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Abstract
Electrogastrography (EGG) is the noninvasive electrophysiological technique used 
to record gastric electrical activity by means of cutaneous electrodes placed on the 
abdomen. EGG has been so far mostly used in clinical studies in gastroenterology, 
but it represents an attractive method to study brain-viscera interactions in psycho-
physiology. Compared to the literature on electrocardiography for instance, where 
practical recommendations and normative data are abundant, the literature on EGG 
in humans remains scarce. The aim of this article is threefold. First, we review the 
existing literature on the physiological basis of the EGG, pathways of brain-stomach 
interactions, and experimental findings in the cognitive neuroscience and psycho-
physiology literature. We then describe practical issues faced when recording the 
EGG in young healthy participants, from data acquisition to data analysis, and pro-
pose a semi-automated analysis pipeline together with associated MATLAB code. 
The analysis pipeline aims at identifying a regular rhythm that can be safely attrib-
uted to the stomach, through multiple steps. Finally, we apply these recording and 
analysis procedures in a large sample (N = 117) of healthy young adult male and 
female participants in a moderate (<5 hr) to prolonged (>10 hr) fasting state to es-
tablish the normative distribution of several EGG parameters. Our results are overall 
congruent with the clinical gastroenterology literature, but suggest using an electrode 
coverage extending to lower abdominal locations than current clinical guidelines. 
Our results indicate a marginal difference in EGG peak frequency between male 
and female participants, and that the gastric rhythm becomes more irregular after 
prolonged fasting.
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1 |  AN INTRODUCTION TO 
ELECTROGASTROGRAPHY

1.1 | The electrogastrogram and its usage

“Electrogastrography” refers to the monitoring technique 
of gastric myoelectrical activity from cutaneous electrodes 
placed on the abdomen (Figure 1a), which generates the elec-
trogastrogram (EGG). The EGG has so far mostly been used 
for clinical purposes in gastroenterology (Koch & Stern, 2004; 
Parkman, Hasler, Barnett, & Eaker,  2003; Riezzo, Russo, 
& Indrio,  2013; Yin & Chen,  2013), but represents an in-
teresting tool in psychophysiology (Stern, Koch, Levine, & 
Muth, 2007; Stern, Koch, Stewart, & Vasey, 1987). The EGG 
reflects the combination of the slow electrical gastric rhythm, 
constantly generated in the stomach wall, and of the more 
transient smooth muscle activity generating gastric peristal-
tic contractions. The main function of the stomach is to mix 
and grind food during digestion. The gastric rhythm sets the 
frequency of smooth muscle contractions and controls their 
propagation. The gastric rhythm is constantly generated in 

the stomach wall, even in the absence of muscular contrac-
tion (Bozler, 1945), or when the stomach is completely dis-
connected from the central nervous system (Suzuki, Prosser, 
& Dahms,  1986). Its normal frequency in healthy humans 
is around 0.05  Hz or three cycles per minute, that is, one 
cycle every 20  s. EGG frequency differs in other species 
(Mice: 2–5 cpm [Hou, Yin, Liu, Pasricha, & Chen, 2005]; 
Pigs: ~3.3 cpm [Květina et al., 2010; Varayil et al., 2009]; 
dogs: 4–6.5  cpm [Andreis et  al.,  2008; Mintchev, Otto, & 
Bowes,  1997]; macaque monkeys: ~3.6  cpm [Linsong, 
Huailin, Xitai, Xiaojin, & Pingan, 1989]).

The definition of normogastria, or normal frequency range 
of the gastric rhythm in humans, varies depending on authors 
(for review, Chang, 2005; Parkman et al., 2003). Along with a 
number of studies (e.g., Chen & McCallum, 1992; Chen, Zou, 
Lin, Ouyang, & Liang,  1999; Lin,  1999; Parkman, Harris, 
Miller, & Fisher,  1996; Parkman et  al.,  2003; Pfaffenbach, 
Adamek, Kuhn, & Wegener,  1995; Riezzo, Chiloiro, & 
Guerra, 1998) and guidelines (e.g., Yin & Chen, 2013), we 
adopted the 2–4 cpm cycles per minute (cpm) range. A nar-
rower range has also been advocated (e.g., 2.5 to 3.6 cpm in 

F I G U R E  1  (a) Recording setup. Cutaneous electrodes are placed on the left abdomen of the participant in a grid-like arrangement and 
connected to DC amplifiers. Ref. and Gnd correspond to Reference and Ground, respectively. (b) Example of raw data in one participant, where 
the gastric rhythm is visible as cycles of ~20 s length. Respiratory cycles are much faster (typically 3 to 5 s length). Heartbeats appear as transients 
every ~0.8 s (inset). EGG amplitude in this participant is close the median value observed in 100 participants. (c) Power spectrum at each of the 
seven recording electrodes. Peak frequency is indicated by a star on the channel with the largest power (black line). The white area corresponds to 
the normal frequency range of the EGG, also known as normogastria (2 to 4 cpm or 0.033 to 0.066 Hz). Inset: Electrode layout with the location 
of the electrode displaying the largest spectral power marked with a blue star. (d) Spectral density over a wider frequency range at the selected 
channel, revealing the spectral signatures of the respiratory (~0.3 Hz) and cardiac rhythms (~1.5 Hz)
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Koch & Stern, 2004), and a number of studies used ranges 
closer to this definition (e.g., Abell & Malagelada,  1988; 
Gianaros, Quigley, & Mordkoff, 2001; Homma et al., 1999; 
Koch, Bingaman, Tan, & Stern,  1998; Koch, Hong, & 
Xu,  2000; Meissner, Muth, & Herbert,  2011; Muth, Koch, 
Stern, & Thayer, 1999; Stern, Vasey, Senqi, & Koch, 1991; 
Vianna, Weinstock, Elliott, Summers, & Tranel, 2006).

An example of a raw signal obtained from cutaneous 
abdominal electrodes is shown in Figure 1b. In this good 
quality recording, the gastric rhythm is visible to the naked 
eye. In the same raw data, the faster rhythms of respira-
tion (typically around 0.2–0.4  Hz) (Kaiho, Shimoyama, 
Nakajima, & Ochiai, 2000) and heartbeats (1–1.7 Hz) can 
be observed, superimposed on the gastric rhythm (Abell 
& Malagelada,  1988; Stern et  al.,  1987). The spectral 
analysis of the EGG reveals a sharp peak around 0.05 Hz 
(Figure 1c). The EGG spectral signature is markedly dis-
tinct from those of respiration and heart rate, that peak 
at much higher frequencies (Figure  1d). Note that a har-
monic of the gastric rhythm can sometimes be observed 
(Figure 1d) when the EGG departs from a perfect sine wave 
(Verhagen, Van Schelven, Samsom, & Smout, 1999).

Historically, the EGG was independently discovered by 
Alvarez,  1922; Davis, Garafolo, & Kveim,  1959; Tumpeer 
& Blitsten,  1926. While this recording technique received 
little attention for decades, computerized analysis rekindled 
interest in the 1990s in the field of gastroenterology (Koch 
& Stern, 2004). EGG recording and analysis has been first 
and mostly performed in the clinical domain, where it rep-
resents an appealing method since it is noninvasive, cheap, 
and relatively easy to install and acquire. In gastroenterol-
ogy, the EGG is typically acquired before and after a meal, 
called the pre- and postprandial period, respectively. The 
EGG amplitude normally increases in the postprandial pe-
riod in healthy participants, while EGG frequency remains 
relatively unaffected (for review see Koch & Stern,  2004; 
Riezzo et  al.,  2013; Stern et  al.,  1987). Gastroenterologists 
have been interested in characterizing EGG abnormalities in 
patients by describing changes in power and frequency. For 
instance, postprandial increases in EGG amplitude are altered 
in gastric motility disorders (Cucchiara et al., 1997; Parkman 
& Orr, 2007) and Parkinson's disease (Kaneoke et al., 1995). 
Other studies analyzed changes in EGG frequency. The gastric 
rhythm tends to get faster (tachygastria) in patients with nau-
sea (Geldof et al., 1989), depression (Ruhland et al., 2008), 
and schizophrenia (Peupelmann et al., 2009). Note that dif-
ferent approaches have been used to characterize departure 
from normogastria, either by analyzing the percentage dis-
tribution of EGG power in different frequency bands or by 
analyzing the shifts of EGG peak frequency over time (Stern 
et al., 2007). Here, we will focus on preprandial EGG record-
ings in healthy participants.

1.2 | The EGG in psychophysiology

The potential relevance of visceral signals for understanding 
brain and behavior has long been underlined for emotions 
(Cannon, 1927; Damasio, 1996; James, 1890; Lange, 1885), 
but also in a relationship with self and consciousness 
(Azzalini, Rebollo, & Tallon-Baudry,  2019; Christoff, 
Cosmelli, Legrand, & Thompson,  2011; Craig,  2002; 
Critchley & Harrison, 2013; Thompson & Varela, 2001), as 
well as in physical and mental health (Khalsa et  al.,  2018; 
Quadt, Critchley, & Garfinkel, 2018). Note that brain-viscera 
interplay ranges from the implicit nonconscious signaling 
of bodily afferents to the brain and/or automatic descending 
modulation of stomach activity by the brain to explicit or con-
sciously accessible visceral perception (Azzalini et al., 2019; 
Quadt et al., 2018).

