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Detecting the dominance component 
of heritability in isolated and outbred 
human populations
Anthony F. Herzig   1,2, Teresa Nutile   3, Daniela Ruggiero 3,4, Marina Ciullo   3,4, 
Hervé Perdry 5 & Anne-Louise Leutenegger   1,2

Inconsistencies between published estimates of dominance heritability between studies of human 
genetic isolates and human outbred populations incite investigation into whether such differences 
result from particular trait architectures or specific population structures. We analyse simulated 
datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate 
of Cilento for various commonly studied traits. We show the strengths of using genetic relationship 
matrices for variance decomposition over identity-by-descent based methods in a population isolate 
and that heritability estimates in isolates will avoid the downward biases that may occur in studies 
of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, 
we also show that precise estimates of dominance in isolates are demonstrably problematic in the 
presence of shared environmental effects and such effects should be accounted for. Nevertheless, we 
demonstrate how studying isolates can help determine the existence or non-existence of dominance for 
complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level 
in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from 
ensemble data across multiple population isolates.

For a plethora of human traits, there is an observable resemblance between close relatives. This suggests the pres-
ence of genetic constituents in the architectures of such traits and leads to an obvious question: for a pair of indi-
viduals, can one describe a relationship between their degree of relatedness (genomic sharing) and the degree of 
similarity of their trait values? Fisher unravelled this question by proposing a decomposition of the variance of a 
trait, with components attributed to each individual’s genome and to the amassment of environmental exposures 
in each individual’s history. This genetic component of the variability is known as the heritability of the trait which 
Fisher connected to the correlation of trait values between relatives. Heritability has been estimated extensively 
for a multitude of traits and through diverse models and study designs. Importantly, the recent availability of 
dense genetic data in large cohorts has enabled the estimation of heritability from samples of unrelated individu-
als whereas previous estimations had been driven by studies of close relatives such as twins or nuclear families. A 
review of heritability estimation in related individuals can be found in Tenesa & Haley1 and a recent discussion of 
heritability estimation in unrelated individuals can be found in Yang et al.2.

An important distinction is to be made between broad-sense heritability (H2) and the more commonly com-
municated narrow-sense heritability (h2). This stems from the innovative modelling of complex traits by Fisher 
who demonstrated the interest of splitting the genetic variance of a trait into additive, dominant (interaction of 
alleles within a genotype of a single locus), and epistatic (interaction between genotypes of multiple loci) compo-
nents3. For details on more elaborate models, we refer the reader to Abney et al.4 and Young & Durbin5. Briefly 
put, h2 describes the additive contributions of each allele received from one’s parents while H2 encompasses the 
effect of one’s whole genome and is the sum of h2 and the contributions of non-additive effects. For the purposes 
of this study, we term this non-additive fraction of variance as ‘dominant’ as we do not here consider epistasis or 
higher order variance terms; we will denote this component as hD

2  (equal to H2 − h2). In terms of phenotypic 
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similarities between family members, the parent/offspring correlation is equal to h1
2

2 while the sibling correlation 
is equal to +h hD

1
4

2 1
2

2. To give clarity, we define =h hA
2 2.

We will consider the estimation of heritability through maximum-likelihood estimation of variance parame-
ters of linear mixed models (LMMs). For a setting of N individuals and Y a vector of observed phenotypes, we will 
consider the following model with fixed effects Xand a variance-covariance structure split into genetic additive, 
genetic dominant, and environmental components:
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There are various possible choices of the N × N matrices K and D. Historically, K and D are defined in terms of 
identity-by-descent (IBD) probabilities4,6,7. K is equal to 2ϕ, where ϕi, j is the kinship coefficient of individuals i and j, 
defined as the probability of two alleles, randomly sampled from each of individuals i and j, at the same locus will be 
IBD. Di, j is the probability that individuals i and j share exactly two pairs of alleles IBD at a given locus. Both ϕi, j and 
Di, j are themselves expressions of Jacquard’s nine coefficients of identity: ϕ = Δ + Δ + Δ + Δ + Δ( )i j, 1

1
2 3 5 7

1
4 8, 

and Di, j = Δ1 + Δ7
6. In studies of family data or isolated populations, these coefficients have been classically estimated 

from pedigree information but with the advent of dense genomic information, they can now be estimated reliably 
from genotype data by either estimating genome-wide IBD sharing probabilities or detecting and counting IBD seg-
ments8–10. Such methods have also been developed for studies of unrelated individuals11, though the predominant 
approach in such studies is to use moment estimators of K and D by taking correlations between each pair of individ-
uals’ (orthogonal) additive and dominant genetic components, respectively12,13. These latter estimators are known as 
genetic relationship matrices (GRMs) and can be used in any study design.

This leads to two distinct interpretations of the matrices K and D which both come with potential drawbacks. 
If IBD probabilities are used to estimate K and D, they represent the level of relatedness between pairs of individ-
uals based on the presence of recent common ancestors but if K and D are estimated as GRMs, then they repre-
sent simply the correlation between pairs of individuals’ genotypes. For the former interpretation, coefficients of 
identity can only be approximated either by their expected values based on the pedigree structure linking indi-
viduals or by estimating the proportions of IBD-sharing between individuals based on their genotypes. However, 
exhaustive pedigree information is never available and indeed the concept of IBD is similarly problematic due to 
the ambiguity of how many generations to consider when looking back for evidence of shared genetic ancestors. 
After many generations, mutations and recombinations cause the IBD segments to become increasingly short 
and not completely identical and thus difficult to distinguish from background genetic variation14–16. For the 
latter interpretation involving GRMs, there is the immediate problem that such correlations are computed from 
a large set of variants which are not specific to the trait being studied in the hope that these variants will be repre-
sentative of the unknown set of causal variants via linkage disequilibrium (LD) (correlations between variants)17. 
Consequentially, if heritability is estimated with GRMs, it corresponds to only a proportion of the phenotypic 
variation coming from the subset of causal variants that are in LD with the genotyped variants18. This can lead to 
downwardly biased estimate of heritability as causal variants may often be held at low frequencies by selection19,20 
and so will be in weak LD with common genotyped variants. Furthermore, if there exist relatively few causal var-
iants, the large numbers of non-causal variants used to estimate the genetic correlations might mask the desired 
correlation of causal variants between individuals21. Genomic-based IBD methods applied to unrelated individu-
als has been suggested as an approach to improve upon genetic correlation methods as detected stretches of IBD 
can cover some un-typed genetic variation11.

