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Qi Huang,1,3 Xiantong Zou,1,3 Yingli Chen,1 Leili Gao,1 Xiaoling Cai,1 Lingli Zhou,1 Fei Gao,2 Jian Zhou,2

Weiping Jia,2,* and Linong Ji1,4,*

SUMMARY

Chiglitazar (carfloglitazar) is a peroxisome proliferator-activated receptor pan-agonist presenting non-
inferior glucose-lowering efficacy with sitagliptin in patients with type 2 diabetes. To delineate the
subgroup of patients with greater benefit from chiglitazar, we conducted a machine learning-based
post-hoc analysis in two randomized controlled trials. We established a character phenomap based on
13 variables and estimated HbA1c decline to the effects of chiglitazar in reference to sitagliptin. Out of
1,069 patients, 63.3% were found to have greater reduction in HbA1c levels with chiglitazar, while
36.7% showed greater reduction with sitagliptin. This distinction in treatment response was statistically
significant between groups (pinteraction<0.001). To identify patients who would gain the most glycemic
control benefit from chiglitazar, we developed a machine learning model, ML-PANPPAR, which demon-
strated robust performance using sex, BMI, HbA1c, HDL, and fasting insulin. The phenomapping-derived
tool successfully identified chiglitazar responders and enabled personalized drug allocation in patients
with drug-naı̈ve diabetes.

INTRODUCTION

Type 2 diabetes (T2DM) is a chronic and highly heterogeneous progressive condition and current guidelines have recommended a shift

from a uniform treatment approach to personalized therapeutic strategies. Precision medicine has emerged as a promising patient-

centered concept with the capacity to enhance the management of T2DM by incorporating genetic, lifestyle, and environmental variables.1

Currently, studies in diabetes subclassification,2,3 therapy selection,4 and complications predictions5 have advanced the field of precision

therapeutics.

Identifying individuals with optimal responses to specific anti-diabetic drugs constitutes a crucial aspect of precision therapeutics.6 Re-

searchers have utilized genetic or clinical features to identify drug responders who are more likely to have better glucose control, fewer

adverse effects, or improved cardiorenal outcomes with sulfonylureas,4 dipeptidylpeptidase 4 (DDP4) inhibitors,7 glucagon-like peptide 1

(GLP-1) receptor agonists,8 or sodium-glucose cotransporter 2 (SGLT2) inhibitors.5,8 The conventional approach to identifying these potential

features involves conducting a one-variable-at-a-time subgroup analysis in randomized controlled trials or real-world databases, but results

may have limited statistical power and generalizability.9,10 Instead, a shift towardmachine learning technologies, such as gradient forest anal-

ysis11 and phenomapping12 has shown superiority in the identification of complex patterns and phenotypes. These methods are expected to

shape precision medicine in diabetes, although substantial applications and validations are required.

Chiglitazar (carfloglitazar) is a new pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist known for its substantial glucose-

lowering effects,13 with a unique capacity to improve insulin sensitivity and mitigate dyslipidemia.14–16 In a recent phase 3 trial ChiglitAzar

Monotherapy with Sitagliptin (CAMS), chiglitazar demonstrated similar glucose-lowering efficacy when compared to sitagliptin,17 and it

was approved by the Chinese FDA as an anti-diabetic drug in type 2 diabetes for individuals who did not attain satisfactory glycemic control

through lifestyle therapy.

Chiglitazar and sitagliptin operate through distinct physiological mechanisms to achieve their glucose-lowering effects. Therefore, we hy-

pothesized the existence of a subpopulation that may exhibit a more favorable response to chiglitazar compared to sitagliptin. The applica-

tion of precision medicine may assist in identifying these individuals and revealing their potential clinical characteristics. In our study, we

aimed to develop machine learning-based tools for the personalized assessment of the glucose-lowering efficacy of chiglitazar and identify

the subgroup that could gain greater benefits from its use. It may provide valuable insights into the precision selection of chiglitazar in clinical

practice.
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RESULTS

Baseline characteristic of the study population

We included a total of 1,069 patients who had received at least one dose of either chiglitazar (N = 822, 76.9%) or sitagliptin (N = 248, 23.1%)

(Table S1). In the overall population, the mean age was 51.0G 9.6 years, with 62.7% beingmale. The mean HbA1c level was 8.6G 0.7% (70G

7.6mmol/mol), and themean duration of diabetes was 1.4 years. No significant differences in baseline characteristics were observed between

the two treatment groups.