Despite the potential relevance of brain-viscera relation-
ships, empirical studies investigating the electrical activity of 
the gastrointestinal system remain scarce and provided mixed 
results. Initial studies on shock/noise avoidance reported 
mixed results on EGG amplitude (Davis & Berry, 1963; Fedor 
& Russell, 1965; Stern, 1966, 1983; White, 1964). Different 
physical and psychological stressors were found to increase 
spectral power in the tachygastric range (Gianaros et al., 2001; 
Muth et al., 1999; for conflicting results see Riezzo, Porcelli, 
Guerra, & Giorgio, 1996; Stern et al., 1991), while the effects 
on amplitude have been mixed (Riezzo et  al.,  1996; Stern 
et al., 1991). In line with the results of stressors, videos evok-
ing disgust were found to evoke tachygastria (Harrison, Gray, 
Gianaros, & Critchley, 2010) but this result was not replicated 
(Meissner et al., 2011). Emotions induced by movie clips (or 
music) most often do not alter the EGG frequency (Baldaro 
et  al.,  1996, 2001; Baldaro, Battacchi, Trombini, Palomba, 
& Stegagno,  1990; Chen, Xu, Wang, & Chen,  2005; Chen 
et al., 2008; Lin et al., 2007), while results on amplitude are 
inconsistent (Baldaro et  al.,  1996, 2001; Chen et  al.,  2005, 
2008; Lin et al., 2007; Vianna et al., 2006). Several studies 
found increased mean EGG power during the performance 
of tasks of mental arithmetic (Davis, Berry, & Paden, 1969; 
Holzl, Schroder, & Kiefer,  1979; Riezzo et  al.,  1996; for 
conflicting null finding see Walker & Sandman, 1977), but 
other studies on mental arithmetic and puzzle-solving report 
fewer episodes of large amplitude gastric activity (Ercolani 
et  al.,  1982; Ercolani, Baldaro, & Trombini,  1989; Martin, 
Nicolov, Ormieres, Beloncle, & Murat, 1982). Different fac-
tors, like the type of task, or fed versus fasted state of par-
ticipants, number of participants as well as interindividual 
variability (Riezzo et al., 1996) might account for discrepan-
cies between different studies. The absence of standardized 
procedures in psychophysiology for recording and analyzing 
the EGG might play an additional role (but see e.g., Koch 
et al., 2000 for reproducibility in the water load test).
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In addition to a potential modulation of EGG parameters 
by descending cognitive influences, ascending influences 
arising from the stomach were recently shown to influence 
brain dynamics at rest, with a modulation of the ampli-
tude of the alpha rhythm by the phase of the EGG (Richter, 
Babo-Rebelo, Schwartz, & Tallon-Baudry,  2017) in the 
parieto-occipital region. fMRI data reveal that the brain at 
rest is coupled with the gastric rhythm in an extended cor-
tical network (Rebollo, Devauchelle, Béranger, & Tallon-
Baudry,  2018), including known viscero-sensitive regions 
such as primary and secondary somatosensory cortices, as 
well as the parieto-occipital region where gastric-alpha cou-
pling was observed. Gastric-brain coupling thus appears to 
play a role in the large-scale organization of brain dynamics 
at rest. Although little employed so far, the EGG thus appears 
as an attractive method to study brain-viscera interactions.

1.3 | Physiological basis of the EGG

1.3.1 | Pacemaker cells and smooth muscles

The stomach mixes ingested food with secretions and grinds it 
into particles that can be emptied into the duodenum through 
the pylorus (Figure 2a). The stomach is classically divided into 
two parts (Koch & Stern, 2004). The proximal stomach con-
sists of the fundus (upper curved part) and the corpus (or body, 
the main central part of the stomach), which acts as a reser-
voir and controls intragastric pressure (Tack, 2012). The distal 
stomach consists of the lower part of the corpus, the antrum, 
and the pylorus, and is responsible for the mixing, grinding, 
and emptying of solid food (Kelly,  1980; Rayner, Hebbard, 
& Horowitz,  2012). The gastrointestinal tract contains two 

muscular layers that control gut peristalsis: a thin outer longi-
tudinal layer and a thick inner circular layer. Unlike the rest of 
the organs of the gastrointestinal tract, the stomach has an addi-
tional innermost oblique layer of smooth muscles, which allows 
more refined control of motility patterns (Birmingham, 1898; 
Christensen & Torres, 1975; Fritsch & Kühnel, 2008).

The stomach wall contains a distinctive type of cells, the 
Interstitial Cells of Cajal (ICCs), located between the circular 
and longitudinal muscular layer (myenteric Interstitial Cells of 
Cajal, ICC-MY) or within the muscular layers (intramuscular 
Interstitial Cells of Cajal, ICC-IM) (O’Grady, 2012; Sanders, 
Ward, & Koh, 2014) (Figure 2b). Although ICCs are not neu-
rons (Klüppel, Huizinga, Malysz, & Bernstein,  1998), they 
display neuron-like properties. Both types of ICCs continu-
ously and intrinsically generate and propagate slow pacemaker 
currents (for review see Huizinga & Chen, 2014), constitut-
ing the basis of the gastric rhythm (Hirst & Edwards, 2006; 
Sanders, Koh, & Ward, 2006; Sanders et al., 2014). During di-
gestion, the gastric rhythm generated by ICCs triggers smooth 
muscle contraction with additional inputs from excitatory en-
teric motor neurons (Sanders et al., 2014) and vagal efferent 
neurons (Chang, Mashimo, & Goyal,  2003). In addition to 
their role in slow wave generation, ICC-IM is involved in the 
transduction of inputs from enteric motor neurons (Hirst & 
Edwards, 2006; Sanders et al., 2006, 2014). While ICCs con-
trol the pace of gastric contractions, enteric motor neurons and 
vagal efferent neurons regulate the amplitude of contractions. 
It follows that the frequency of the surface EGG is likely to be 
related to the intrinsic pacemaker activity of ICCs, while EGG 
amplitude is related to a combination of currents generated in 
ICCs, enteric motor neurons, and smooth muscles.

ICCs generate the gastric rhythm and actively propa-
gate the slow waves through the ICC network as well as to 

F I G U R E  2  The stomach and the generation of the gastric slow rhythm. (a) Anatomical regions of the stomach, with the main divisions 
into fundus, corpus, and antrum. The gastric rhythm originates from the pacemaker region (orange) near the greater curvature of the mid/upper 
corpus. From here, it entrains other pacemaker cells, resulting in traveling rings of electrical wavefronts in the direction of the antrum (O’Grady 
et al., 2010). (b) The Interstitial Cells of Cajal (ICC, blue) are the generators of the gastric rhythm. They lay in the stomach wall, between and 
within the circular and longitudinal muscle layers. An additional thin oblique muscle layer located in the innermost part of the stomach, adjacent 
to the circular layer, is not represented here. The electrical activity of the pacemaker is passed through the entire ICC network and is also passively 
conducted into coupled muscle cells. ICCs make synapse-like contact with vagal sensory neurons (Powley et al., 2008), presented in green, in a 
structure known as intramuscular arrays, that can detect mechanical changes in smooth muscles. Adapted from Koch & Stern, 2004
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electrically coupled smooth muscle cells. Rings of electrical 
wavefronts travel circumferentially in a proximal to distal 
gradient along the stomach (Koch & Stern, 2004), pushing 
food toward the pylorus when accompanied by muscular 
contractions. How wave propagation is orchestrated is not 
known with certainty. It has since long been assumed that 
the stomach contains a “dominant pacemaker” area in the 
greater curvature of the mid/upper corpus, entraining slow 
waves at other sites, possibly with a gradient in frequency 
(Hinder & Kelly, 1977; Kelly, Code, & Elveback, 1969; Koch 
& Stern, 2004; O’Grady et al., 2010; Riezzo et al., 2013).

1.3.2 | Relating cutaneous EGG to 
gastric physiology

Because the frequency of the gastric rhythm is determined 
by ICCs’ intrinsic pacemaker activity, cutaneous EGG fre-
quency directly reflects the frequency of the gastric basal 
rhythm, as revealed by simultaneous cutaneous EGG and 
invasive recordings in humans (Brown, Smallwood, Duthie, 
& Stoddard,  1975; Chen, Schirmer, & McCallum,  1994; 
Coleski & Hasler, 2004; Familoni, Kingma, & Bowes, 1987; 
Hamilton, Bellahsene, Reichelderfer, Webster, & Bass, 1986; 
Lin, Chen, Schirmer, & McCallum, 2000; Mintchev, Kingma, 
& Bowes, 1993).