The main motivation for employing GRMs is that this allows for the estimation of heritability from unre-
lated individuals, thus leveraging data from large cohorts and avoiding shared environment biases13,22. However, 
there has been a trend towards using genomic-based estimates even when pedigree data is available due to the 
increased precision of relatedness estimation from genetic data, both in human studies16,23–27 and in animal/plant 
studies28–31.

For complex human traits, it has been suggested that one can assume that any contributions from non-additive 
genetic components h( )D

2  are relatively small compared to the additive genetic components32 and thus often only 
estimates of hA

2 are presented. In a recent study, Zhu et al.12 illustrated this characterization of diminutive domi-
nant genetic variance for 79 traits in two large samples of unrelated individuals. This result was then re-enforced 
in Nolte et al.33. Yet, many others have presented incongruent results on this subject. Chen et al.34 compared the 
same approach as Zhu et al.12 with a twin-based analysis and concluded that whilst the genetic variances of 19 
traits were predominantly additive, dominant genetic components were nonetheless more prominently apparent 
than when described elsewhere. Aside from these studies, dominance heritability estimation using GRMs has 
rarely been carried out, and the authors who are more interested in dominance tend to rely on family data35,36. Of 
particular note is the observation that significant non-additive genetic components for many traits have been 
found in some studies on population isolates: Abney et al.37, Pilia et al.38, and Traglia et al.39 (Table 1).

An isolate is characterized as a population arising from a small group of founders and experiencing subse-
quent demographic growth in isolation. Such populations will include pairs of distantly related individuals who 
nonetheless share long haplotypes IBD, and may even share both haplotypes IBD in some regions. The pres-
ence of both pairs of closely related individuals and pairs of cryptically related individuals suggests that isolates 
could be ideally suited to heritability analyses. Furthermore, isolates are of interest for assessing the existence of 
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genetic components as one can assume that less heterogeneity in environmental exposures will be present in the 
population.

Studying dominance in samples of human twins or siblings can be problematic due to confounding between 
the sharing of genotypes and shared environmental factors1,34. In a large population isolate, such confounding had 
been deemed as unlikely to arise due to the extensive range of possible degrees of relatedness between individu-
als37,40. However, the presence of numerous sibling pairs in the sample could easily lead to confounding with the 
proportions of sharing two alleles IBD (IBD = 2) and indeed such confounding between estimates for dominance 
and shared environmental factors between relatives has recently been observed by Zaitlen et al.41 who performed 
a study on extended genealogies from the Icelandic populations, itself a moderate isolate.

Genetic dominance has often been considered in the study of various animal species (mammals, poultry, and 
fish are most commonly studied). Here, by design, confounding with shared environmental factors can often be 
avoided and extensive and highly accurate pedigree data can be recorded. For many traits, dominance heritabil-
ity is often found to be significantly different from zero and the inclusion of dominance has been shown to give 
improved performance of prediction models in animal studies42–47. Negative results regarding the improvement of 
prediction given by including genetic dominance have also been presented (eg. Heidaraitabar et al.48) and indeed 
debate continues in regards to the practical value of non-additive variation; for recent reviews we refer the reader 
to Varona et al.49 and Wolak & Keller50. The increased interest in non-additive variation in this domain suggests 
that there may be value in not discounting such variation in human studies.

We propose to compare heritability estimations in a range of simulated study designs in order to contrast 
studies in population isolates and in samples of unrelated individuals. In this way we hope to determine whether 
the differences between studies in isolates and in unrelated samples stem from particular trait architectures, spe-
cific population characteristics, or non-equivalence between interpretations of heritability in differing study set-
tings. We will also assess different methods for estimating the matrices K and D in an isolate as well as the effect 
of shared environmental factors between siblings on the estimation of hD

2 in an isolate. We then proceed to analyse 
anew the six complex traits displayed in Table 1 in the genetic isolate of Cliento in Southern Italy where we will 
validate conclusions from our simulation study and search for evidence of significant non-additive genetic 
components.

Results
Effect of population structure.  We assessed the ability of an LMM to detect the additive and dominant 
genetic variance components in four simulated populations, including firstly one population labelled 
“Isolated(1444)” which mimics the population structure of the genetic isolate of Cilento from Southern Italy (this 
cohort is described fully in the Methods section), along with three simulated outbred populations, 
“Oubred(1444)”, “Outbred(4332)”, and “Outbred(8644)” where the numbers in parentheses indicate the sample 
sizes. All populations are formed from mosaic haplotypes arising from the UK10K imputation panel51. We 

Phenotype

Abney, McPeek, 
& Ober37, 
N = 806, Isolate 
(1)

Pilia et al.38, 
N = 6,148, 
Isolate (1) (2)

Traglia et al.39, 
N = 1,803, 
Isolate (1) (2)

Zaitlen et al.41, 
N ≈ 15,000, 
Extended 
Genealogies (3)

van Dongen 
et al.35, 
N ≈ 7,500, 
Twin Study 
(4)

Chen et al.34, 
N = 7,740, Twin 
Study (5)

Chen et al.34, 
N = 5,779, 
Outbred (5) (6)

Zhu et al.12, 
N = 8,682, 
Outbred (6)

Nolte et al.33, 
N = 13,436, 
Outbred (6)

hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2

Height — — 0.77 0.23 * 0.78 0.22 * — — 0.81 0.09 0.77 0.09* 0.62 0.00 0.48 0.02 0.49 0.00

