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Background: Sepsis is well-known to alter innate and adaptive immune responses for

sustained periods after initiation by an invading pathogen. Identification of immune cell

characteristics may shed light on the immune signature of patients with sepsis and further

indicate the appropriate immune-modulatory therapy for distinct populations. Therefore,

we aimed to establish an immune model to classify sepsis into different immune

endotypes via transcriptomics data analysis of previously published cohort studies.

Methods: Datasets from two observational cohort studies that included 585

consecutive sepsis patients admitted to two intensive care units were downloaded

as a training cohort and an external validation cohort. We analyzed genome-wide

gene expression profiles in blood from these patients by using machine learning

and bioinformatics.

Results: The training cohort and the validation cohort had 479 and 106

patients, respectively. Principal component analysis indicated that two immune

subphenotypes associated with sepsis, designated the immunoparalysis endotype, and

immunocompetent endotype, could be distinguished clearly. In the training cohort,

a higher cumulative 28-day mortality was found in patients classified as having the

immunoparalysis endotype, and the hazard ratio was 2.32 (95% CI: 1.53–3.46 vs. the

immunocompetent endotype). External validation further demonstrated that the present

model could categorize sepsis into the immunoparalysis and immunocompetent type

precisely and efficiently. The percentages of 4 types of immune cells (M0 macrophages,

M2 macrophages, naïve B cells, and naïve CD4T cells) were significantly associated with

28-day cumulative mortality (P < 0.05).

Conclusion: The present study developed a comprehensive tool to identify the

immunoparalysis endotype and immunocompetent status in hospitalized patients with

sepsis and provides novel clues for further targeting of therapeutic approaches.
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BACKGROUND

Sepsis is a highly heterogeneous syndrome associated with
diverse immune status upon pathogen invasion. Normal immune
responses can eradicate pathogens, and the pathophysiology of
sepsis is caused by the inappropriate regulation of these normal
reactions (1, 2). The extent of hyperactivated and hypoactivated
immune responses vary among individuals, which results in
heterogeneities in immune responses in sepsis (3, 4). It is urgent
to clarify the immune status of sepsis to help identify patients who
would benefit from immunomodulatory therapies (5–9).

Previous studies attempted to identify diverse immune
statuses through clinical features or biomarkers. For example,
Seymour et al. classified sepsis patients into four derived
phenotypes based on 29 clinical features (temperature, mean
arterial pressure, fluid resuscitation response, central venous
oxygen saturation, etc.) (10). Using transcriptomic data,
researchers identified four subphenotypes of sepsis; among
them, one phenotype was associated with higher mortality
than the other three phenotypes, which were associated with
moderate mortality (11). However, the above described studies
of phenotypes were qualitative rather than quantitative, and the
immune state level was barely recognized. In addition, the use
of one or two biomarkers, such as human leukocyte antigen-
DR isotype (HLA-DR) and cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4), could not truly represent the global immune
status. Moreover, false positive and false negative results might
occur for various kinds of patients. Last but not least, routine
parameters and biomarkers reflect surface-level phenomena
associated with immune cell dysfunction and imbalance and are
insufficiently robust to permit an actual intrinsic monitoring of
immune status (12–15).

Recently, Newman et al. developed an algorithm to calculate
the proportions of 22 types of human immune cells according
to the ribonucleic acid (RNA) matrix (16) (using RNAomics
or RNA-seq), and the proportions of these 22 human immune
cell types have been confirmed to represent the immune status
of human beings. Furthermore, it has been demonstrated that
the CIBERSORT algorithm has higher accuracy and sensitivity
than conventional technologies such as immunohistochemistry
and flow cytometry (17, 18). To date, this algorithm has been
widely utilized in assessing the immune status of patients with
cancer for guiding immunotherapy, but it has never been used
in sepsis patients. Thus, with the CIBERSORT approach, we
assessed the proportions of 22 types of infiltrating immune cells
based on two published cohort studies of sepsis. To analyze
and quantitatively measure the patient immune responses to
pathogens, an immune model for categorizing the immune
endotypes of sepsis was constructed, and the immune cell subsets
associated with potential therapeutic targets with prognostic
value were also explored simultaneously.