The relative contribution of ICCs and smooth muscle 
contractions to cutaneous EGG amplitude is more diffi-
cult to estimate (Angeli et  al., 2013; Bayguinov, Hennig, & 
Sanders,  2011; Hocke et  al.,  2009; O’Grady,  2012; Stern 
et  al.,  2007; Xing, Qian, & Chen, 2006), for two main rea-
sons: First, the electrophysiological signature of smooth mus-
cle contraction is filtered out in cutaneous EGG (Verhagen 
et al., 1999), and more generally how electrical signals of gas-
tric origin are combined in surface recordings remains to be 
fully understood (Cheng, Du, & O’Grady, 2013; Du, O’Grady, 
Cheng, & Pullan, 2010). Second, the amplitude of the gastric 
rhythm is dependent on the fasting/fed state of the stomach. As 
a first approximation, one could consider that during digestion 
the EGG corresponds to a combination of muscle contrac-
tions and ICC intrinsic activity, whereas in the fasting state, 
the stomach is empty and surface EGG mostly corresponds to 
ICC activity (Smout, Van Der Schee, & Grashuis, 1980). This 
is the rationale underlying the clinical test comparing pre- and 
postprandial EGG amplitude. However, even when the stom-
ach is resting as in moderate fasting, a few muscular contrac-
tions may occur (O’Grady et al., 2010; Sanders et al., 2014), 
and occasional intense muscular activity can be observed in 
prolonged (i.e., overnight) fasting (Koch & Stern, 2004).

Because ICCs are present all along the gastrointestinal 
tract, cutaneous electrodes might capture the myoelectrical 
activity of other organs of the GI tract, raising the question of 
the organ-specificity of the signal. The small intestine displays 

frequencies that are much higher than the stomach, usually 
above 0.16 Hz (Christensen, Schedl, & Clifton, 1966; Riezzo 
et  al.,  2013; Waldhausen, Shaffrey, Skenderis, Jones, & 
Schirmer, 1990). The frequency range of the colon is broader, 
ranging from 2 to 12 cycles per minute in humans (Erickson 
et al., 2019; Homma et al., 1995; Pezzolla, Riezzo, Maselli, 
& Giorgio, 1989; Riezzo, Pezzolla, Maselli, & Giorgio, 1994; 
Taylor, Duthie, Smallwood, & Linkens,  1975), that is, po-
tentially overlapping in frequency with the gastric rhythm 
(Amaris, Sanmiguel, Sadowski, Bowes, & Mintchev, 2002; 
Erickson et al., 2019). Still, numerous studies found that the 
3 cpm rhythm disappeared, or was largely reduced, following 
surgical removal of the stomach but not of the colon (Homma 
et al., 1995; Imai & Sakita, 2005; Kaiho et al., 2000; Pezzolla 
et al., 1989).

1.4 | Pathways of gut-brain signaling

There is evidence in the cognitive neuroscience literature 
that stress or emotions can alter cutaneous EGG frequency 
or amplitude (Baldaro et  al.,  1996; Gianaros et  al.,  2001; 
Lin et al., 2007; Muth et al., 1999; Stern et al., 1991; Vianna 
et  al.,  2006), indicating descending influences from brain 
to stomach, and that ascending influences, from stomach to 
brain, influence brain dynamics (Richter et al., 2017). What 
are the currently known anatomical pathways supporting 
those interactions? In this section, we present the mechanisms 
of sensory transduction of the gastric rhythm and ascending 
pathways up to cortical targets, followed by an overview 
of descending projections from brain to stomach. Note that 
much remains to be determined, from signal transduction 
(Umans & Liberles, 2018) to anatomo-functional pathways 
(Azzalini et al., 2019). Only very few stomach-specific ana-
tomical tracing studies exist in animals (for a recent exam-
ple in rodents see Han et al., 2018). Besides, it is tempting 
to extrapolate from anatomical tracing and/or electrophysi-
ological studies in animals (rodents, cats and monkeys) to hu-
mans, on the assumption that visceral pathways are probably 
ancient and conserved through evolution. However, differ-
ences between species have been reported (Bishop, Malliani, 
& Thorén, 1983; Pritchard, Hamilton, & Norgren,  2000; 
Shipley & Sanders, 1982). The overall description presented 
in this section is drawn from studies in rodents, cats and mon-
keys, and some pathways may differ in humans.

1.4.1 | Detection of the gastric rhythm and 
mechanical changes in sensory neurons

The EGG reflects a combination of gastric smooth muscle 
contractions and of the gastric rhythm generated by ICCs. 
Both types of signals might be detected in the stomach by 
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sensory neurons. ICCs make direct synapse-like contact with 
vagal afferent neurons, also known as intramuscular arrays 
(Powley & Phillips, 2011; Powley et al., 2008). The gastric 
rhythm might thus be directly relayed to the brain through 
vagal afferent neurons, although this has not been directly 
tested. Experimental work has mostly been devoted to the 
signaling of gastric smooth muscle contractions. Multiple cell 
types, including ICCs, are grouped in arborized structures 
that run along the smooth muscle and act as mechanorecep-
tors across the gastrointestinal tract, with different sensitiv-
ity thresholds and adaptation profiles (Berthoud, Blackshaw, 
Brookes, & Grundy, 2004; Blackshaw, Brookes, Grundy, & 
Schemann, 2007; Umans & Liberles, 2018). Those mecha-
nosensory structures continuously sense the contractile state 
of the stomach and can transmit changes in smooth muscles 
to the brainstem through vagal and spinal afferent fibers. It is 
worth underlining that in the vagus nerve, around 80% of the 
fibers are ascending, indicating the brain is probably more 
of a listener than a sender of vagal information (Agostoni, 
Chinnock, De Daly, & Murray, 1957). In contrast, the ratio 
between efferents and afferents in the spinal splanchnic nerve 
is closer to 50:50 (Foley, 1948; Leek, 1972).

1.4.2 | Vagal and spinal pathways relay 
gastric information to the brainstem, 
thalamus, and cortex

Vagal sensory neurons project to the nucleus of the solitary 
tract in the brainstem, an important relay center for visceral 

information, that is also involved in the initiation of gastric 
control reflexes (Azpiroz & Malagelada, 1990). The nucleus 
of the solitary tract displays a rough viscerotopic organiza-
tion (Altschuler, Bao, Bieger, Hopkins, & Miselis,  1989), 
but with local overlap between inputs from the heart and the 
gastrointestinal tract (Paton & Kasparov, 2000). Visceral af-
ferents are relayed to the parabrachial nucleus (Figure 3, right 
panel), which integrates vagal and spinal information and is 
the main relay of visceral information to subcortical and cor-
tical structures (Hylden, Hayashi, Bennett, & Dubner, 1985; 
Norgren, 1978; Pritchard et al., 2000).

The nucleus of the solitary tract and parabrachial nucleus 
directly targets the main neuromodulatory centers (Figure 3): 
the serotoninergic dorsal raphe nucleus, the noradrenergic 
locus coeruleus, and the dopaminergic substantia nigra and 
ventral tegmental area (Coizet, Dommett, Klop, Redgrave, & 
Overton, 2010; Pritchard et al., 2000; Saper & Loewy, 1980). 
The functional relevance of gastric vagal signaling on the 
dopaminergic reward pathway has been recently elegantly 
demonstrated in mice (Han et al., 2018), where stimulation 
of the vagal sensory ganglion activated self-stimulation be-
havior, conditioned place preferences, and induced dopa-
mine-release from substantia nigra. The parabrachial nucleus 
also targets the amygdala, the hypothalamus, and the striatum 
(Bester, Besson, & Bernard, 1997; Fulwiler & Saper, 1984; 
Saper, 2002).

Gastrointestinal inputs can reach the thalamus through 
parabrachial projections or direct spinothalamic pathways. 
Parabrachial outputs target the ventromedial, reticular, intral-
aminar, and ventroposterior thalamic nuclei (Coen, Hobson, 

F I G U R E  3  Projections of vagal and spinal afferents from the gastrointestinal tract to the brain. Afferents target brainstem nuclei (purple) 
including nucleus tractus solitarius (NTS) and parabrachial nucleus (PBN). The NTS and PBN in turn project to various subcortical structures, 
including the neuromodulatory structures (blue), as well as subcortical (red) and cortical (yellow) regions. Another spinal afferent pathway 
bypasses the brainstem and directly targets the thalamus. Abbreviations: Amy, amygdala; Cer, cerebellum; CM, cingulate motor regions; Hc, 
hippocampus; Hyp, hypothalamus; Ins, insula; LC, locus coeruleus; NTS, nucleus of the solitary tract; PBN, parabrachial nucleus; RN, raphe 
nucleus; SI, primary somatosensory; SII, secondary somatosensory; SN, substantia nigra; St, striatum; Th, thalamus; vmPFC, ventromedial 
prefrontal cortex. Modified from Azzalini et al., 2019
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& Aziz, 2012). Spinal and vagal inputs are already combined 
in the parabrachial nucleus and further convergence takes 
place in the thalamus. Unexpectedly, the lateral geniculate 
nucleus, a visual thalamic relay, receives massive inputs from 
the parabrachial region (Erişir, Van Horn, & Sherman, 1997; 
Uhlrich, Cucchiaro, & Sherman,  1988), and parabrachial 
activation affects visual responses in the lateral geniculate 
nucleus (Lu, Guido, & Sherman, 1993; Uhlrich, Tamamaki, 
Murphy, & Sherman, 1995) and cortex (Munk, Roelfsema, 
König, Engel, & Singer, 1996).