BMI 0.54 0.00 0.36 0.32 * 0.33 0.17 0.16 0.09 0.41 0.37 0.28 0.41* 0.21 0.02 0.23 0.15* 0.25 0.02

TGLY 0.37 0.00 0.30 0.42 * 0.39 0.35 * — — 0.33 0.25 0.42 0.14 0.31 0.28* — — 0.19 0.01

HDL 0.63 0.00 0.47 0.11 0.62 0.00 0.42 0.14* 0.40 0.27 0.66 0.00 0.24 0.01 0.25 0.07 0.19 0.00

Total Chol — — 0.38 0.29 * 0.23 0.77 * — — 0.51 0.16 0.28 0.19* 0.15 0.00 0.21 0.01 0.23 0.00

LDL 0.36 0.60 * 0.37 0.27 * 0.33 0.66 * 0.20 0.26* 0.51 0.18 0.23 0.24* 0.16 0.00 0.26 0.02 0.27 0.00

Table 1.  Published results for additive and dominant genetic variability from various study designs. *Estimates 
of hD

2 presented as statistically significant at the 5% level. ‘—’ Trait not studied for dominance in the article. (1) 
Estimates based on estimating K and D from expected proportions of identity-by-descent (IBD) sharing coming 
from pedigree information. (2) The depth of pedigree information in these studies did not allow the 
differentiation between a dominance model (including non-additive genetic variation) and a household model 
(including an effect of shared environment between siblings). (3) The authors of this study analysed a large 
sample from the Icelandic population for whom extensive pedigree data was available, Matrices K and D were 
estimated by locating and counting stretches of IBD between pairs of individuals. (4) This study analyses a large 
cohort of monozygotic and dizygotic adult twins. Standard errors are only presented for broad-sense 
heritability, though it is likely that the estimates for hD

2 for all traits other than height were significantly different 
to zero. (5) The authors of this study performed separate analysis, firstly a twin based study using structural 
equation methods with adjustments for reported levels of time spent in a shared environment between twins, 
and secondly a study of a large sample of unrelated which included one individual out of most twin pairs in the 
first analysis. (6) Estimates based on calculating correlations between additively and non-additively coded 
genotypes to compute matrices K and D. Abbreviations: BMI: Body-mass index; TGLY: Triglycerides; HDL: 
High-density lipoproteins; Total Chol: Total cholesterol; LDL: Low-density lipoproteins; N: Sample size.
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simulated phenotypes with the following characteristics: = = .h h 0 4A D
2 2 , M causal additive variants, and M causal 

dominant variants. Causal variants are selected at random and effect sizes are drawn from normal distributions. 
Full details of the simulation of genotypes, phenotypes, and population structure are given in the Methods sec-
tion. We chose 200 values of M between 1 and 1,000,000, and for some values of M we repeated the simulation 500 
times in order to empirically estimate the standard errors of the estimates of hA

2 and hD
2. We have considered either 

selecting causal variants completely at random (Causal Variant Scenario A) or from only the set of variants with 
MAF > 0.01 (Causal Variant Scenario B). Results for Scenarios A and B are presented in Figs 1 and 2, respectively. 
Here, we have calculated K and D for each population as GRMs from a dense set roughly 5.8 million of frequent 
UK10K variants (MAF > 0.05). We also performed the simulation with K and D calculated on roughly 170,000 
single nucleotide polymorphisms (SNPs) which are those also available in the real data of Cilento (Supplementary 
Figs 1 and 2).

Fitting the LMM for Isolated(1444) resulted in accurate estimates of hA
2, estimations of hD

2 were also unbiased 
but were clearly more problematic as seen by the low precision of the estimates. The results from Isolated(1444) 
were neither affected by the MAF range of the causal variants or the density of the genetic data used to estimate K 
and D. However the, precision of the estimates was low. The estimates in all of the simulated outbred populations 
were evidently downwardly biased when causal variants were selected completely at random and therefore 

Figure 1.  Estimating heritability components in simulated populations with different structures. (a) Maximum 
Likelihood Estimates (MLEs) of h gold( )A

2  and h blue( )D
2  are presented for each simulated phenotype by vertical 

descending gold and ascending blue bars respectively. The middle grey bars represent the remaining 
environmental variation − − .h h(1 )A D

2 2  Each phenotype was simulated using different numbers of causal 
variants (M) for each variance component which corresponds to the x-axis. Causal variants are mostly rare, as 
they are selected completely at random (Causal Variant Scenario A). All MLEs are displayed for the 4 
populations either Isolated(N) or Outbred(N), where the value of N denotes the sample size. Horizontal gold 
and blue lines indicating the values used for simulation = . = .h h( 0 4, 0 4)A D

2 2 . Matrices K and D were calculated 
using roughly 5.8 million frequent UK10K positions. A missing bar for hA

2 or hD
2 indicates the maximum 

likelihood estimate of the parameter was zero. (b) An example of one set of MLEs from section A is given for the 
population Isolated(1444) and a value of M of 105. (c) Gold and blue diamonds represent the empirical standard 
errors of the MLEs for a selection of values of M. Simulation repeated 500 times.
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included many rare variants as in the UK10K panel (from which all simulated data is based on), over 50% of the 
variants have a MAF below 0.01. As the size of the outbred population increases, the precision of the estimates 
increases but downward biases remain, even when all causal variants are non-rare. The number of causal variants 
for each variance component (M) did not affect the results other than we observed that a small number of causal 
variants led to lower precision in the results obtained when simulations were repeated. This is shown by the dia-
monds representing empirical standard errors measured for certain values of M shown in Figs 1 and 2 and in 
Supplementary Figs 1 and 2.

We observed increased precision in the estimation of heritability components as we increased the size of the 
simulated outbred population (Figs 1 and 2). To explore the effect of sample size when studying isolates, we sim-
ulated populations with isolate characteristics of sizes 4,332 and 8,664 labelled as Isolated(4332) and 
Isolated(8664), respectively. A description of the simulation is given in the Methods section. For these popula-
tions, we simulated phenotypes under Causal Variant Scenarios A (displayed in Fig. 3) and B (displayed in 
Supplementary Fig. 3). The precisions of the estimates of hA

2 and hD
2 from these larger samples was increased com-

pared to the population Isolated(1444) and estimates remained unbiased for both heritability components. 
Indeed, the population Isolated(8664) gave the most accurate heritability estimates of all populations thus far 
considered.