METHODS

Data Sources and Study Selection
A public database (GEO database) was searched for all expression
microarrays that matched terms associated with sepsis. The

datasets were collected from clinical studies investigating sepsis
in adults using peripheral blood within 48 h after ICU admission.
The exclusion criteria were as follows: (1) datasets that utilized
endotoxin or lipopolysaccharide infusion like those used in in
vitro or animal models of sepsis; (2) clinical gene expression
microarray analyses derived from sorted cells; and (3) a sample
size <100.

Data Preprocessing
All datasets were downloaded as.txt files, and the outputs
from the mRNA array were normal-exponential background-
corrected and then between-array quantile-normalized using
the limma R package. To ensure compatibility with the
microarray study, expression was normalized using weighted
linear regression, and the estimated precision weights of each
observation were multiplied by the corresponding log2 value to
yield the final gene expression values.

The dataset with the most complete prognostic data and the
maximum sample size was used as the training cohort, and
another dataset was used as the external validation cohort.

Cell Type Identification by Estimating the
Relative Subset of Known RNA Transcripts
(CIBERSORT)
We used the CIBERSORT algorithm for quantification and
discrimination of the absolute proportions of 22 human immune
cell phenotypes from transcriptomic data, including seven T cell
types (CD8T cells, CD4 naïve T cells, CD4 memory resting T
cells, CD4 memory activated T cells, follicular helper T cells,
regulatory T cells, and gamma delta T cells), naïve and memory
B cells, plasma cells, NK cells, and myeloid subsets. Immune cells
are classified as high, median, and low expression according to
the high and low interquartile ranges (IQRs). Pearson correlation
analyses for various immune cell types were performed to assess
the collinearity of the enrolled immune cells.

Identification of Immune Cells With
Prognostic Value and Construction of an
Immunity Risk Model
The univariate Cox proportional hazards model with Bonferroni
correction for multiple comparisons was used to determine
the prognostic signatures with a cut-off value of P < 0.05 by
using the survival R package. Then, both backward and forward
stepwise selection with the Akaike information criterion (AIC)
were used to identify the final variables for the multivariable
Cox proportional hazards regressionmodels through the survival
R package.

The associations of relevant immune cell types with survival
were assessed using multivariable Cox proportional hazard
regression models. Hazard ratios (HRs) were presented with
the 95% CIs. Selected variables were incorporated into the risk
model to predict the probability of 28-day mortality using the
rms R package. The risk scores for each sample were calculated
according to the risk model. The respective medians of two
clusters were used as the cut-off values to classify the patients
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as having either the Immunity-A endotype or the Immunity-
B endotype.

Assessment and Validation of the Immune
Model
To multidimensionally evaluate the discrimination ability of the
risk model in categorizing sepsis-induced immune dysfunction,
we investigated the variation in immune cells, immune
molecules, and immunity-related signal transduction pathways
between the immunity-A endotype and immunity-B endotype.
An empirical Bayesian approach was implemented to estimate
immune cell and immune molecule changes using moderated
t-tests. Gene set enrichment analysis (GSEA) was performed
to assess immunity-related pathway activity variation between
the Immunity-A and Immunity-B types. A P < 0.05 was set
as the significance criterion. Kaplan-Meier (KM) curves and
principal component analysis (PCA) were performed to evaluate
the calibration capability of the riskmodel. External datasets were
utilized for model validation. Perl 64 was used to merge data.
Data processing, analysis, and diagram plotting were conducted
in R x64 3.6.1.

Sensitive Analysis
To further evaluate whether the current model could identify
the immune status of a pneumonia and non-pneumonia induced
sepsis population, the sensitive analyses were conducted to
investigate discrimination ability of the current model in
pneumonia and non- pneumonia patients respectively.

RESULTS

Characteristics of the Datasets and
Patients
After the search strategy and inclusion criteria were determined,
2 mRNA datasets from patients with sepsis (GSE65682 and
GSE63042) were used to build the mRNA expression profiling
datasets. The flow-process diagrams of the process of dataset
screening are shown in Supplementary Figure 1. The GSE65682
dataset (479 patients with sepsis) was used as the training cohort
since the contributors (University Medical Center in Utrecht
and the Academic Medical Center in Amsterdam) uploaded
relatively complete prognostic data, and this dataset had the
maximum sample size. Simultaneously, GSE63042 (106 patients
with sepsis) was used as the external validation cohort. All
patients were older than 18 years and were diagnosed with sepsis.
The septic shock ratios for GSE65682 and GSE63042 were 34.8
and 31.1%, respectively. Details of the demographic and clinical
characteristics are shown in Table 1.