At week 24, the least-squaresmean of HbA1cwas 1.43% (95%CI 1.35 to 1.50) [15.6mmol/mol (14.7–16.4)] with chiglitazar and 1.38% (95%CI

1.24 to 1.51) [15.0mmol/mol (13.5–16.5)] with sitagliptin (p > 0.05). The proportions of patients reachingHbA1c <7.0% (53mmol/mol) were also

similar between the two treatment groups (Figure S1).

Individualized treatment effect of the study population

Figure 1 displays a visual representation of the topological structure of the entire participant cohort. The allocation of treatments appeared to

be evenly distributed across the sample (Figure 1A) However, there was clustering in relation to characteristics such as sex, age, HbA1c, and

BMI (Figures 1B–1E). These clusters reflect the inherent heterogeneity within the treatment groups with regard to these demographic

features.

We derived the estimation of the difference in the HbA1c decline between chiglitazar and sitagliptin from individualized weighted

models. The average relative treatment effect of the whole population was 0.06% (95%CI 0.05 to 0.07) [0.65 mmol/mol (0.55–0.76)] (Fig-

ure S2A). No significant correlation was observed between pre-designated treatment allocation and the estimated treatment effects

(Figure S2B).

A B

C D

E

Figure 1. Phenotypical architecture of the study population

(A–E) The graphs illustrate the distribution of patient characteristics, such as (A) treatment arm allocation, (B) sex, (C) age, (D) HbA1c, and (E) BMI within the

topological space representing all patients (N = 1069) in study. Each point represents an individual participant, and the distance between points is

determined by the Gower distance, calculated from pre-randomization features, with shorter distances indicating greater similarity.

ll
OPEN ACCESS

2 iScience 26, 108195, November 17, 2023

iScience
Article



Glucose-lowering efficacy and secondary outcomes

With the use of the phenomapping-derivedmodel, we identified 677 (63.3%) patients as the high-benefit group (HBG) and 392 (36.7%) as the

low-benefit group (LBG). Patients of HBG were more likely to be old, female, had a higher BMI, lower HbA1c, worse lipid profile, and higher

levels of insulin resistance (Table S2). The distribution of the HBG and LBGwas heterogeneous on the phenomap (Figure 2A). Within the LBG

(Figure 2B), the least-squares mean (95% CI) decline of HbA1c of chiglitazar and sitagliptin was 1.11% (0.96–1.25) [12.1 mmol/mol (10.5–13.6)]

and 2.04% (1.82–2.26) [22.2 mmol/mol (19.8–24.6)] (relative treatment effect of chiglitazar versus sitagliptin: �0.93% (�1.18 to �0.68)

[-10.1 mmol/mol (�12.9 to �7.4)]); In the HBG (Figure 2C), the corresponding figure was 1.59% (1.52–1.68) [17.3 mmol/mol (16.6–18.3)] and

0.93% (0.78–1.08) [10.1 mmol/mol (8.5–11.8)] (relative treatment effect: 0.66% (0.50–0.83) [7.2 mmol/mol (5.5–9.0)]). There was a significant

interaction between treatment effect and subgroups (p < 0.001, Figure 2D). Chiglitazar demonstrated a higher proportion of individuals

achieving an HbA1c level below 7.0% (53 mmol/mol) and a greater reduction in fasting plasma glucose (FPG) within the HBG (Figures 2E

and 2F).

In terms of secondary outcomes, there was no significant heterogeneity observed in changes in HOMA-IR, HDL, and TG at week 24 (Fig-

ure S3), although chiglitazar reducedHOMA-IR in a greatermagnitude in theHBG. In the safety analysis, a mild increase inmild edema events

and a larger decrease in hematocrit were observed with chiglitazar treatment in the HBG (Table S3).

To explore whether patients respond differently to different doses of chiglitazar, we conducted the analysis in patients taking two dosages

of chiglitazar, and the phenotypical architecture of patients is presented in Figure S4. Out of 822 participants, the majority (N = 635, 77.6%)

showed a greater decline in HbA1c with 48mg chiglitazar in comparison with 32mg (p < 0.001, Figure 3). Participants favoring 48mg dose had

older age, similar levels of HOMA-IR, lower HbA1c and FPG and a higher level of LDL at baseline (Table S4).