From the thalamus, numerous cortical areas receive vis-
ceral inputs (Figure  3), including primary and secondary 
somatosensory cortex (Amassian,  1951; Downman,  1951), 
insula (Cechetto & Saper, 1987), ventromedial prefrontal cor-
tex (Vogt & Derbyshire, 2009) and cingulate motor regions 
(Dum, Levinthal, & Strick, 2009). In rodents, viscerotopy is 
present in the ventrobasal nucleus of the thalamus and in the 
insula (Cechetto & Saper, 1987). Although it is known that in 
humans the somatosensory cortex is coupled with the stom-
ach (Rebollo et al., 2018) and that it responds to heartbeats 
(Kern, Aertsen, Schulze-Bonhage, & Ball,  2013), whether 
the somatosensory cortex shows a viscerotopic organization, 
and how viscerotopy is integrated with somatotopy, has not 
between investigated since the 50’s (Downman, 1951).

1.4.3 | Descending influences

As reviewed in Section 1.2, gastric amplitude and/or fre-
quency can be modified by cognitive and emotional factors. 
Indeed, gastrointestinal functioning is regulated by both 
vagal (Hall, el-Sharkawy, & Diamant, 1986; Stern, Crawford, 
Stewart, Vasey, & Koch,  1989), or parasympathetic, and 
spinal, or sympathetic, centers. The main parasympathetic 
center is the dorsal motor nucleus of the vagus (Gillis, Quest, 
Pagani, & Norman, 1989), that has descending projections to 
smooth muscle cells as well as to Interstitial Cells of Cajal 
(Schemann & Grundy, 1992; Travagli, Hermann, Browning, 
& Rogers, 2006). The vagal innervation from the dorsal nu-
cleus of the vagus modulates the amplitude of the gastric 
rhythm and can have either an activating or inhibiting effect 
(Andrews & Scratcherd,  1980; Pagani, Norman, Kasbekar, 
& Gillis,  1985; Travagli et  al.,  2006). The sympathetic ef-
ferent nuclei controlling the stomach are located in the in-
termediolateral cell column of the thoracic-lumbar spine, 
and project to prevertebral and paravertebral ganglia located 
outside the spine (Furness, 2006). In turn, spinal projections 
innervate enteric neurons, arterioles of the gut wall and stri-
ate muscles of sphincters to control vasoconstriction, liquid 
balance, secretion, blood flow, and motility (Furness, 2012; 
Holzer,  2006; Sveshnikov, Smirnov, Myasnikov, & 
Kuchuk,  2012). Sympathetic projections can induce ei-
ther an inhibition or a stimulation of stomach contractions 

(Smirnov & Lychkova,  2003; Sveshnikov et  al.,  2012). 
Sympathetic projections are modulated by higher level struc-
tures, including parabrachial nucleus, nucleus of the solitary 
tract (Saper & Loewy,  1980), rostroventrolateral medulla 
(Deuchars & Lall, 2015), raphe nucleus (Morrison, Sved, & 
Passerin, 1999), locus coeruleus (Bruinstroop et al., 2012) as 
well as several hypothalamic nuclei (Deuchars & Lall, 2015).

1.4.4 | Brain-stomach coupling in humans

In humans, pioneering studies identified brain regions cou-
pled with the stomach using gastric distension, induced 
by inserting and inflating a balloon in the stomach of par-
ticipants, or, alternatively, by asking participants to drink a 
specific amount of liquid. Water ingestion can also be used 
to measure explicit gastric interoception, as recently pro-
posed by van Dyck et al., 2016. Gastric distension activates 
somatomotor regions, insula, vmPFC and mid-cingulate, 
and deactivates occipital regions (Ladabaum et  al.,  2001; 
Lu et  al.,  2004; van Oudenhove et  al.,  2009; Vandenbergh 
et al., 2005; Wang et al., 2008). More recently, stomach-brain 
coupling was investigated during the resting state, without 
gastric stimulation. Rebollo et al., 2018, recorded the EGG in 
healthy participants during quiet rest, while simultaneously 
recording brain activity with functional magnetic resonance 
imaging. They then identified the regions where spontaneous 
fluctuations in the BOLD signal were phase-synchronized 
with the gastric rhythm. This revealed an extended network 
including primary and secondary somato-sensory cortices, 
mid-cingulate areas, and extended portions of the occipital 
lobe, indicating that gastric-brain coupling contributes to the 
large-scale organization of brain activity at rest.

2 |  THE EGG: RECORDING, 
PREPROCESSING, AND DATA 
QUALITY ASSESSMENT

The aim of this section is to propose practical suggestions 
to record the EGG in the typical young and healthy popula-
tion sampled in psychophysical research, as well as a semi-
automatized procedure to assess data quality and to extract 
the gastric rhythm characteristics in terms of amplitude, fre-
quency, and phase. The procedure aims at identifying the gas-
tric rhythm, that is, a regular oscillation in the normogastric 
range (2–4 cpm). Such a signal can safely be attributed to the 
stomach, whereas artifacts are likely to disrupt the regularity 
of the rhythm. It follows that the procedure as it currently 
stands is not appropriate to investigate departure from nor-
mogastria. The procedure reported here is also not designed 
to analyze the spatial propagation of the gastric waves along 
the stomach, and we refer the interested reader to Angeli 
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et  al.,  2015; Bradshaw et  al.,  2016; Gharibans, Coleman, 
Mousa, & Kunkel, 2019; O’Grady et al., 2010, 2012.

2.1 | Recording apparatus

The EGG is recorded with standard cutaneous electrodes, 
similar to electrocardiogram electrodes, and standard skin 
preparation (e.g., slight abrasion of the skin for optimal skin-
to-electrode interface contact). EGG amplitude lies typically 
between 50 and 500 microVolt, commensurate with electro-
encephalography (EEG). Standard EEG acquisition systems 
can thus adequately amplify EGG signals, but several ad-
ditional conditions must be met, due to the very slow pace 
(~0.05  Hz) of the gastric rhythm. First, DC amplifiers are 
best suited to record the EGG since even a very low high-pass 
filter might distort the data. Most recent EEG acquisition sys-
tems have the large analog-digital conversion range required 
for DC recordings without amplifier saturation. Second, re-
cordings have to be long enough to collect a sufficient num-
ber of gastric cycles. As a rule of thumb, one minute contains 
about three gastric cycles, and 15  min correspond to only 
45 cycles. Note that it can be useful to acquire some extra 
data (about 40  s) before and after the period of interest to 
facilitate off-line filtering at the very low frequency of the 
gastric rhythm. Last, sources of very slow fluctuations in the 
recordings have to be minimized. In particular, hanging wires 
might swing around and induce slow drifts in the recordings 
and should thus be taped to a fixed support. Wrapping the 
wires in a shield can limit wire swinging as well as reduce 
electromagnetic artifacts. Because EGG frequency is around 
0.05 Hz, sampling frequency could in principle be very low 
(below 1 Hz). However, a higher sampling frequency is re-
quired for proper artifact identification, in particular, partici-
pant's movements that are accompanied by muscle artifacts.

2.2 | Participants

2.2.1 | Participants’ 
information and inclusion

Participants are informed early in the inclusion process of 
electrode location, which implies that their shirt is raised, 
their skin exposed between navel and sternum, and shaved if 
too hairy. Participants feeling uncomfortable with the proce-
dure can thus withdraw at that early stage, and are informed 
that they can withdraw at any time later on. Participants 
might also feel more comfortable if the experimenter plac-
ing the electrodes is of the same gender as the participant. 
Last, participants are asked to avoid tight-fitting clothes that 
might potentially touch the electrodes and hence compromise 
recording quality.

Participants should obviously have no gastric or diges-
tive disorder. Several medications might influence the EGG, 
including prokinetic anti-emetic agents, narcotic analgesics, 
anticholinergic drugs, and anti-inflammatory agents, as well 
as probiotics and prebiotics (Américo, Miranda, Corá, & 
Romeiro, 2009; Chiba et al., 2007; Indrio et al., 2009; Walldén, 
Lindberg, Sandin, Thörn, & Wattwil, 2008). Different recom-
mendations exist in the gastroenterology literature with re-
gards to the inclusion of participants taking these medications 
(Murakami et al., 2013; Riezzo et al., 2013; Yin & Chen, 2013). 
A practical solution for psychophysiological studies in healthy 
participants is to include only subjects without medication.

Another inclusion/exclusion criterion that might prove 
useful is the body mass index (BMI, Weight (kg)/ (Height 
(m))2). Participants with a high BMI typically display a 
lower EGG amplitude (Riezzo, Pezzolla, & Giorgio,  1991; 
Simonian et al., 2004; Somarajan, Cassilly, Obioha, Richards, 
& Bradshaw, 2014), potentially because a thicker abdominal 
wall increases the distance between the electrical source and 
the recording electrodes and hence results in a lower ampli-
tude recording (Liang & Chen, 1997; Obioha et al., 2016). 
In addition, people with high BMI show more activity out-
side the 2–4  cpm range (McCallum, Jones, Lin, Sarosiek, 
& Moncure, 2001; Simonian et  al.,  2004; Tolj,  2007), and 
in morbid conditions, altered gastric emptying (McCallum 
et al., 2001; Tosetti et al., 1996). In sum, it thus might prove 
advantageous to include only rather lean participants. In prac-
tice, we include subjects with a BMI comprised between 18 
and 26. Note that the phase of the menstrual cycle might im-
pact EGG frequency (Parkman et al., 1996; Tolj, 2007) and 
should thus be documented if the absolute EGG frequency is 
a parameter of interest.