Construction of the Immunity Risk Model
According to the univariate Cox regression analyses and
stepwise selection, the percentages of 4 immune cell types
(M0 macrophages, M2 macrophages, naïve B cells, and naïve
CD4T cells) were significantly associated with 28-day cumulative
mortality (Figure 1A). The 4 identified immune cell types
were included in the immunity risk model generated through
multivariate Cox regression (Figure 1B). Each patient was

TABLE 1 | Demographic and clinical characteristics.

GSE65682 (N = 479) GSE63042 (N = 106)

Male sex 272 (56.8%) 63 (59.4%)

Age 63 (18–89) 59 (38–85)

Country Netherlands USA

Pneumonia diagnoses 183 (38.0%) 24 (22.6%)

Septic shock 167 (34.8%) 33 (31.1%)

28 day mortality 115 (24.0%) 28 (26.4%)

Main study Classification for sepsis

through transcriptomic data

Bioinformatic analysis for

host response in sepsis

N, number.

assigned a risk score through this model. Correlation analyses
among various immune cell types to find the links among
immune cells was shown in Figure 1C.

Model Assessment
The three-dimensional results (immune cells, immune
molecules, and immunity-related pathways) demonstrate
that this risk model could stratify sepsis patients with either
immunocompetent status or immunoparalysis. Patients with
the immunity-B endotype displayed an immunocompetent
status, while the immunity-A endotype patients suffered from
immunoparalysis (Figure 2). At the level of immune cells,
differential expression analysis indicated that the percentages
of immune-enhancing cells (neutrophils, gamma delta T
cells, activated dendritic cells, and activated mast cells) were
significantly downregulated in the immunity-A endotype
(Figure 2A) compared with those in the immunity-B endotype,
P < 0.05. Moreover, the percentages of immunosuppressive cells
(regulatory T cells andM2macrophages) and naïve immune cells
(naïve B cells, naïve CD4T cells, and M0 macrophages) were
obviously upregulated in the immunity-A endotype compared
with those in the immunity-B endotype, P < 0.05.

On the other hand, immune-enhancing molecules (HLA-
DRA, HLA-DRB, IL1B, IFNAR, IFNGR, CD5, and CD86) were
significantly downregulated, and immunosuppressive molecules
(IL10) were obviously upregulated in the immunity-A endotype
compared with those in the immunity-B endotype at the
molecular level according to the violin plot (Figure 2B), P< 0.05.

Finally, at the level of immunity-related signal transduction
pathways, GSEA demonstrated that immune enhancement-
related pathways were significantly suppressed in the immunity-
A endotype in sepsis (Figure 2C). In contrast, these pathways
were activated in the immunity-B endotype. The summary
view of the GSEA results in the training cohort is shown
in Figure 2C; the details for every pathway are shown in
Supplementary Figures 2–5. These pathways could be classified
as associated with innate immunity (endocytosis and natural
killer cell-mediated cytotoxicity), humoral immunity (antigen
processing and presentation, B cell receptor signaling pathway,
and intestinal immune network for IgA production), cellular
immunity (T cell receptor signaling pathway and Toll-like
receptor signaling pathway), and the promotion of immunity
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FIGURE 1 | Identification of immune cells with prognostic value and construction of an immunity risk model. (A) Forest plots of univariate Cox proportional hazard

analysis for the identification of prognostic immune cells (red forest plots represent hazard factors, and green forest plots represent protective factors). (B) Forest plots

of multivariable Cox proportional hazard analysis for the construction of the immunity risk model (AIC, Akaike information criterion), (C) Correlation heat map for the

assessment of collinearity (numbers in the heatmap represent Pearson correlation coefficients; red represents a positive correlation and blue represents a negative

correlation). *P < 0.05.

(Fc epsilon RI signaling pathway, chemokine signaling pathway,
RIG-I-like receptor signaling pathway, and NOD-like receptor
signaling pathway).