Identifying responders of chiglitazar using machine learning

We constructed an XGBoost model using 13 baseline features in all patients taking chiglitazar to identify chiglitazar responders, who were

patients in the HBG assessed by phenomapping. SHAP analysis showed sex, BMI, fasting insulin, HbA1c, and HDL were the dominating

A B C

D E F

Figure 2. The glucose-lowering efficacy between chiglitazar and sitagliptin in low-benefit group (LBG) and high-benefit group (HBG)

(A) The distribution of patients in the LBG and HBG within the topological space representing all patients (N = 1069) in the study.

(B) The least-squares mean change of HbA1c from baseline to 12 weeks and 24 weeks in LBG, adjusted by baseline stratum and baseline HbA1c.

(C) The least-squares mean change of HbA1c from baseline to 12 weeks and 24 weeks in LBG, adjusted by baseline stratum and baseline HbA1c.

(D) The least-squares mean and 95% CI difference of HbA1c between chiglitazar and sitagliptin at 24 weeks in LBG and HBG, adjusted by age, sex and baseline

HbA1c.

(E) The percentages of patients reaching HbA1c<7% (53 mmol/mol) at week 24 in LBG and HBG.

(F) The least-squares mean and standard error of change in FPG in HBG and LBG, adjusted by baseline stratum and baseline FPG. ***, p < 0.001 compared to the

sitagliptin arm at the specified time point. The p value for interaction was determined by assessing the treatment-by-group interaction term. Error bar in (B) and

(C) shows standard error of the mean.
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features (Figure 4A). We rebuilt a model calledML-PANPPAR which incorporated these 5most important features. This model demonstrated

excellent discrimination (ROC-AUC 0.933 [95%CI 0.905 to 0.962]) and ideal calibration (p = 0.460 for Hosmer-Lemeshow test) in the internal

validation dataset (Figures 4B and 4C). The optimal cut-off value of 0.726 had a high sensitivity of 0.896 and a specificity of 0.830. This imple-

ment showed high net benefits across the range of prevalence of chiglitazar responders (Figure 4D).

We hypothesized sexwas an important feature in determining a patient’s response to chiglitazar due to the gender disparity betweenHBG

and LBG and the high SHAP value of sex in the machine learning analysis. We estimated the relative treatment effect by sex in all participants

before and after matched by sex using the IPTWmethod (Table S5). There was a significant interaction between sex and treatment effect only

after matching (p = 0.031), and the positive effect of chiglitazar versus sitagliptin was only observed in females (Figure S5).

DISCUSSION

Our study implemented a phenomapping-derived tool to unveil the intricate clinical characteristics associated with drug responses and iden-

tify subpopulations exhibiting an improved response to the pan-PPAR agonist chiglitazar. We developed a machine learning-based tool

ML-PANPPAR for clinical application.

Machine learningmethods have gained extensive success in uncovering responders to anti-diabetic treatments. Our analysis added a new

dimension to the understanding of the response to chiglitazar by discovering a comprehensive subpopulation that had better glycemic re-

sponses. The conventional method to dissect drug-responsive subpopulation is to conduct one-variable-at-a-time subgroup analysis, how-

ever, the conclusion used to be weakened due to the limited statistical power.9,10 The false discovery rate of heterogeneous treatment effect

in exploratory subgroup analysis can reach up to 75% and even 33% in confirmatory subgroup analysis.18 Predictive approaches offer a

solution by using multiple variables to predict drug responses for each individual.19 Nonetheless, this approach still presents challenges in

obtaining a robust estimation, particularly when taking into account the abundance of variables and their potential interaction effects.20

Instead, phenomapping-based approach addresses this challenge by directly estimating the treatment effect differences between two drugs,

A B

C D E

Figure 3. The glucose-lowering efficacy between chiglitazar 48 mg and 32 mg in 32 mg favoring group and 48 mg favoring group

(A) The distribution of patients taking chiglitazar 32 mg and 48 mg within the topological space representing all patients taking chiglitazar (N = 812) in study.

(B) The distribution of patients in 32mg favoring group and 48mg favoring groupwithin the topological space representing all patients taking chiglitazar in study.