Subsequent analyses will focus on the population Isolated(1444). This will be of particular interest as for this 
population results are directly comparable with analyses of the real data of Cilento.

Effect of the choice of relatedness matrices.  To compare methods for calculating K and D in a popula-
tion isolate, we performed similar simulations of phenotypes and tested the estimation of hA

2 and hD
2  from our 

LMM from each of the following strategies: K and D calculated from the pedigree of Cilento, K and D calculated 
from exact IBD-sharing recorded during the data simulation (true IBD), K and D calculated as GRMs, and finally 
K and D calculated using either the IBDLD9 or GIBDLD52 software (see Methods section). Comparisons of 
off-diagonal elements of these matrices are given in Supplementary Fig. 4a–d. There was clear additional variation 
in the true proportions of IBD-sharing as compared to the expected values calculated by the pedigree 
(Supplementary Fig. 4a) and this was captured by the GRMs (Supplementary Fig. 4b). The matrix K as estimated 
by a GRM was very similar to the true IBD-sharing probabilities but there were some differences for the matrix D 
(Supplementary Figure 4c). The software IBDLD and GIBDLD were able to accurately estimate the true 
IBD-sharing in the simulated isolate (Supplementary Fig. 4d).

Figure 2.  Heritability estimates when causal variants are non-rare. Here, phenotypes are simulated by choosing 
causal variants that are all non-rare, as they are selected to have MAF > 0.01 (Causal Variant Scenario B). Legends 
and the configuration of this plot are identical to those of Fig. 1A. Here, and for subsequent figures, we overlay the 
empirical standard error estimates, whose values correspond to the second y-axis on the right of the figure.
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The maximum likelihood estimates (MLEs) of hA
2 and hD

2 from each simulated phenotype can be positioned on 
a simplex to represent the range of possible values of the two parameters hA

2 and hD
2. We present results from 500 

simulated phenotypes with M = 100,000 where we display minimal ellipses that contain 95% of all MLEs obtained 
from each strategy (Fig. 4).

First we compare GRM estimators using roughly 5.8 million frequent (MAF > 0.05) UK10K positions with 
estimates of K and D using either pedigree information or true IBD-sharing information (Fig. 4). The 
method-of-moment GRM estimates appear most accurate, while true IBD-sharing based matrices performed very 
similarly to expected IBD-sharing matrices derived from the pedigree. This trend in results occurred irrespective 
of the MAFs of causal variants or the number of causal variants (Fig. 4 and Supplementary Fig. 5). The advantage 
observed for the GRM method is mostly evident in the estimate of hD

2 as the ellipses were similarly sized in their 
minor axes (which describes variation in hA

2) but more differentiable when examining their major axes (which 
describes variation in hD

2). Indeed, it was on the dominance matrix D that we observed noticeable differences 
between off-diagonal elements when comparing GRMs to IBD-based methods (Supplementary Fig. 4c,d). 
Genomic IBD-based estimates from IBDLD or GIBDLD were also used to calculate K and D. These Hidden 
Markov Model (HMM) based methods are not suitable for millions of variants and so were applied to the set of 
roughly 170,000 SNPs present in all three Cilento villages. These methods were compared to the use of GRMs based 
on the same set of variants and to using pedigree information or true IBD-sharing information (Supplementary 
Fig. 6a,b). Such HMM methods could have improved upon the strategy using true IBD proportions as such meth-
ods could potentially uncover additional hidden IBD in our simulated population arising from IBD-sharing within 
the UK10K. We found that IBDLD and GIBDLD led to similar estimates of hA

2 and hD
2  to using either pedigree 

information or true IBD-sharing; and again no method was observed to outperform the use of GRMs.

Effect of the presence of a shared environment.  To investigate how shared environmental factors can 
affect the estimation of hD

2  in a populations isolate, we simulated additional phenotypes for the population 
Isolated(1444) under causal variant Scenario A, with M = 100,000, and with = .h 0 4A

2 , = . −h h0 4D S
2 2, for the 

following values of hS
2: 0.00, 0.02, 0.05, 0.10, 0.20, and 0.40. For each of these phenotypes, we added positive covar-

iance between the environmental components of siblings. This covariance between siblings creates a confounding 
between non-additive genetic effects and shared environment effects. Full details of this phenotype simulation 
and the confounding created are found in the Methods section. We present the estimations of hA

2 and hD
2  from 

analyses with (model KDS) or without (model KD) the inclusion of a variance component (S) indicating pairs of 
siblings in the sample for = .h 0 20S

2  (Fig. 5). Throughout, model names indicate the set of variance-covariance 
matrices included in the LMM. Results for further values of hS

2 are displayed in Supplementary Fig. 7a–f. Here, we 
used either GRMs or pedigree based estimates for K and D as these were predominantly the methods used in 

Figure 3.  Effect of sample size on heritability estimates in an isolate. Estimates of hA
2 and hD

2 are compared for 
populations with isolate characteristics of size 1,444, 4,332, and 8,664. Phenotypes are simulated under Causal 
Variant Scenario A and under the setting = .h 0 4A

2 , = .h 0 4D
2 . Legends and the configuration of this plot are 

identical to those of Fig. 2.
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aforementioned studies that calculated dominant genetic components for widely studies traits (Table 1). Our 
simulations indicate that once a significant correlation between siblings is introduced, our unadjusted estimates 
for the broad-sense heritability became close to or equal to 1 (MLEs falling on the bottom axis of the simplex for 
model KD). Again, in these analyses using GRMs appears to outperform the use of pedigree based estimates. 

Figure 4.  Effect of relatedness matrix estimation method in an isolate. Here, we compare methods of estimating 
matrices K and D for the simulated population isolate ‘Isolated(1444)’ K and D are estimated using either 
genetic relationship matrices (GRM), Pedigree information, or true IBD-sharing (IBD). Results are displayed on 
a simplex governed by the two parameters hA

2 and hD
2, which both could range between 0 and 1. The heritability 

scenario used to simulate all phenotypes = = .h h( 0 4)A D
2 2  is marked by the triangular point in the centre of each 

simplex. Minimal ellipses containing 95% of the maximum likelihood estimates (MLEs) from 500 simulated 
phenotypes under either Causal Variant Scenario A or B (see Figs 1 and 2) are presented. Here, phenotypes are 
simulated from a large set of causal variants (M = 100,000).

