patient and healthy
volunteers were used for cell proliferation and expression studies.
Cell proliferation was assessed by viability assay using the
CellTiter-Glo Luminescent Cell Viability Assay kit (Promega,
Madison, WI, USA), whereas gene expression was quantitated
using messenger RNA extracted from LCLs by reverse transcription
qPCR. Protein expression was assessed by immunoblotting of
whole-cell lysates from LCLs. Detailed methods including reverse
transcription qPCR primers and immunoblotting antibodies are
described in Supplementary Information. Immunohistochemical
analysis was performed on 2-μm-thick slides sectioned from
patient tumours and scored by a pathologist.

Statistical analysis
P values were computed using two-tailed Student’s t-test and
were not adjusted for multiple testing.
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