(C) The relative decline of HbA1c between chiglitazar 48 mg and chiglitazar 32 mg at 24 weeks in 32 mg favoring group adjusted by age, sex and baseline HbA1c.

(D) The relative decline of HbA1c between chiglitazar 48 mg and chiglitazar 32 mg at 24 weeks in 48 mg favoring group adjusted by age, sex and baseline HbA1c.

(E) The least-squares mean and 95% CI difference of HbA1c between chiglitazar 48 mg and 32 mg in 32mg favoring group and 48mg favoring group, adjusted by

baseline stratum and baseline HbA1c. ***, p < 0.001 compared to arm chiglitazar 32 mg at the specified time point. The p value for interaction was determined by

assessing the treatment-by-group interaction term. Error bar in (C) and (D) shows standard error of the mean.
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avoiding the necessity to assess interactions between treatments and covariates.21 Furthermore, the robustness of the estimations was

improved through the incorporation of parameter weights assigned to each participant, which were calculated based on information from

all other participants.22

The phenomap in our study suggested a complex phenotypical structure among participants. The clustered distributions of demographic

features, including glycemic and lipid profiles, suggested potential differential effects on drug responses. We explored features affecting

drug response by comparing HBG and LBG and found females, higher BMI individuals, those with lower HDL, and higher insulin resistance

markers had better responses to chiglitazar. This is in concordance with other clinical trial data that a greater long-term response to PPARg

agonist was observed in females with obesity.23,24 It should be noted that there appeared to be a tendency for a higher incidence of edema in

the high-benefit group, although the majority of cases were mild. Although sitagliptin and chiglitazar achieved similar glycemic reductions

overall, they employed distinct pharmacological mechanisms to lower blood glucose. Chiglitazar activates PPARs, forms complexes with reti-

noid X receptors (RXRs) and binds to specific DNA sequences known as PPAR response elements (PPREs), leading the upregulation of genes

involved in insulin sensitization and inflammation such as angiopoietin-like 4 (ANGPTL4),25 pyruvate dehydrogenase kinase 4 (PDK4),26 and

                                   

     

A B

C D

Figure 4. Variable selection and model performance of ML-PANPPAR to predict patients with high glucose response to chiglitazar

(A) The SHAP summary plot reflecting the importance of 13 variables in the XGBoost model. The y axis indicates the predictors ranking in descending order of

importance. The y axis ranks the predictors in descending order of importance, while the x axis indicates the impact on the model output. Larger values denote a

more significant positive influence on the prediction. The legend employs a gradient color scheme to represent different values of each variable. The points

within the graph correspond to individual study participants. Among all the variables in the model, the top 5 features were selected to construct the ML-

PANPPAR prediction model.

(B) Receiver operating characteristic of ML-PANPPAR.

(C) Calibration plot of ML-PANPPAR: The gray line represents the ideal calibration, while the purple line depicts the actual calibration. The discrepancy between

the actual and ideal calibration was assessed using the Hosmer-Lemeshow test, with p > 0.05 indicating no significant difference.

(D) Decision curve illustrating the net benefit of ML-PANPPAR at a given threshold probability (the probability of patients falling into the high-benefit group). The

dashed line represents the net benefit when no patients are intervened with, while the gray line assumes the net benefit when intervening with no patients. The

purple line assumes the net benefit usingML-PANPPAR. BMI, bodymass index. FINS, fasting insulin. HbA1c, glycemic hemoglobin. HDL, high-density lipoprotein

cholesterol. TG, triglycerides. eGFR, estimated glomerular filtration rate. FFA, free fatty acids. LDL, low-density lipoprotein cholesterol. TC, total cholesterol.
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retinol-binding protein 4 (RBP-4).27 In contrast, sitagliptin increases the levels of endogenous incretin hormones like GLP-1, leading to

enhanced insulin secretion.28 Sitagliptin has a modest effect on improving insulin resistance,29 and a previous study identified a negative as-

sociation between insulin resistance and glycemic response to DPP-4 inhibitor therapy.7 Similar to our study, a propensity score-matched

analysis on a retrospective cohort found that in patients with adequate HbA1c control, TZD users had significantly better insulin sensitivity

compared with DPP-4 inhibitor users, whereas DPP-4 inhibitor users secreted more insulin than TZD users.30 Our study indicates that, in pa-

tients with obesity and higher insulin resistance, chiglitazar may be a preferable choice to consider over sitagliptin.