The KM curves indicated that the immunity-A endotype
was associated with a significantly higher cumulative 28-day
mortality rate compared to the immunity-B endotype, with a
hazard ratio (95% CI) of 2.32 (1.53–3.46) and a P-value of 0.00
(Figure 3A). PCA shows an obvious clustering trend for immune
status between the Immunity-A and Immunity-B endotypes
(Figure 3B).

Sensitivity Analysis
In a sensitivity analysis evaluating the removal of sepsis induced
by pneumonia in GSE65682, similar results in the overall
population are observed which are shown in Figures 4, 5.
However, this sensitivity analysis could not be done in GSE63042,
since the original case data of individuals were not provided
by researchers.

External Validation
To validate the model of Immunity-A and Immunity-B, the
GSE63042 datasets were set as the external validation cohort.
External validation further confirms that the ability of this
model to categorize based on immune dysfunction is efficient
and precise.

In the external validation cohort, analysis of the levels
of immune cells, immune molecules, and immune pathways
robustly confirmed that patients in the Immunity-A endotype
classified by the current model suffered from immunoparalysis.
Conversely, patients in the immunity-B endotype showed
immunocompetent status (P < 0.05) (Figure 6). The details of
every pathway are shown in Supplementary Figures 6–9.

DISCUSSION

Accumulating evidence supports the central role of the immune
system in the pathogenesis of sepsis, a better insight to
uncover the immunological phenotype of sepsis patients is
crucial for effective immunomodulatory treatment. The current
study is the first to identify two distinct immune endotypes
based on the microarray data of sepsis patients by using
CIBERSORT analysis and provides novel evidence and clues
for further research on the molecular mechanisms of sepsis. In
particular, sepsis can be divided into subphenotypes based on
infiltrating immune cell characteristics. The immunocompetent
subphenotype (immunity-B endotype) is characterized by
increased expression levels of immune response-associated
molecules, decreases in immature immune cells (naïve B cells,
naïve CD4T cells, and M0 macrophages), and increased activity
of immune-enhancing pathways compared to the immunity-A
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FIGURE 2 | Three-dimensional assessments demonstrate that patients with the immunity-A endotype suffer from immune suppression. (A) Violin plots of immune cell

analyses (medians, quartiles, extremums, data distributions, and P-values for the difference analysis are described in the violin plots. The percentages of

immune-enhancing cells (neutrophils, gamma delta T cells, activated dendritic cells, and activated mast cells) were significantly decreased in the immunity-A

endotype. The percentages of immunosuppressive cells (regulatory T cells, M2 macrophages) and naïve immune cells (naïve B cells, naïve CD4T cells and M0

macrophages)—were obviously upregulated in the immunity-A endotype. (B) Violin plots of the immune molecule difference analysis. The immune-enhancing

molecules (HLA-DRA, HLA-DRB, IL1B, IFNAR, IFNGR, CD5, and CD86) were significantly downregulated and an immunosuppressive molecule—IL10—was

obviously upregulated in the immunity-A endotype. (C) Diagrams of the Gene Set Enrichment Analysis. The innate immunity, humoral immunity, cellular immunity, and

promotion of immunity-related pathways were all suppressed in the immunity-A endotype group.

FIGURE 3 | Survival curves and principal component analysis for evaluating the calibration ability of the immunity risk model. (A) Survival curves of the immunity-A and

immunity-B endotypes (Kaplan-Meier curves indicate that the immunity-A endotype was associated with significantly higher mortality than the immunity-B endotype),

(B) Principal component analysis between the immunity-A and immunity-B endotypes (the red dots represent patients with the immunity-A endotype, and the blue

dots represent patients with the immunity-B endotype; an obvious clustering trend can be found).
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FIGURE 4 | Subgroup analysis on septic population after removing patients with pneumonia. (A) Violin plots of immune cell difference analyses (medians, quartiles,

extremums, data distributions, and P-values for the difference analysis are described in violin plots. The percentages of immune-enhancing cells (activated neutrophils

and dendritic cells) were significantly downregulated in the immunity-A endotype. The percentages of immune suppressive cells (regulatory T cells, and macrophage

M2) and naïve immune cells (naïve B cells, naïve CD4T cells, and M0 macrophages) were obviously upregulated in the immunity-A endotype). (B) Violin plots of the

immune molecule difference analysis (immune-enhancing molecules—HLA-DRA, HLA-DRB, IL1B, IFNAR, CD5, and CD86—were significantly downregulated and the

immunosuppressive molecule IL10 was obviously upregulated in the immunity-A endotype). (C) Diagrams of the Gene Set Enrichment Analysis. The innate immunity,

humoral immunity, cellular immunity, and promotion of immunity-related pathways were all suppressed in the immunity-A endotype group.