Studies in gastroenterology focus on the typical EGG am-
plitude increase following food ingestion, reflecting muscle 
contractions and gastric motility and other parameters (Stern, 
Jokerst, Livine, & Koch, 2001; Stern et  al.,  1989). Another 
option for psychophysiology is to ask participants to fast for 
at least 2 hr preceding their appointment (i.e., about 3 hr be-
fore the actual beginning of the recording) to focus the analysis 
on the basal gastric rhythm in an almost empty stomach with 
little muscular contractions. Only about 10% of a solid meal 
remains in the stomach 2 to 3 hr after meal ingestion (Vasavid 
et al., 2014). In any case, the time elapsed since the last meal 
should be documented and taken into account in the exper-
imental design. Note that details on the contents of pre-fast 
meal and feeling of hunger at the time of recordings are poten-
tially relevant parameters but were not recorded in this data set.

2.2.2 | Participants’ position

Most studies in gastroenterology record EGG with the patient 
in a lying position, which reduces voluntary movements, 
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although ambulatory EGG recordings are currently being 
developed (Gharibans et al., 2018). Another advantage of a 
lying position is that the electrodes rest on the abdominal sur-
face and not in fatty folds (Koch & Stern, 2004). However, 
a good EGG can also be obtained in a sitting position, al-
though the amplitude is typically a bit lower, most likely due 
to the distance of the stomach to the skin surface (Jonderko, 
Kasicka-Jonderko, & Blonska-Fajfrowska,  2005). In prac-
tice, we place the electrodes while subjects are in a standing 
or lying position, thus allowing easier access to anatomical 
landmarks. After electrodes are placed, we record from par-
ticipants in a semi-reclined sitting position, as is customary 
for MEG or EEG recordings, and ask participants to avoid 
any voluntary movement. Movements induce large arti-
facts in the recording, and artifacted data segments should 
be identified and excluded from further analysis (Verhagen 
et al., 1999).

2.3 | Electrode placement

Unlike electrocardiography, electrode placement in electro-
gastrography is not standardized. The stomach is located in 
the upper left abdomen but the precise location with respect 
to external landmarks varies (Gharibans et al., 2019). Many 
clinical studies used between 2 and 4 electrodes. We initially 
used a 17 electrode grid (Richter et al., 2017), which proved 

too large, and after some trials and errors found that a grid 
of seven electrodes provided sufficient coverage to detect 
a good quality EGG in most participants. The coverage we 
propose is sufficient to detect a good quality signal in at least 
one recording location; if the aim of the study is to analyze 
the propagation of the gastric rhythm along the stomach, a 
higher density of electrodes and a wider coverage is recom-
mended (Gharibans et al., 2019). Recording locations are il-
lustrated in Figure 4a. The electrode location proposed here 
deviates from the electrode location reported in the clinical 
literature (see for instance the review of Riezzo et al., 2013) 
in that it covers lower portions of the abdomen. In clinical 
settings, electrodes are most often located in the vicinity of 
electrodes 2, 3, 5, and 7 in Figure 4 (Chen et al., 1999; Geldof 
et  al.,  1989; Koch & Stern,  2004; Mintchev et  al.,  1993; 
Parkman et al., 2003; Simonian et al., 2004).

In the proposed setup (Figure 4a) the first electrode (1) 
is placed 2 cm above the umbilicus. Electrodes 2 and 3 are 
placed above electrode 1 on the midline, at, respectively, one-
third and two-thirds of the distance between electrode 1 and 
the xiphoid process. The locations of two other electrodes 
(6, 7) are determined by a vertical line crossing the midpoint 
of the left clavicle, and horizontally by the locations of elec-
trodes 1 and 2. Note that the electrode 7 location might fall 
above the rib cage, in which case it is advisable to shift it to-
ward the midline to improve the signal to noise ratio. Finally, 
electrodes 4 and 5 are placed in between the two columns 

F I G U R E  4  Localization of electrodes with respect to anatomical landmarks (umbillicus, xiphoid process, mid-clavicular line, and coastal 
margin). (a) Setup for a unipolar montage. The circle area and color code at each electrode location indicate how often this electrode was found 
to display the largest gastric rhythm, in a sample of 100 healthy participants with a good spectral signature of the gastric rhythm. (b) Setup for a 
bipolar montage, better suited for fMRI recordings. See text for detailed explanations. REF: Reference. GND: Ground
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(1, 2, 3) and (4, 5), at the level of the vertical midpoint be-
tween electrodes 1 and 2 and electrodes 2 and 3. The refer-
ence electrode is placed symmetrically to electrode 5. Finally, 
the ground electrode is placed over the left abdomen, above 
the iliac crest. This setup can be combined with EEG and/or 
MEG recordings.

The EGG can also be recorded in an MRI environment, 
but it might require the use of bipolar electrodes to avoid am-
plifier saturation. We used the following scheme (Figure 4b; 
Rebollo et al., 2018): Four bipolar electrodes are placed in 
three rows over the abdomen, with the negative derivation 
placed 4 cm to the left of the positive one. The midpoint be-
tween the xiphoid process and umbilicus is identified, and the 
first electrode pair is set 2 cm below this area, with the nega-
tive derivation (1−) set at the point below the rib cage closest 
to the left mid-clavicular line. The second electrode pair (2+, 
2−) is set 2 cm above the umbilicus and aligned with the first 
electrode pair. The positive derivation of the third pair (3+) 
is set in the center of the square formed by electrode pairs one 
and two. The positive derivation of the fourth electrode pair 
(4+) is centered on the line traversing the xiphoid process and 
umbilicus at the same level as the third electrode. The ground 
electrode is placed above the iliac crest (Figure 4b). Note that 
scanner artifacts are much faster than the gastric rhythm and 
can easily be filtered out, at least with a standard echo-planar 
imaging sequence and that the B0 magnetic field of the scan-
ner does not affect EGG frequency (Rebollo et al., 2018).

2.4 | Power spectrum and channel selection

The first step in data analysis is to extract the gastric rhythm. 
We first present processing steps for a good quality record-
ing and come back to noisy data and artifacts in section 
2.6. Spectral power at each electrode is computed to iden-
tify the location with the largest activity in the normogas-
tric 0.033–0.066 Hz (2–4 cpm) range and to determine the 
peak frequency of each participant. Several methods for 
spectral power estimation can be used. Here, we used a Fast 
Fourier Transform (FFT) as implemented in the Fieldtrip 
toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) with 
a Hanning taper to reduce spectral leakage and control fre-
quency smoothing. We provide the relevant code for spec-
tral estimation and other analyses at https://github.com/niwol 
pert/EGG_Scripts (for computing the power spectrum, see 
function “compute_FFT_EGG”). As illustrated in Figure 1c, 
a good quality recording shows a distinctive spectral signa-
ture in the normogastric range, with a peak frequency similar 
at most, if not all, recording sites. The channel with the larg-
est power at peak frequency is selected for further analysis. 
Note that the spectral signature of the EGG is clearly different 
from the spectral signatures of either respiration or heartbeats 

(Figure  1d), and that a harmonic at twice peak frequency 
might be observed. Peak frequency is usually fairly stable 
over a couple of hours but might vary over longer recording 
times (Lindberg, Iwarzon, & Hammarlund, 1996). Power and 
amplitude might also be extracted from the spectral analysis.

2.5 | Phase and amplitude of the 
filtered signal

For a more refined, time-resolved analysis of the EGG, the 
next step is to filter the raw EGG from the selected channel 
around the participant's peak frequency to better isolate the 
gastric rhythm. Several types of filters might be considered, 
bearing in mind that the very low frequency of the EGG im-
poses additional constraints on filter design and filter stabil-
ity. We opted for a finite impulse response filter, known to 
be more stable and less likely to introduce nonlinear phase 
distortions (Cohen, 2014), and more precisely a third-order 
frequency sampling designed finite impulse response filter 
(MATLAB: FIR2), with a bandwidth of ±0.015 Hz around 
the participant's peak EGG frequency (function “com-
pute_filter_EGG”). For instance, if peak frequency is ex-
actly 0.05 Hz (3  cpm), the filter covers the range between 
0.035 and 0.065  Hz (2.1 and 3.9  cpm). If peak frequency 
is 0.035 Hz (2.1 cpm), close to the lower limit of the nor-
mogastric range, the filter range is 0.02–0.05 Hz (1.2–3 cpm) 
and therefore also includes signal outside the normogastric 
range. Of note, filtering, especially at low frequencies, is dif-
ficult, and the actual filter deviates from the ideal filter, with 
smoother transitions, extending at higher and lower frequen-
cies, as illustrated in Figure 6a. Filter width is designed to be 
wide enough to capture physiological fluctuations in the du-
ration of the gastric cycle, but narrow enough to exclude not 
only respiration, but also the harmonic of the gastric rhythm 
(Verhagen et al., 1999).

By applying the Hilbert transform to the filtered data, 
we retrieve the instantaneous phase and amplitude enve-
lope of the gastric rhythm. Figure 5 shows two examples of 
the filtered signal, and amplitude and phase obtained after 
applying the Hilbert transform. The distribution of cycle 
duration is usually Gaussian (Figure  5b), with sometimes 
outliers (Figure 5d), defined as exceeding mean ± 3 SDs. We 
observed that cycles with abnormally long or short duration 
also often presented a nonmonotonous phase evolution (inset 
in Figure 5c).