Our exploratory analysis revealed a significant interaction between sex and treatment response after IPTWmatching, suggesting that sex

is a crucial factor in determining drug efficacy. The sex-specific effect observed in this context could potentially be elucidated by the influence

of sex hormones on PPARs. Estrogen has a positive effect on the expression and function of PPARg in vitro but testosterone and dihydrotes-

tosterone do not have the same impact.31 There was a paradoxical influence of androgen levels, where testosterone deficiency in men

increased insulin resistance and visceral adipose tissue, while low androgen levels in women reduced risk of insulin resistance and adipose

accumulation.32 It was also proposed that PPAR agonists may have a slower clearance rate in female humans as a result of gender differences

in the expression of CYP2C8, a key enzyme in the metabolism of PPARg agonists.33 Further research is still needed to disclose the sex

disparity.

A pharmacokinetics study indicated that a daily dose above 48 mg provided sufficient activation of all PPAR subtypes, resulting in more

balanced metabolic effects.15 Our analysis on 32 mg and 48 mg of chiglitazar also revealed most participants may benefit from a higher dose

and around 20%of participantsmay obtainmore benefit with a smaller dose. Participants favoring 48mg showed lower HbA1c and higher LDL

levels, although there was no difference between BMI, insulin resistance, and triglycerides. This was consistent with the CAMP study that in

participants with baseline HbA1c>8.5% (69 mmol/mol), HbA1c declined similarly in between two doses and in another subgroup with baseline

HbA1c<8.5% (69mmol/mol), 48mg performedmuch better than 32mg in glucose lowering.14 Although the relation between PPAR activation

pattern and glucose efficacy remained unknown, the baseline glucose and lipid level may affect the patient’s response to different dosages of

chiglitazar, implying the need for precision drug therapy. Given that a substantial proportion of patients (68%) who exhibited a preference for

32 mg of chiglitazar were anticipated to be LBG (Table S4), whose primary choice would be sitagliptin, we opted not to develop a machine

learning-based predictive model for identifying different doses.

We constructed theML-PANPPAR tool with the aim of simplifying the identification of individuals whomay respond favorably to chiglitazar

treatment. Themodel provided new insights into the complex underlyingmechanisms that contribute to glycemic response. It provided reas-

surance that factors such as sex, BMI, HbA1c, HDL levels, and insulin levels, which are indicative of insulin resistance, played a role in deter-

mining responses to chiglitazar.Weminimized the predicting variables ofML-PANPPAR for clinical usability, and our algorithmdemonstrated

excellent internal performance. For patients who experienced inadequate glycemic control despite diet and exercise, ML-PANPPAR is the

first algorithm to predict their glycemic responses to chiglitazar based on sex, BMI, HbA1c, fasting insulin, and HDL level prior to treatment.

This could assist healthcare providers in making precise treatment decisions for this medication in their daily clinical practice. The ML-

PANPPAR model was publicly available on http://diabetesmodels.com:9001/index?type=3.

In conclusion, our study emphasizes the potential of chiglitazar to improve glycemic control within a distinct subgroup of type 2 diabetes

characterized by insulin resistance and obesity. Themachine learningmodel ML-PANPPAR, derived from phenomapping, emerges as a valu-

able tool for precision drug selection to decide whether a patient should initiate chiglitazar or sitagliptin. However, further validation through

evidence-based external studies is imperative for the clinical implementation of ML-PANPPAR in the future. Our research represents a sig-

nificant stride in promoting the integration of artificial intelligence into the realm of precision pharmacotherapy for type 2 diabetes.

Limitations of the study

There are some limitations in our study. Firstly, we were only able to replicate our results in CMAS and CMAP studies without external vali-

dation.Our results should be validated inmore high-quality randomized trials with long-term endpoints. Moreover, our analysis only recruited