endotype (immunoparalysis). In addition, we also revealed that
elevations in M0 macrophages, M2 macrophages, naïve B cells,
and naïve CD4T cells in peripheral blood were independent
risk factors for poor prognosis in sepsis at onset. Patients
with the immunity-A endotype were confirmed as having
immunoparalysis and a higher cumulative 28-day mortality,
and patients with the immunity-B endotype seemed to have
an immunocompetent status and a higher survival rate. The
immune score calculated by this model could represent the
severity of immunoparalysis.

Normal immune and physiologic responses eradicate
pathogens, and the pathophysiology of sepsis is due to the
improper regulation of these normal reactions. Pathogen
contact with the inflammatory system should eliminate the
microbe and rapidly return the host to homeostasis. The
septic response may accelerate due to continued activation of
macrophages/monocytes, which play a key role in the regulation
of both innate and adaptive immunity. The large contribution
to immune suppression of peripheral blood mononuclear cells
(including macrophages and T and B lymphocytes) reveal the
downregulation of genes involved in the inflammatory response
and the increased expression of genes involved in apoptosis.
Massive mononuclear cell death leads to naïve cell proliferation
in the bone marrow. These findings may explain why immature

peripheral blood mononuclear cells were more common in the
immune A endotype.

A number of alterations in the expression of distinct cell
surface markers, such as HLA-DRA, HLA-DRB, IL1B, IFNAR,
IFNGR, CD5, and CD86, have been described in these two
endotypes, and thesemolecules were defined as immunoactivated
molecules in previous studies (19, 20). Furthermore, Venet et al.
and Carson et al. showed that sepsis induced an increase in the
proportion of anti-inflammatory immune cells (such as Tregs)
that release anti-inflammatory cytokines (such as IL10), which
resulted in epigenetic alterations of naïve immune cells and
further suppressed inflammatory activation-related pathways
(such as the Toll-like receptor signaling pathway) (21, 22). To
date, researchers believe that immunoparalysis is an independent
risk factor for poor prognosis in sepsis (19, 20), which was
also confirmed in our study. Therefore, it was indicated that
an increase in the proportion of naïve immune cells and
immunosuppressive cells were the essential characteristics of
immunoparalysis in sepsis.

However, previous studies of immunoparalysis in sepsis
evaluated only some immune features (single immune cells or
immune molecules) and lacked global assessment and validation
(19–22). Therefore, the present study attempted to explore
immune models appropriate for identifying immunoparalysis
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FIGURE 5 | Subgroup analysis on septic population with pneumonia. (A) Violin plots of immune cell difference analyses (medians, quartiles, extremums, data

distributions, and P-values for the difference analysis are described in violin plots. The percentages of immune-enhancing cells—activated neutrophils- were

significantly downregulated in the immunity-A endotype. The percentages of immune suppressive cells—M2 macrophages—and naïve immune cells (naïve B cells,

naïve CD4T cells, and M0 macrophages) were obviously upregulated in the immunity-A endotype). (B) Violin plots of the immune molecule difference analysis. The

immune-enhancing molecules—HLA-DRA, IL1B, IFNGR, CD5, and CD86—were significantly downregulated and the immunosuppressive molecule IL10 was

obviously upregulated in the immunity-A endotype. (C) Diagrams of the Gene Set Enrichment Analysis. The innate immunity, humoral immunity, cellular immunity, and

promotion of immunity-related pathways were all suppressed in the immunity-A endotype group.

in sepsis via multiple parameters. Robustly, the discrimination
performance of the current model was confirmed according to
the assessment of immune cells, immune molecules, immune
signal transduction pathways, and survival curves. Differential
expression analysis of immune cells demonstrated that patients
with the immunity-A endotype suffered from immune paralysis
due to decreases in immune-enhancing cells, increases in
immunosuppressive cells and increases in naïve immune cells.
Poll et al. pointed out that the characteristics of immune
suppression in sepsis were the low expression of HLA-DR
on blood leucocytes and the high expression of IL-10 (an
anti-inflammatory molecule), which could also be found in
the immunity-A endotype, as shown by the violin plot of
immune molecules (23–25). Furthermore, GSEA suggested that
innate immunity-, cellular immunity-, and humoral immunity-
related biological pathways were all suppressed in the high-
risk group (26–28). In addition, the KM curves obviously
suggested that patients in the high group (immunoparalysis)
had decreased survival and poor prognosis. The external
validation cohorts further demonstrated that the current
model could effectively identify patients with the immunity-A
endotype (immunoparalysis).