2.6 | Identification of noisy recordings

We have presented so far good quality recordings. Identifying 
noisy recordings, or noisy segments of data, is of course 

https://github.com/niwolpert/EGG_Scripts
https://github.com/niwolpert/EGG_Scripts
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critical. In the following, we suggest some criteria to guide 
decisions.

2.6.1 | Power spectra

The power spectrum is a good indicator of data quality. As 
shown in Figure 6a, a high-quality recording shows a clear 
spectral peak in normogastric range with a peak frequency 
that is congruent across several channels. We systematically 
discarded power spectra with variability in peak frequency 
between electrodes (Figure  6b-e). We also discarded cases 
where a clear spectral signature is observed, but at only one 
location, as in Figure 6f. As detailed in Section 3, the power 

at peak frequency (between 26 and 8,800 μV2 in our data) 
does not appear as a reliable indicator of signal quality.

2.6.2 | Identification of participants with 
highly variable gastric cycle duration

Once the EGG is filtered at the selected channel around peak 
frequency, we do a second quality check based on the regu-
larity of the cycle durations. We estimated, in each partici-
pant, cycle duration from the phase of the Hilbert transform 
and computed the SD of cycle duration (see function “com-
pute_std_cycle_duration”). The distribution of the SD of 
cycle duration in the 100 participants we recorded is shown 

F I G U R E  5  Two examples of EGG signal and corresponding amplitude and phase that reveal a highly regular rhythm (top) or a mostly 
regular rhythm (bottom). (a) Top row: Raw signal (grey) with superimposed filtered EGG (blue), obtained by filtering the raw signal ±0.015 Hz 
around the peak frequency of the recording. The Hilbert transform generates two time series: the amplitude envelope (middle row) and 
instantaneous phase of the gastric rhythm in radians (bottom row). (b) Distribution of cycle durations. Red dotted lines indicate mean cycle 
duration ± three SDs. In this example, the distribution of cycle duration is quite narrow, without any outlier. (c) Example of a different recording 
with mostly regular phase time series. The gastric rhythm is not always visible to the naked eye in the raw signal (top row) and its amplitude is 
sometimes very low (middle row). A cycle shaded in red and marked by a red arrow shows a nonmonotonous change in phase (bottom row) and 
concomitant low amplitude. (d) Histogram of cycle duration. The cycle with nonmonotonous change in phase in (c) appears as an outlier (red 
arrow). The cycle is considered as an artifact (nonmonotonicity and cycle duration) and therefore discarded from further analysis
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in Figure 7a. Four participants clearly lie outside the distribu-
tion and are considered outliers. We retained a criterion of 
the SD of cycle duration smaller than 6 to include participants 
in further analysis.

We compared this data-driven procedure with a pro-
cedure based on the clinical EGG literature (see function 
“show_prop_normogastria”), where it is held that EGG re-
cordings in a healthy subject should be composed of at least 
70% cycles in the normogastric range (2–4 cpm, or cycle du-
ration between 15 and 30  s) (Parkman et  al., 2003; Riezzo 
et al., 2013). Bradygastria refers to slow cycles ranging be-
tween 30 and 60 s (1–2 cpm) and tachygastria to short cycles 
between 6 and 15  s (4–10  cpm) (Riezzo et  al.,  2013). We 
found that those four participants identified as outliers in the 
distribution of SD of cycle duration (Figure 7a) are also out-
liers in the percentage of cycles in normogastria and exhibit 
less than 70% cycles in the normogastric range (Figure 7b). 
The two criteria thus appear equivalent in this data set.

Note that this processing step is dependent on the filter 
width (ideal and best fit) used. It is not suited for studies at-
tempting to induce shifts in gastric peak frequency, resulting 
in a larger variability of gastric cycle duration or even in a shift 
of gastric peak frequency outside the normogastric range, as 

when eliciting nausea or disgust (Geldof et al., 1989; Harrison 
et al., 2010; Meissner et al., 2011; Stern et al., 1985).

2.7 | Identification of artifacted 
data segments

Once recordings of overall good quality have been selected, ar-
tifacts transiently affecting the data have to be identified. Any 
type of artifact which involves a movement of the wires or of 
the abdominal wall might contaminate the signal. This includes 
for example movement of the legs, abdomen or torso, touching 
of the electrodes or wires, talking or coughing. Artifacts perturb 
the signal not only at the exact time of their occurrence, but 
spread over time given the very low frequency of the filter used.

The procedure we propose to identify artifacted data seg-
ments is based on two criteria: a cycle whose length exceeds 
the mean ±3 SDs of the cycle length distributions (Figure 5b, 
d), and a cycle that displays a nonmonotonic change in phase 
(inset in Figure  5c). This procedure is implemented in the 
function “detect_EGG_artifacts.” Any cycle meeting at least 
one of those criteria is considered as artifacted. Note that 
whether cycles tagged as artifacted by this procedure represent 

F I G U R E  6  Examples of power spectra of data included in further analysis (a) or discarded (b-f). Each line corresponds to a recording 
channel, and the spectral region highlighted in white corresponds to normogastria. (a) Power spectrum with a well-defined spectral peak in the 
normogastric range, occurring in several channels at the same frequency. The star indicates peak frequency and the black line corresponds to the 
channel with the largest power at peak frequency. The red line represents the ideal filter, and the green line the best fit for the ideal filter. (b) Power 
spectrum with peaks at different frequencies in different channels. (c) Power spectrum with spectral peaks at two different frequencies. (d) Power 
spectrum with a broad peak, well defined in only one channel. (e) Several channels display a spectral peak but at different frequencies. (f) A well-
defined spectral peak is present, but only in one channel
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real artifacts or truly irregular gastric activity remains an open 
question.

It is advisable to complement the semi-automated proce-
dure we propose by a visual inspection to confirm artifact 
detection (Verhagen et al., 1999), but also to verify that the 
filtering, which can get unstable at very low frequencies, did 
not induce signal distortion.

2.8 | Conclusion on preprocessing steps

We propose a preprocessing procedure of the EGG consist-
ing of different steps with associated quality checks. All steps 
aim at identifying a regular rhythm, with a progression in the 
refinement of the analysis level. This procedure is summa-
rized in Figure 8: In a first step, we decide whether the peak 
in the power spectrum is clear enough, with a peak frequency 

consistent between recording sites, to allow for the selection 
of a channel and a peak frequency. In a second step, the data 
are filtered and the phase computed, together with the distribu-
tion of cycle length. If at least 70% of the cycles lie in the nor-
mogastric range, and/or if the SD of cycle length is smaller than 
6, the recording is considered to be of sufficient quality, else 
it is discarded. The last step consists of identifying artifacted 
data segments, based on cycle duration and phase monotonicity 
within a cycle.

3 |  NORMATIVE DATA AND 
INTERINDIVIDUAL VARIABILITY 
IN YOUNG, HEALTHY VOLUNTEERS

Here, we apply the procedures described in Section 2 in 
a large data set of EGG recordings (N  =  117) obtained in 

F I G U R E  7  Distribution of EGG features across a sample of 100 young healthy participants. (a) Distribution of SDs of cycle duration. A cutoff 
at six SDs (red shaded area) isolates four outlier participants with more irregular cycles. (b) Percentage of cycles in normogastria (2–4 cpm). A cut-off 
at 70% (red shaded area), as proposed by the clinical literature (Riezzo et al., 2013) isolates the same four outlier participants. (c) EGG peak frequency 
in the 96 remaining participants, with a mean of 0.048 Hz and SD of 0.004 Hz. Peak frequency is higher in female (M = 0.0486 Hz, SD = 0.0044) than 
male (M = 0.0467 Hz, SD = 0.0039) participants (rank sum test z = −2.25, Bonferroni-corrected p = .15). Horizontal bars represent the SD. (d) Robust 
correlation between BMI and average amplitude. BMI shows no significant relationship with mean amplitude (Bonferroni-corrected p = 1). (e) Robust 
correlation between elapsed time since the last meal and variability of cycle duration, expressed in SD around the mean for each participant. Longer 
fasting is associated with higher cycle irregularity (robust regression, Bonferroni-corrected p = .02, r2 = .09), an effect mostly driven by prolonged 
fasting (>10 hr). (f) Robust correlation between average amplitude and SD of cycle duration. There is a significant negative relationship, with higher 
amplitude being associated with lower variability of cycle duration (robust regression, p = .002, r2 = .10)
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our group, from which normative parameters of the gastric 
rhythm in a healthy, young, and rather lean population can 
be derived.