Chinese patients with drug-naı̈ve type 2 diabetes without taking other medications, which limited its generalizability to other races and

patients on different therapeutic regimes. Our study only compared the treatment effect with sitagliptin and further comparison with other

anti-diabetic agents especially metformin, glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors are

necessary. Then, our study only used phenomapping-derived method to estimate the treatment effect, other machine learning methods,

such as gradient tree analysis and causal forest were untapped. The features used in our model were limited, making it challenging to identify

other biological determinants of glycemic responses. For example, a study has indicated that the addition of DPP4 inhibitors might signifi-

cantly improve oxidative stress, which could be a key pathway for enhancing b-cell responsiveness34 and some hormone levels, such as serum

apelin35 andprolactin36, would affect the glycemic response tometformin.We could use genomic,metabolomic, and proteomic variables as

predictors to achieve a precise estimation of drug responses in the future. Finally, the phenotypical interrelationship among participants was

complex to interpret and explainability should be improved.
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com:9001/index?type=3).
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Study design and participants

ChiglitAzar Monotherapy with Placebo (CAMP) and ChiglitAzar Monotherapy with Sitagliptin (CAMS) study were two randomized, double-

blinded, multicenter clinical trials of chiglitazar conducted in China. Both trials recruited Chinese participants of either gender. Patients with

type 2 diabetes who were aged 18–70 years, with a BMI range of 18.5–35.0 kg/m2, and had insufficient glycemic control (HbA1c of 7.5–10.0%

[58–86 mmol/mol]) in spite of the management of strict diet and exercise from 2014 to 2016. Eligible participants were randomly assigned in

1:1:1 to chiglitazar 32 mg, chiglitazar 48 mg or placebo in CAMP and chiglitazar 32 mg, chiglitazar 48 mg or sitagliptin 100 mg in CAMS for

total 24 weeks. Trials were registered with ClinicalTrials.gov (identifiers: NCT02121717 for CAMP, NCT02173457 for CAMS) and the details of

study design and sample size calculation have been published previously.14,17

In our study, we combined individual-level data from the intent-to-treat analysis of two trials. The eligibility criteria were patients allocated

to chiglitazar or sitagliptin. No patients had prior medication for lipid-lowering or glucose-lowering drugs, and no patient received combined

therapy during the trial. Patients without complete information on predictors, such as lipid profile or fasting insulin at baseline were excluded

(N = 3, 2 from sitagliptin arm and 1 from chiglitazar), and consequently, a total of 1069 participants were included in the final analysis

(Figure S6).

No informed consent was required for this post-hoc analysis and information were de-identified in advance. Ethical approvals were

approved by Ethical Committees at each study center, and complied with the principles of Good Clinical Practice and the Declaration of

Helsinki.

Candidate variables

Baseline variables including demographic information (such as age, sex, body mass index [BMI], and diabetes duration), and clinical lab-

oratory assessments relevant to glucose metabolism (such as glycosylated hemoglobin [HbA1c], fasting plasma glucose [FPG], and fast-

ing insulin), lipid profile (total cholesterol [TC], high-density lipoprotein cholesterol [HDL], low-density lipoprotein cholesterol [LDL],

triglycerides [TG], and free fatty acids [FFA]), and renal function (eGFR), were recorded as candidate predictors. Other baseline variables

such as body weight, homoeostasis model assessment for insulin resistance and beta-cell function (HOMA-IR and HOMA-b, calculated

using FPG and fasting insulin) were recorded for outcome analysis. During the follow-up period, HbA1c was recollected at week 12 and

24 while other variables were only recollected at week 24. Missing data were imputed using the last observation carried forward (LOCF)

method.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R software (version 4.2.2) R Foundation for Statistical Computing RRID: SCR_001905

JAVA software (version 8) Oracle https://www.java.com/

ML-PANPPAR This paper http://diabetesmodels.com:9001/index?type=3
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Outcomes

The primary outcomewas the change in HbA1c from baseline at week 24. Other glucose-lowering outcomes consisted of the change in HbA1c

from baseline to week 12, participants reaching HbA1c<7% (53 mmol/mol) at week 24, and the change from baseline in FPG at week 24. Sec-

ondary endpoints included the changes in HOMA-IR, HDL, and TG from baseline at week 24. Safety endpoints included the incidence of

hypoglycemia, edema and bone fracture, and changes in body weight and hematocrit at week 24.