Figure 5.  Effect of shared environmental factors on heritability component estimates in an isolate. Comparison 
of estimates of hA

2 and hD
2 under models with and without a shared environment component (model KDS and 

model KD, respectively). As in Fig. 4, minimal ellipses containing 95% of the maximum likelihood estimates 
(MLEs) from 500 simulated phenotypes but now under the setting = . = . = .h h h0 4, 0 2, 0 2A D S

2 2 2 . Matrices K 
and D are calculated either using genotype relationship matrices (GRMs) or pedigree information. In the case of 
model KD when using pedigree information (right), all MLEs were found to be directly on the bottom edge of 
the simplex, and so the minimal ellipsoid degenerated into a line segment. Here, phenotypes are simulated from 
a large set of causal variants (M = 100,000).
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Adjusting for such correlation between siblings in the LMM did substantially correct for this bias but it is clear 
that in a population such as Cilento, there is little hope in effectively discriminating between dominant genetic 
variability and shared environmental factors between siblings if both occur simultaneously.

An obvious approach to avoid such ambiguity would be to remove one individual from every pair of siblings 
but in Cilento this would greatly reduce the sample size. Therefore, we removed one individual from each pair of 
siblings from the population Isolated(8664), creating a sibling free population which we label as “Isolated(5136)_
nosibs”. Full details of the simulation of this population are found in the Methods section. From this population, 
we observed improved estimates of both hA

2 and hD
2  as compared to the Outbred(8664) under Causal Variant 

Scenario A; with the two populations performing similarly under Causal Variant Scenario B (Supplementary 
Fig. 8a,b). When compared to the results from Isolated(1444), the absence of pairs of individuals with high 
IBD = 2 probabilities led to a slight underestimation of hD

2 , but the increased sample size led to lower standard 
errors across replications of phenotype simulation. If no dominant genetic component was simulated, the 
Isolated(1444) population was most likely to give large (more erroneous) estimates for hD

2  compared to 
Isolated(5136)_nosibs and Outbred(8664) (Supplementary Fig. 8c,d).

Analysis of the Cilento Isolates.  We first calculated the matrices K and D using different approaches and 
then compared the resulting values. We calculated K and D using either the pedigree information, or as GRMs using 
genotype data before or after imputation. Results were in accordance with those from the simulated population 
isolate Isolated(1444) (Supplementary Fig. 9). However, we observed greater differences between the off-diagonal 
elements calculated with the pedigree and those in the GRMs when analysing the real Cilento data as compared to 
Isolated(1444). This is likely to stem from the explicit use of the pedigree information within the simulation. The 
inclusion of imputed variants led to similar estimates for the matrices K and D (Supplementary Fig. 10).

Following quality control and imputation (full details are given in the Supplementary Materials); we fitted 
LMMs to the data in Cilento having estimated matrices K and D as GRMs (using all variants with MAF > 0.05 and 
imputation quality score > 0.7). Several traits displayed significant dominant genetic components and our results 
(Table 2) are not distant to those found in the literature of previous studies in population isolates (Table 1). LMMs 
were fitted with different combinations of the matrices K, D, and S (the sibling indicator matrix). Full details are 
given in the Methods section; as above in the simulation study, the model names indicate the variance compo-
nents included in the LMM. The orthogonality between the additive and non-additive genetic components is 
apparent as estimates for hA

2 are similar across models with or without the inclusion of the non-additive genetic 
variance component. For each phenotype considered, we estimated the entire likelihood surface as well as the 
MLEs for the parameters hA

2 and hD
2 under the model KD. Likelihood surfaces governed by hA

2 and hD
2 for BMI and 

LDL are displayed in Fig. 6 and corresponding results for other traits are found in Supplementary Fig. 11a–d. We 
observed similar profiles in the likelihood contours as were observed in the distributions of MLEs from repeated 
phenotype simulation in the simulation study. We are able to have a reasonable level of confidence in the estimates 
of the additive genetic component, but the dominant genetic component is problematic as our confidence regions 
are very wide. The MLEs found when using pedigree information to estimate matrices K and D had equivalent 
estimates for the additive genetic components to the MLEs found when using GRMs, however the dominant 
genetic components were always estimated as equal or greater when using pedigree information.

The traits of BMI, LDL, and Total Chol were all estimated as having dominant genetic components higher than 
their respective additive genetic components in the KD model. By examining the 95% confidence regions, there 
is some indication that the dominant genetic components are unlikely to be equal to zero. This is due to the obser-
vation that the red zones either do not intersect or only briefly intersect the upper left boundary =h( 0)D

2  of their 
respective simplexes (Fig. 6 and Supplementary Fig. 11d).

Adding the shared environmental component between siblings drastically changed the estimates of hD
2  for 

many traits as seen by comparing models KD and KDS in Table 2; for our two example traits (BMI and LDL) we 
present again the likelihood profiles from the original analysis and then new MLE and 95% confidence interval 
for hA

2 and hD
2 from the KDS model as well as the previous estimates for hA

2 and hD
2 found in the literature (Fig. 7). 

Equivalent plots for our other studied traits are given in Supplementary Fig. 12a–d.