3.1 | Material

We used the data from 117 healthy participants (52 male, 65 
female) sitting in a reclining chair. Participants were aged 
between 18 and 30 years (mean: 24, SD = 3.1) and had a BMI 
comprised between 16 and 26 (mean: 21.3, SD = 2.03). We 
aimed at recording participants in a moderate fasting state, 
where stomach contractions are scarce, and thus asked par-
ticipants to fast for at least two hours before their appoint-
ment. One data set (N = 17) corresponds to the re-analysis 
of published data (Richter et al., 2017), the rest corresponds 
to various unpublished pilot studies. Most participants 
(N = 75, including the participants from Richter et al., 2017) 
were recorded for 12–15  min at rest with eyes open using 
the MEG acquisition system of Elekta Neuromag® with a 
sampling frequency of 1,000 Hz, DC to 330 Hz. EGG data 
were also recorded in 25 participants performing an experi-
ment on visual perception at a threshold for 12 min, and 17 
subjects viewed a short movie (“Bang! You're Dead” from 
Alfred Hitchcock, 1961) during 15 min, using a BioSemi ac-
quisition system with a sampling frequency of 2048 Hz, DC 
to 400  Hz. A subset of 66 participants filled out the Trait 
Anxiety Inventory (Spielberger, Gorsuch, Lushene, Vagg, 
& Jacobs, 1983). All participants signed a written informed 

consent and were paid for participation. The procedures were 
approved by the Ethics Committee CPP Ile de France III and 
were in accordance with the Helsinki declaration.

EGG was recorded as described earlier. We used the mon-
tage of seven electrodes described above, except in the 17 
participants of Richter et al., 2017. Here, we had used a bilat-
eral grid of 19 EGG electrodes (17 active, 1 reference, and 1 
ground) placed over four regularly spaced rows, that we sub-
sampled to match the current seven active electrodes schema.

3.2 | Results

3.2.1 | EGG identification in 117 recordings

We applied the procedures described above to the 117 EGG 
recordings (Figure  8). A well-defined spectral peak within 
the normogastric range could be observed in 100 participants 
out of 117 (85%). The BMI of the 100 participants with an 
identifiable spectral peak (M = 21.2, SD = 2) was slightly, 
but significantly, lower than the BMI of the 17 participants 
where the peak could not be found (M = 22.3, SD = 2; t(115) 
= −1.99, p = .049). We then discarded participants whose 
gastric rhythm was irregular. Two different criteria could 
be considered, either a SD of gastric cycle duration larger 
than 6 (Figure 7a), or less than 70% of cycles in normogastria 
(Parkman et al., 2003; Riezzo et al., 2013). Those two criteria 
converged on the same four participants. Overall, our proce-
dure was successful at recording and identifying the gastric 

F I G U R E  8  Decision tree with 
processing steps and corresponding criteria 
for a good quality recording/cycle. Grey 
numbers document the outcome of this 
procedure in a data set of 117 participants. 
(a) Decision tree for whether or not the 
recording can be retained for further 
analysis, depending on the presence of the 
spectral signature of the gastric rhythm and 
rhythm regularity. (b) Additional decision 
tree to detect artifacted cycles, based on the 
cycle duration and monotonicity of phase 
evolution



   | 15 of 25WOLPERT ET aL.

rhythm in 82% (96/117) of the participants. Within the 96 
remaining participants, 16 come from the study of Richter 
et  al.,  2017, and 80 from the new, unpublished data sets. 
Within the 96 recordings selected, 2.5% of the cycles were 
identified as artifacted, that is, as having an excessively long 
or short duration, or as displaying a nonmonotonous change 
in phase.

3.2.2 | Electrode selection

For each participant, we identified, within the seven elec-
trode grids, the electrode with the strongest peak in the 
0.033–0.067 Hz range and selected it for all further analysis. 
The location of the selected electrode varied on a participant-
by-participant basis, with electrode 1 selected in 14% of 
participants, electrode 2: 4%, electrode 3: 1%, electrode 4: 
14%, electrode 5: 15%, electrode 6: 22%, electrode 7: 30%. 
Figure 4a shows, for each location in the grid, how often it 
was selected. The electrode showing the highest peak in the 
normogastric range was in the lower left abdominal region in 
more than half of the participants (electrodes 6 and 7) but all 
locations proved useful in at least one participant.

3.2.3 | Analysis of gastric frequency, 
amplitude and cycle duration variability

We then analyzed several properties of the EGG in the 96 
remaining participants. Mean dominant EGG frequency 
was 0.048  Hz (SD  =  0.004) (Figure  7c). Female subjects 
had a slightly higher mean peak frequency than males, but 
this difference did not survive correction for multiple com-
parisons (Figure  7c; Mfemale  =  0.0486  Hz, SD  =  0.0044; 
Mmale = 0.0467 Hz, SD = 0.0039; rank sum test z = −2.25, 
uncorrected p = .03; Bonferroni-corrected p = .15). As de-
tailed in Table 1, we found no link between EGG peak fre-
quency and age, BMI, anxiety, time of recording (morning 
versus. afternoon) or elapsed time since the last meal.

The mean average amplitude across participants was 
97.3 μV (SD = 70.2) (Figure 7d). None of the demographical 
variables tested revealed any link with amplitude (Table 1), 
including BMI.

Last, we estimated fluctuations in EGG frequency by 
computing the SD of cycle duration. There was a significant 
positive correlation between longer fasting and higher varia-
tion in cycle length (Bonferroni-corrected p = .02, r2 = 0.09; 
Figure 7e), mostly driven by subjects with an elapsed time 
since last meal larger than 10  hr. Participants with a large 
EGG amplitude had more regular cycles, as revealed by the 
negative correlation between amplitude and SD of cycle 
length (p = .002, r2 = 0.1; Figure 7f). None of the other vari-
ables measured co-varied with the SD of cycle duration. T
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The data came from different experimental conditions 
(resting state, acquired with a BioSemi system, and various 
visual tasks, acquired with a BioMag system). No meaning-
ful differences were found between experiments for any of 
the EGG parameters tested, apart from a difference in EGG 
amplitude, which might reflect more a difference in gain cal-
ibration between the two recording systems rather than on 
experimental conditions.

3.2.4 | Amplitude in clean versus artifacted 
data segments

We finally compared EGG amplitude in “clean” versus ar-
tifacted cycles, that is, cycles that were either of extreme 
duration or nonmonotonous. No significant difference in 
amplitude was found between clean cycles (M = 96.6 μV, 
SD  =  86.3) and cycles of extreme duration (M  =  86  μV, 
SD = 51.2; rank sum test z = −.4, p = .67). Amplitude in 
nonmonotonous cycles (M = 40.3 μV, SD = 39) was signifi-
cantly lower than in clean cycles (M = 96.6 μV, SD = 86.3; 
rank sum test z = −8.5, p < .001). However, as shown in 
Figure 9, only a small proportion (20%) of the cycles with 
very low amplitude were nonmonotonous, and a number of 
nonmonotonous cycles have a large amplitude.

4 |  DISCUSSION

We propose here a procedure for recording and analyzing 
EGG data, and test this approach in 117 healthy, young, 
and rather lean male and female participants who had been 
fasting for at least two hours. The analysis pipeline aims at 
identifying a regular rhythm that can be safely attributed to 
the stomach, through multiple steps: by selecting only those 
participants who have a well-defined spectral signature, with 

a peak frequency in the normogastric range (2–4 cpm) and 
regular cycles, and by excluding cycles whose duration ex-
ceeds mean ± 3 SD or whose phase is irregular.

We could identify the spectral signature of the gastric 
rhythm in 85% of the participants, most often at lower left 
abdominal locations. The largest amplitude could often be 
observed at electrodes located lower than usually recorded 
in clinical settings (Chen et al., 1999; Riezzo et al., 2013). 
Peak frequency was centered around 0.05 Hz, consistent with 
the gastroenterology literature, with a marginal difference in 
peak frequency between female and male participants. The 
large majority (96%) of the recordings with a clear spectral 
signature were also regular, with a SD of gastric cycle smaller 
than 6. The latter criterion proved equivalent to the criterion 
of 70% of cycles in the normogastric range (2–4 cycles per 
minute/0.033–0.067 Hz) employed in the clinical EGG liter-
ature. The parameter that most influenced the EGG was the 
time elapsed since last meal, with fasting longer than 10 hr 
leading to a more irregular rhythm. BMI, anxiety, and age 
had no noticeable relationship with EGG amplitude, fre-
quency or regularity.

4.1 | Electrode montage

We found that the sharpest spectral signature of the gastric 
rhythm could most often be found over lower left abdomi-
nal regions, that is, locations that are lower than in standard 
clinical settings (Riezzo et al., 2013; Simonian et al., 2004; 
Yin & Chen, 2013). This result is in line with recent EGG 
studies, where electrodes also covered a lower portion of 
the abdomen, but that were additionally informed, via CT 
scan analysis, on the precise stomach location and geom-
etry in both patients and healthy controls (Gharibans, Kim, 
Kunkel, & Coleman,  2017, 2019). Both in the Gharibans 
et al. studies, and in ours, participants were seated, slightly 
or half-reclined, thus differing from most clinical studies 
where a lying position is the norm (e.g., Geldof et al., 1989; 
Kaneoke et al., 1995; Lin, 1999), potentially leading to a dif-
ferent stomach position. In addition, we used here the refer-
ence electrode location commonly advocated in the clinical 
literature (Chen et al., 1999) over the upper right abdominal 
location, which might contribute to observing larger EGG 
amplitudes more often at the lower left location. While dis-
tance to reference electrode might contribute to EGG signal 
amplitude, it is unlikely to be the only determinant, for two 
reasons. In some participants, the largest EGG amplitude 
was detected close to the reference (i.e., electrodes 2 and 3). 
Conversely, the electrode where the largest EGG amplitude 
is most often detected (#7) is not the electrode the furthest 
away from the reference electrode. Note that reference-free 
EGG data can be obtained by a higher density coverage and 
the surface laplacian transform (Gharibans et al., 2017).