Phenomap method

Approaches for estimation of individualized treatment effect in our article were referred from the article by Oikonomou et al.12,22 Standard-

ization of variables was performed, and phenotypic distances between individuals were quantified employing Gower’s method, which takes

into consideration both numerical and categorical baseline characteristics. This method yielded a measure of dissimilarity between any two

sample points, with a lower distance signifying greater similarity between the individuals.34 To visually represent the distribution of participant

characteristics, we employed a two-dimensional projection technique and generated a color-coded phenomap using the Uniform Manifold

Approximation and Projection (UMAP)method,35 which best preserves the global data structure thereby allowing for the interpretation of the

phenotypic distribution of patients within a topological space.

Treatment effect estimation

The individualized treatment effect was defined as the differences in HbA1c change at week 24. We employed personalized weighted least-

squares regression to estimate the relative treatment effect between chiglitazar and sitagliptin, with baseline HbA1c, age, and sex as cova-

riates. Weights were estimated based on the exponential function of (1 – Gower’s distance), so higher weights were assigned to pairs of

participants exhibiting closer similarity, while pairs displaying greater dissimilarity received penalized weights. To determine the optimal

power metric for the exponential function, we conducted a comparison of the estimated treatment effect using unweighted regression

against the nearest neighbors of each participant, considering various percentages (3%, 5%, 10%, and 20%) of the total sample size as refer-

ences. The power coefficient that exhibited a robust estimation, characterized by both high correlation and low variation when compared to

the references, was selected (Power = 20, Figure S7).

Two distinct subgroups were created based on the individualized treatment effect. The high-benefit group (HBG) consisted of individuals

exhibiting a positive relative treatment effect (characterized by a greater decline in HbA1c with chiglitazar compared to sitagliptin), while the

low-benefit group (LBG) comprised individuals demonstrating the opposite effect.

Exploratory analysis

We also conducted an exploratory analysis to identify patients who exhibit greater glucose-lowering efficacy with different doses of chigli-

tazar. 412 patients with chiglitazar 32mg and 410 patients with chiglitazar 48mg were enrolled into analysis to calculate the relative treatment

effect and divided into subgroups favoring the use of either 32 mg or 48 mg.

Construction of ML-PANPPAR

To facilitate the efficient identification of high-benefit group in clinical practice, we trained a model with extreme gradient-boosting

(XGBoost). Data was randomly divided into the derivation cohort (N = 748) and the validation cohort (N = 321) in a 7:3 ratio. Hyperparameters

were tuned using 10-fold cross-validation to maximize the average area under the receiver-operating characteristic curve (ROC-AUC). The

preliminary model included variables such as age, sex, BMI, diabetes duration, HbA1c, FPG, fasting insulin, TC, HDL, LDL, TG, FFA, and

eGFR. The contributions of each variable to the model were then estimated using the SHAP (Shapley Additive Explanations) values, and

the top 5 contributors were retrained to form the final model, ML-PANPPAR.36 Details on hyperparameter calibration of ML-PANPPAR are

listed in Table S6.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were presented as mean (SD) for continuous variables and as count (percentage) for category variables. Baseline characteristics were

compared using Student’s t test for continuous data and c2 test for categorical data. The characteristics, estimated glucose-lowering trajec-

tories, and relative outcomes were described within the subgroups derived from phenomap.

For all primary and continuous secondary endpoints, we applied analysis of covariance (ANCOVA) models with treatment and baseline

HbA1c stratum (<8.5% [69 mmol/mol] or R8.5% [69 mmol/mol]) as fixed effects, and baseline corresponding value (e.g., FPG, HOMA-IR,

HDL, TG, weight) as covariate. The p value for interaction was obtained by assessing the interaction between treatment and subgroup. Sec-

ondary endpoints were controlled for multiple comparisons using the false discovery rate (FDR) method.

The performance of ML-PANPPAR was evaluated in the validation cohort using receiver operating characteristic curve-area under the

curve for discrimination, calibration plot and Hosmer-Lemeshow test for calibration, and decision curve analysis to compare the net benefit

of using the model versus treating all patients with chiglitazar or sitagliptin.37
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To explore the influence of sex on the response to chiglitazar, we compared the relative treatment effect between males and females

within the original study population. Additionally, we employed the inverse probability treatment weighting (IPTW) method to assess the as-

sociation between sex and the efficacy of chiglitazar in lowering glucose levels.

Software packages

All statistical analysis was conducted using R version 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria). The method for Dimen-

sionality reduction was conducted using package UAMP. The machine learning models were constructed using package caret. All statistical

tests were two sided, with a p value of <0.05 was regarded as significance.
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