Phenotype

GRM 
Model: K

GRM 
Model: KD

GRM 
Model: KS GRM Model: KDS

Pedigree 
Model: K

Pedigree 
Model: KD

Pedigree 
Model: KS

Pedigree Model: 
KDS

hA
2 hA

2 hD
2 hA

2 hS
2 hA

2 hD
2 hS

2 hA
2 hA

2 hD
2 hA

2 hS
2 hA

2 hD
2 hS

2

Height 0.76 0.74 0.13 0.74 0.04 0.74 0.12 0.01 0.75 0.74 0.15 0.74 0.04 0.74 0.15 0.00

BMI 0.40 0.35 0.58 0.31 0.23 0.31 0.00 0.23 0.44 0.35 0.65 0.35 0.21 0.35 0.00 0.21

TGLY 0.27 0.24 0.26 0.21 0.11 0.21 0.00 0.11 0.28 0.23 0.45 0.23 0.11 0.23 0.41 0.01

HDL 0.49 0.49 0.00 0.44 0.02 0.44 0.00 0.02 0.48 0.49 0.00 0.48 0.01 0.48 0.00 0.01

Total Chol 0.29 0.23 0.55 0.23 0.18 0.22 0.27 0.12 0.29 0.21 0.72 0.22 0.18 0.21 0.47 0.06

LDL 0.32 0.25 0.52 0.24 0.17 0.23 0.29 0.10 0.33 0.24 0.66 0.24 0.16 0.24 0.45 0.06

Table 2.  Maximum likelihood estimates for the contribution of each variance components considered in 
a Linear Mixed Model (LMM). Model names refer to the set of variance components included. K denotes 
the additive genetic component, D the non-additive or dominant genetic component, and S the component 
accounting for shared environmental effects between siblings. The previously reported results from Table 1 can 
be compared to our results under the model KD. Matrices K and D are calculated either as genetic relationship 
matrices (GRMs) or from pedigree information.
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For BMI, the unadjusted heritability estimate was distant from previously reported results, but once we allow 
for a shared environmental component between siblings, we find similar estimates for hD

2 to previous studies. For 
LDL, the unadjusted heritability estimates lay close to previous results from isolated populations, with the adjusted 
results moving towards previous results in studies of outbred populations but remaining quite large at 0.29.

Discussion
Across all analyses, whether on simulated or real Cilento data, we observed that estimates of hD

2 had less precision 
than estimates of hA

2.
Isolated populations exhibit favourable characteristics for uncovering the contribution of hD

2  due to the 
increased proportions of IBD = 2 between individuals. Our simulation elaborates on this by showing that in the 
absence of shared environmental effects, estimating hD

2 (and indeed hA
2) from an LMM in a population isolate will 

yield unbiased results for polygenic phenotypes with wide a range of characteristics. However, we saw that shared 
environmental factors pose a non-trivial obstacle to analysing dominant genetic variance of a trait in an isolated 
population. In the presence of even small shared environmental effects between siblings in the simulated isolate, 
we observed that estimates of hD

2 are heavily biased. Improved estimates may be attainable by including a sibship 
matrix in the variance decomposition analysis but accurately partitioning between dominance effects and shared 
environmental effects through linear mixed modelling in a population such as Cilento may not be possible.

Figure 6.  Heritability analysis for BMI and LDL in Cilento. Black contours represent the likelihood profile from 
the model KD (see Fig. 5), with matrices K and D calculated as genetic relationship matrices (GRMs). The red 
zone represents the 95% confidence interval for the red maximum likelihood estimate (MLE) (red triangular 
peak). The corresponding MLE and 95% confidence boundary for the analysis using pedigree information to 
estimate K and D are added to the plot in blue.

Figure 7.  Effect of shared environmental factors on heritability analysis for BMI and LDL in Cilento. Here we 
compare models KD and KDS (see Fig. 5) for the two traits in Cilento. Black contours represent the likelihood 
profile for the model KD, with the red zone indicating the 95% confidence interval for the red maximum 
likelihood estimate (MLE) (red triangular peak). The corresponding MLE for the KDS model is added in green. 
We also add in the previously observed estimates from the literature (Table 1).
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We compared different methods to estimate the covariance matrices K and D. In the simulated isolate, the 
precision of the estimates of hD

2  was either larger or equivalent when using GRMs as compared to IBD-based 
methods. This had previously also been noted by Browning & Browning53 when estimating hA

2. Furthermore, it 
would appear that only a relatively small number of SNPs are required to compute such GRMs in an isolate as 
using far denser sets of variants (either in our simulation or through imputation in the Cilento dataset) did not 
noticeably affect the fitting of the LMM. The advantage observed for GRMs could be because they can capture 
similarities between all types of pairs of individuals in the isolate; including similarities not described by the 
recorded pedigree structure or originating before the founding event of the population. Therefore this approach 
combines the classical interpretation of heritability regarding closely related individuals with the more recent 
approaches involving samples of unrelated individuals.

Foreseeably, the simulated outbred populations led to underestimation of both hA
2 and hD

2 in most of the set-
tings of phenotype simulation. This may go some way to explain the differences between estimates of hD

2 that we 
observed in the literature for many complex traits. Our results suggest that observing very different estimations 
for non-additive genetic components between isolates and outbred populations could indicate the presence of 
many causal variants that occur at low frequencies across populations and that have non-zero dominant genetic 
effects. However, such an observation could also indicate the presence of bias due to the shared environmental 
factors in the studies of isolates. We note that estimation from outbred populations can also suffer from biases 
arising from shared environmental factors due to hidden structures existing within the population; a scenario that 
we have not considered in our simulation study. Population stratification within a cohort is a known example of a 
structure that can lead to bias in heritability studies of unrelated individuals54,55.

The heritability analyses that we have carried out in Cilento did indeed suggest the presence of non-additive 
genetic variance for some of the traits considered. However, the phenotypes studied in Cilento behaved in similar 
ways to the simulated phenotypes with added non-genetic correlation between siblings. The simulation study 
suggested that even a very small shared environmental effect between siblings could result in the disparate herit-
ability estimates we observed in Cilento between fitting LMMs with and without a variance component for covar-
iance between siblings. When the simulated shared environmental component was large, broad-sense heritability 
estimates approached 1; this is a result we observed in both previous studies of isolates for many traits38,39 (see 
Table 1) and in Cilento for the trait BMI. Combining this observation with the wide observed ranges of estimates 
for hD

2 in the literature strongly suggests that previous results in isolates have thus far been inflated by shared envi-
ronmental effects and that hD

2 statistics have been overestimated. For a trait such as LDL, we still observed high 
estimates for hD

2 even when accounting for a shared environment effect in the model, a result which our simula-
tion suggests would be unlikely if indeed =h 0D