F I G U R E  9  Percentage of EGG cycles classified as artifacted 
because of nonmonotonicity, as a function of EGG amplitude. Only 
20% of the nonmonotonous cycles also have a very low amplitude
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Still, it is important to bear in mind that electrodes at lower 
locations might be more likely to record not only from the 
stomach, but also from other organs of the GI tract (Amaris 
et al., 2002; Erickson et al., 2019). While the rhythmic activity 
of the small intestine is at higher frequencies, the frequency 
range of the colon is broader, covering the frequency range 
between 0.03 and 0.13  Hz (Amaris et  al.,  2002; Erickson 
et al., 2019; Homma et al., 1995; Pezzolla et al., 1989; Riezzo 
et al., 1998), or even up to 0.2 Hz (Taylor et al., 1975). The 
frequency range of the colon and of the stomach might thus 
overlap, but the spectral signature of the stomach seems more 
narrow-band than the spectral signature of the colon. It is thus 
important to couple the use of the low electrode montage we 
advocate with strict criteria to identify the spectral signature 
of the stomach in the recordings.

4.2 | Data set selection based on spectral 
analysis and percentage in normogastria

The best evidence for gastric activity is a sharp spectral sig-
nature with a peak within the normogastric range. We re-
tained two criteria: the sharpness of the spectral peak, and 
its presence at several recording locations. Applying those 
criteria in a rather strict manner led to discarding 18% of the 
participants, which is quite a large proportion, but this con-
servative approach should guarantee a large contribution of 
the gastric rhythm to the recorded signal. This first process-
ing step could, and should, be improved in the future by find-
ing a more quantitative approach to characterize the spectral 
signature.

The absence of the spectral signature of the gastric 
rhythm in EGG spectra can be attributed to various reasons. 
The signal might be too small because the stomach is too 
far away from the selected recorded locations, either because 
of an unusual stomach position or because abdominal fat in-
creases the distance between stomach and electrode (Chen 
et  al.,  1999; Liang & Chen,  1997). Although participants 
with high BMI (above 26) are more likely to have more ab-
dominal fat and to display a lower EGG amplitude (Riezzo 
et al., 1991; Simonian et al., 2004; Somarajan et al., 2014), 
we do not observe a link between EGG amplitude and BMI. 
However, participants without an EGG spectral peak had a 
higher BMI than participants with a spectral peak. This might 
indicate that abdominal fat can decrease the signal-to-noise 
ratio to the point that the gastric rhythm can no longer be 
detected. However, if the gastric rhythm can be detected, its 
amplitude and frequency do not depend on BMI, at least in 
the restricted BMI range explored in our sample. Signal to 
noise ratio might also be compromised because of artifacts, 
in particular, due to movement of the abdominal wall or of 
wires. Additionally, the gastric rhythm might be disorga-
nized and hence display a blurred spectral signature, even in 

healthy participants which were screened for gastrointestinal 
pathologies.

After assessing power spectra, we quantified the regular-
ity of gastric cycles using two independent approaches (SD 
of gastric duration smaller than 6 or 70% of cycles in normo-
gastria), that converged and identified the same four partic-
ipants with irregular EGG, out of 100. Note that the criteria 
on spectral signature are somewhat redundant with the crite-
ria on cycle regularity. Indeed, irregular cycles are likely to 
result in a wide spectral peak, while we selected recordings 
with a well-defined spectral signature.

4.3 | Data segment selection

To the best of our knowledge, there is currently no stand-
ard for artifact rejection in EGG recordings, although some 
new methods are being developed for ambulatory recordings 
(Gharibans et  al.,  2018). Here, we chose to discard gastric 
cycles, that is, data segments of about 20 s, if the cycle was 
excessively long or short or if the phase displayed a nonmo-
notonous evolution within a cycle. Participants with a large 
EGG amplitude also had more regular cycles. At the single-
subject level, nonmonotonous cycles were more numerous 
when amplitude was low, but could be also observed in data 
segments with large amplitude. In other words, while there 
is a link between amplitude and cycle regularity, there is no 
one-to-one correspondence. It is important to underline that 
we do not know whether the cycles we discard represent ar-
tifacts (motion, electrical noise, …) accompanied with signal 
loss or a true irregularity of the gastric rhythm. Our proce-
dure aims at extracting a regular rhythm that can be safely as-
sumed to reflect the gastric rhythm. It is obviously unsuitable 
for clinical studies or cognitive studies in which irregulari-
ties of the gastric rhythm are of interest (see, e.g., Harrison 
et al., 2010).

4.4 | Factors affecting EGG peak frequency, 
amplitude, and cycle duration variability

We found that women showed on average a slightly higher 
peaking frequency than men, a difference that was small and 
not strong enough to survive correction for multiple com-
parisons. This is in line with two previous studies (Parkman 
et  al.,  1996; Tolj,  2007) in comparably large sample sizes 
(N = 83 and N = 120). No effect was detected in smaller sam-
ples of adults (Pfaffenbach et al., 1995; Simonian et al., 2004) 
or in children (Riezzo et al., 1998). We did not document the 
phase of the menstrual cycle, which might impact EGG ac-
tivity, although different studies yielded contradictory results 
(Parkman et al., 1996; Pfaffenbach et al., 1995; Tolj, 2007). 
Age was not related to EGG peak frequency, amplitude or 
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cycle length variability, in line with previous studies inves-
tigating this age range (18–30 years) (Parkman et al., 1996; 
Pfaffenbach et  al.,  1995; Riezzo et  al.,  1991; Shimamoto 
et  al.,  2002; Simonian et  al.,  2004; Tolj,  2007). Note that 
our data set stems from a quite homogenous population: 
We did only include participants with a BMI range com-
prised between 18 and 26 and with an age between 18 and 
30  years. EGG parameters are altered for higher values of 
BMI (Simonian et  al.,  2004; Tolj,  2007) or age (Parkman 
et  al.,  1996; Pfaffenbach et  al.,  1995; Riezzo et  al.,  1991; 
Shimamoto et al., 2002; Simonian et al., 2004; Tolj, 2007).

As time elapsed since the last meal increased, the EGG 
became more irregular. The correlation was mostly driven 
by participants having had their last meal more than 10 hr 
before the recording, that is, participants who had skipped 
breakfast. This suggests that in order to increase the chance 
of recording a regular signal, it might be recommended to ask 
participants to have a meal 2 to 4 hr before the recordings. 
This finding might potentially be linked to the observation 
that during very prolonged fasting (typically overnight), the 
stomach shows transient periods of strong contractions (also 
called the “phase III of the interdigestive complex”––Koch 
& Stern, 2004), which could impact the stability of the EGG. 
Combined with the classical finding that EGG amplitude in-
creases right after a meal, these results emphasize the impor-
tance of taking into account the time elapsed since last meal 
in the experimental design (for instance by counterbalanc-
ing the order of presentation of different conditions between 
participants) and data analysis (for instance by adding time 
elapsed since last meal as a regressor).

Note that we restricted the analysis to a subset of EGG pa-
rameters (peak frequency, amplitude, cycle duration variabil-
ity, percentage normogastria). Other parameters of interest, 
not studied here, are related to departure from normogastria 
(see e.g., Koch & Stern,  2004; Riezzo et  al.,  2013; Yin & 
Chen, 2013).

4.5 | Conclusion: strengths and limitations

We propose here a full pipeline to record and analyze the 
EGG of young, healthy, and rather lean participants in a 
moderate fasting state, and validate it in a large data set. 
The pipeline aims at identifying a rhythm with a peak fre-
quency between 0.033 and 0.067 Hz (2–4 cpm), and regu-
lar enough over time, so that it can safely be attributed to 
the stomach. It follows that we do not investigate lower or 
higher frequencies, for lack of criteria to discriminate sig-
nal from noise (Verhagen et al., 1999) and that the proce-
dure we propose is not well suited for psychophysiological 
studies targeting large changes in gastric rhythm frequency, 
such as nausea, disgust, and stress. The procedure is also 
not suitable for investigating the spatial propagation of 

gastric slow wave along the stomach, and we refer the 
reader to other approaches (Angeli et al., 2015; Bradshaw 
et al., 2016; Gharibans et al., 2019; O’Grady et al., 2010, 
2012).

The pipeline depends on the definition of the normal 
range of the gastric rhythm, an issue that is not fully re-
solved in the clinical literature (Chang,  2005; Parkman 
et al., 2003). This pipeline allows to estimate the duration 
of each gastric cycle, thereby providing a finer temporal 
resolution than approaches based on running spectral anal-
ysis (Stern et al., 2007). Gastric cycle duration estimation 
is dependent on the design and width of the filter used for 
analysis, which should be wide enough to capture phys-
iological fluctuations of the gastric rhythm but narrow 
enough to exclude contaminating sources. Finally, the pro-
cedure is only semi-automatized. Visual inspection is still 
required to detect large artifacts before any processing, to 
select power spectra satisfying all criteria, and to verify the 
quality of the filtering process.
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