Sepsis 3.0 is defined as a life-threatening condition of organ
dysfunction caused by the dysregulation of the host immune
response to infection. The most important question is whether

therapeutic interventions that target specific immune process
mechanisms implicated in the pathophysiological changes of
sepsis might further improve the therapeutic effects. It was
reported that the number of immunotherapy studies of sepsis
is almost 1,000 to date, but none of the results have been
used in clinical practice. The primary reason for this is the
lack of recognition of patient immune status. In future RCTs,
scholars could use this model to categorize sepsis to design more
precise immune therapies. In addition, our model could help
clinicians identify patients with immunoparalysis. Avoidance of
superinfection and the use of immunity enhancement drugs
(such as interferon or thymosin) should be considered in these
patients. In contrast, corticosteroids could be safely used for
patients with low immunity risk scores calculated by this model
in consideration of the effects of corticosteroids on improving
the cardiovascular response to exogenous catecholamines.
Furthermore, the present study demonstrated that naïve immune
cells (M0 macrophages, naïve B cells, and naïve T cells) and
immunity-regulating cells (Tregs and M2 macrophages) were
significantly increased in the poor prognostic group. These
results were similar to those of previous studies showing
that immunoparalysis is crucially detrimental to sepsis patient
survival. Due to the fast development and wide applications
of next-generation sequencing (NGS) technologies, genomic
sequence information is within reach to aid in the achievement
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FIGURE 6 | External validation further demonstrates that patients in the immunity-A endotype suffer from immune suppression. (A) Violin plots of immune cell

difference analyses (medians, quartiles, extremums, data distributions, and P-values for the difference analysis are described in violin plots. The percentages of

immune-enhancing cells (activated neutrophils and dendritic cells) were significantly downregulated in the immunity-A endotype. The percentages of immune

suppressive cells (regulatory T cells) and naïve immune cells (naïve B cells, naïve CD4T cells, and M0 macrophages) were obviously upregulated in the immunity-A

endotype). (B) Violin plots of the immune molecule difference analysis. The immune-enhancing molecules (HLA-DRA, IL1B, IFNAR, IFNGR, CD5, and CD86) were

significantly downregulated and the immunosuppressive molecule IL10 was obviously upregulated in the immunity-A endotype. (C) Diagrams of the Gene Set

Enrichment Analysis (most immune enhancement-related pathways except humoral immunity-related pathways are significantly suppressed in the immunity-A

endotype).

of goals to determine the immune status in patients with
sepsis onset and improve the survival of sepsis patients.
The alterations of these immune cells could be used as
potential therapeutic targets to improve the treatment strategies
for sepsis.

There are several limitations to the present study. First,
as a retrospective study of primarily publicly available data,
the demographics and clinical features such as severity,
complications, and individual treatment of each patient for
detailed could not be acquired. Thus, the sensitivity and
longitudinal analyses cannot be totally completed. This may
restrict the generalizability of the present model. Second, despite
the use of two external validation cohorts, we do not present
the results for any prospective clinical studies using this model.
Prospective RCTs will be paramount in translating the results
to clinical applications. In addition, despite a seemingly large
sample size, we were unable to perform robust subgroup analyses
(based on infection site or pathogen type) due to the lack
of relevant information in public databases. In addition, this
model was not sensitive enough to identify a hyperactivated
immune response to sepsis because it was constructed based
on naïve immune cells and M2 macrophages (screened by

prognostic analysis). The patients with poor prognosis in
this database mainly suffered from early immunosuppression
(9, 11).

In conclusion, the present study developed a
comprehensive tool to identify immunoparalysis endotypes
and immunocompetent status in sepsis patients that have been
hospitalized, and provides novel clues for further targeting of
therapeutic approaches.
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