2  for this trait.
It has been argued that the classical separation of the two additive and non-additive genetic components may 

lead to higher estimates for the additive genetic variance over the non-additive genetic variance56. However, pro-
posed alternative definitions are far less interpretable and lead to variance decompositions with less applicable 
value. Higher order non-additive genetic variance components could be contributing to our estimates of domi-
nance in Cilento5. Indeed, we recognise that ignoring the presence of epistatic effects has been shown to lead to 
overestimations of H2 by Zuk et al.57 who also proposed a non-parametric method for estimating heritability in a 
population isolate. Such approaches require large samples of pairs of individuals with identical expected related-
ness coefficients. Similar approaches include those based on Haseman-Elston regression58 and studies focusing 
on populations of siblings or nuclear families. However, for the data of Cilento such methods proved not to be 
applicable due to the variety of relationships between pairs, such that looking at each pair type separately resulted 
in sample sizes too small to provide realistic estimations. There exist a wide range of sophisticated approaches for 
calculating narrow-sense heritability in sample of unrelated individuals59–61. Zaitlen et al.41 proposed to dissect 
narrow-sense heritability in samples containing close relatives by splitting variance between GRMs and thresh-
olded GRMs, and isolated populations could prove a valuable resource for future studies using such approaches. 
However, as we include non-additive genetic components and wish to compare our results to studies using pedi-
gree based methods, we have not explored such concepts here.

In this study, we have demonstrated various phenomena which can either result in under-estimation of hD
2 in 

studies of outbred populations or over-estimation in studies including closely related individuals. At this juncture, 
the existence of significant non-zero dominant genetic variation for many traits remains uncertain, but this could 
be elucidated through the continued gathering of estimates from diverse populations. Whilst different popula-
tions harbour differing levels of environmental variation, and hence one cannot expect agreement on heritability 
estimations, studies of isolated populations could lead to more reliable conclusions as to the existence or 
non-existence of genetic dominance for complex traits. If significant estimates for hD

2 are found when accounting 
for a shared environment effect between siblings, this is indicative of a true non-zero dominance component.

One possible future direction would be to increase the sample size in a study of an isolate. However, as this will 
not usually be feasible for a single isolate, one strategy that could be particularly interesting would be to combine 
data from several isolates with similar ancestral origins. Such an approach could give high precisions of the esti-
mates of both hA

2 and hD
2 due to the large sample size. Importantly, this strategy could also provide a large enough 

sample to complete analyses without sibling pairs, and to facilitate appropriate sensitivity analyses regarding the 
presence of siblings.

Methods
The Cilento Isolate.  The Cilento isolate comprise three villages from the South of Italy; Campora, Cardile, 
and Gioi. Pedigree, phenotypic, and genetic data have previously been gathered as part of the Cilento Study. A 
pedigree structures which connects all three village has been reconstructed from parish records. The three vil-
lages have been shown to represent characteristics of population isolates intermediate between the large isolate 
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population of Iceland62 and the highly isolated Hutterite population63,64. Aggregating over the three villages, we 
have a pedigree of 7,585 members including 1,444 genotyped members. The high quality of the reconstructed 
genealogy in Cilento makes it an appropriate tool for simulating a realistic example of data from an isolated 
population. Individuals from Campora and Cardile have been genotyped on an Illumina 370 K array, whilst indi-
viduals from Gioi have been genotyped on an Illumina HumanOmniExpress array. Deep phenotyping has been 
performed in Cilento for a range of anthropometric, cardiometabolic, and haematological traits. For the purposes 
of this study, we have concentrated on phenotypes that have been often analyzed in the literature of both other 
population isolates and in samples of unrelated individuals (Supplementary Table 1).

Simulation of genotypes and phenotypes.  To create simulated datasets, we created mosaic haplo-
types using the same stochastic recombination model as in the generation of control individuals by the software 
HapGen265. We took the UK10K imputation panel as reference haplotypes having first removed one individual 
from every pair of twins present in the panel. To simulate unrelated individuals we sampled 22 pairs of mosaic 
chromosomes, where each section of their mosaics is copied from a randomly sampled haplotype from the pool 
of UK10K haplotypes. In this manner, we created a sample of 8,664 (6 × 1,444) unrelated individuals. To create 
isolate type data, for each chromosome, we randomly selected 200 UK10K haplotypes, from which 2,940 mosaic 
haplotypes were simulated in order to simulate the 1,470 founders of the combined pedigree of Cilento. This set 
of founder haplotypes were supplied to the software Genedrop (part of the MORGAN66 package) along with the 
pedigree of Cilento in order to simulate phased genetic data for the 1,444 genotyped members of Cilento. Our 
gene-dropping approach was identical to the methods used in Herzig et al.67 We have made comparisons on 
four potential populations: the 1,444 individuals from Genedrop with isolate type data, labelled “Isolated(1444)”, 
and three possible sets of the 8,664 simulated unrelated individuals: “Outbred(1444)”, “Outbred(4332)”, 
“Outbred(8664)”, that represent outbred populations of the same size as Cilento, three times the size, and six 
times the size, respectively. We chose this range of samples sizes based on an analysis of the variance of eigenval-
ues68 of GRMs estimated on the populations Isolated(1444) and Outbred(1444) (Supplementary Materials and 
Supplementary Table 2). The choice of 200 haplotypes for the generation of founder haplotypes for Cilento stems 
from the previous work which estimated that 96.7% of the genetic diversity in Campora is accounted for by 17 
female and 20 male lineages63. This would suggest that 74 (37 × 2) autosomal haplotypes would be appropriate 
for the generation of simulated data for Campora and we decided to scale this up to 200 for the generation of 
simulated data for the three villages. We checked that this created simulated data with a similar structure as the 
observed data in Cilento (Supplementary Table 2 and Supplementary Fig. 13).

Our method for simulating isolate-type data requires a pedigree for gene-dropping. To create larger data-
sets with isolate characteristics, we used the Cilento pedigree multiple times. In detail, we simulated six popu-
lations of size 1,444, each using the Cilento pedigree but with different random draws of founding haplotypes. 
We then combined the first three and all six of these populations to create the populations Isolated(4332) and 
Isolated(8664), respectively. In addition, we randomly discarded one individual from each sibling pair of the pop-
ulation Isolate(8664) to create a population with no sibling pairs of size 5,136, labelled as “Isolated(5136)_nosibs”.

Phenotypes were simulated repeatedly for each population as the sum of normally distributed errors 
(Equation 3).

β β ε= + +Y G G (3)A
T

A D
T

D

GA and GD are the additive genetic components of the genotypes of the randomly selected M causal additive 
variants and the non-additive genetic components of the randomly selected M causal dominant variants, respec-
tively. Effect sizes βA and βD were drawn from normal distributions. Variants may exhibit both additive and dom-
inant effects and a maximum of 2M variants could have non-zero effect sizes. We varied the heritability by scaling 
the effect-sizes accordingly in the knowledge that τ β= ∑A A

2 and τ β= ∑D D
2. We have simulated a range of possible 

phenotype characteristics by varying the number of causal variants and the MAFs of causal variants.
To estimate the variance parameters, and hence heritability, we fitted the model of Equation 1 in the R-package 

‘Gaston’69 and estimated parameters τA, τD, and σE
2 using Average Information Restricted Maximum Likelihood 

Estimation (AIREML)70. Matrices K and D were estimated using the method-of-moment techniques described in 
Zhu et al.12, and we either used all variants present on the UK10K, or the variants present in the real data from all 
three Cilento villages. The exact set of variants used for these calculations were those with MAF > 0.05 and those 
passing a quality control threshold on the Hardy-Weinberg p-values (>10−5).

In the case of Isolated(1444), we also estimated K and D from the pedigree structure of Cilento using software 
IdCoefs4 that calculates Δ … Δ, ,1 9 through the recursive algorithm described by Karigl71. Furthermore, we were 
able to record the origin of every mosaic segment simulated during the HapGen based and gene-dropping stages. 
This allowed us to calculate true proportions of IBD-sharing between every pair of individuals in the Isolated(1444) 
population. We also tested the software IBDLD9 and GIBDLD52 which directly estimate Δ … Δ, ,1 9. For IBDLD, 
we used the LD-RR mode, default parameters, and we supplied the software with the expected values of Δ … Δ, ,1 9 
between all pairs from the pedigree (calculated by IdCoefs). Conversely, GIBDLD used only the genotypes; we also 
ran this software with default parameters. For both IBDLD and GIBDLD, we used only the SNPs present in both 
genotyping arrays in Cilento as the software were not designed for sequence data.

Here we introduce the sibship matrix, denoted as S, which has values of 1 on the diagonal and at every 
off-diagonal element corresponding to pairs of siblings in the sample; all other entries are zero. To simulate phe-
notypes for the population Isolated(1444) with additional correlation between pairs of siblings, approximating an 
effect of shared environmental exposure, we simulated phenotypes under the same model as Equation 3 except 
that the environmental components were no longer drawn independently from normal distributions, but from a 



www.nature.com/scientificreports/

1 2Scientific REPOrtS |         (2018) 8:18048  | DOI:10.1038/s41598-018-36050-7

multi-variate normal distribution with zero mean and a covariance structure of σ σ σ+ +I S( )E S N S
2 2 2 ; a matrix with 

σ σ+E S
2 2 on the diagonal and σS

2 on every off-diagonal entry corresponding to a pair of siblings in the sample. We 
chose values of σS

2 in order to create phenotypes with hS
2: 0.00, 0.02, 0.05, 0.10, 0.20, and 0.40 where 

σ τ τ σ σ= + + +h /( )S S A D S E
2 2 2 2 .

Analysis of Cilento Data.  After quality control on both phenotypes and genetic data (details in the 
Supplementary Materials), we used the same approach as with the simulated data to estimate the heritabilities 
of the seven traits considered in this study. The only difference being that for the analyses of Cilento data, we 
added the following covariates to the LMM: age, sex, age × sex, and indicators of village membership (Campora, 
Cardile, or Gioi). For one trait (Triglycerides) we transformed the phenotype to a logarithmic scale, whereas 
other traits were left untransformed after excluding very small numbers of outliers. LDL and Total Chol were 
both pre-adjusted for use of lipid-lowering medication. Matrices K and D were again estimated on the basis of 
pedigree or genetic information. To calculate GRMs from genetic data, we were restricted to using the set of var-
iants on the intersections of the two arrays used for genotyping of Cilento data. As this set was relatively sparse, 
we also performed genetic imputation with the following pipeline: phasing by SHAPEIT272 with the “duohmm” 
option73 and informed by the Haplotype Reference Consortium74 (HRC) reference panel followed by imputation 
by IMPUTE475 with the HRC as the reference panel. K and D were then computed on hard called imputed geno-
types76,77 after removing variants with imputation quality scores below 0.7.

In a recent study of the Icelandic population, Young et al.78 presented an IBD-based method for nuclear fami-
lies in the Icelandic population aimed at eliminating environmental bias by looking at deviations in observed 
kinship from expected values. In Cilento data, the sample size precluded this approach as there are insufficient 
numbers of pairs of individuals with the required expected level of IBD-sharing and with both sets of parent’s 
genotypes. However, we are able to add a shared environment effect by adding into our model a variance compo-
nent indicating pairs of individuals who share the same mother. A similar approach was shown to lead to unbi-
ased results in many simulation settings in Young et al.78 As pairs of siblings have by far the highest probability of 
sharing two alleles IBD as each locus (one chance in four), correlations caused by shared environmental expo-
sures between siblings are very likely to confound the estimation of hD

2. If there is significant confounding, this 
should be indicated by a large difference in results when including such a matrix indicating siblings in the LMM. 
We fitted four LMMs for every trait which we denote as model K, model KD, model KS, and model KDS to indi-
cate the set of variance-covariance matrices included in the model.

Data Availability
The UK10K panel of haplotypes is available from the European Genome-phenome Archive and the simulation 
scripts are available from Anthony Francis Herzig (anthony.herzig@inserm.fr) on reasonable request. The Cilento 
datasets analysed during the current study are available from Marina Ciullo (marina.ciullo@igb.cnr.it) on reason-
able request and on a collaborative basis.
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