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Abstract

Purpose To assess the effect of central and periph-

eral stimulation on the pupillary light reflex. The aim

was to detect possible differences between cone- and

rod-driven reactions.

Methods Relative maximal pupil constriction ampli-

tude (relMCA) and latency to constriction onset

(latency) to cone- and rod-specific stimuli of 30

healthy participants (24 ± 5 years (standard devia-

tion)) were measured using chromatic pupil

campimetry. Cone- and rod-specific stimuli had

different intensities and wavelengths according to

the Standards in Pupillography. Five filled circles with

radii of 3�, 5�, 10�, 20� and 40� and four rings with a

constant outer radius of 40� and inner radii of 3�, 5�,
10� and 20� were used as stimuli.

Results For cone-and rod-specific stimuli, relMCA

increased with the stimulus area for both, circles and

rings. However, increasing the area of a cone-specific

ring by minimizing its inner radius with constant outer

radius increased relMCA significantly stronger than

the same did for a rod-specific ring. For cones and

rods, a circle stimulus with a radius of 40� created a
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lower relMCA than the summation of the relMCAs to

the corresponding ring and circle stimuli which

combined create a 40� circle-stimulus. Latency was

longer for rods than for cones. It decreased with

increasing stimulus area for circle stimuli while it

stayed nearly constant with increasing ring stimulus

area for cone- and rod-specific stimuli.

Conclusion The effect of central stimulation on

relMCA is more dominant for cone-specific stimuli

than for rod-specific stimuli while latency dynamics

are similar for both conditions.

Keywords Pupil campimetry � Pupillography �
Cones � Rods � Centre � Periphery

Introduction

Pupil campimetry, full-field pupillography and multi-

focal pupil perimetry are increasingly being employed

in the clinic and are under further investigation by

several research groups as methods to detect retinal

and optic neuropathies such as glaucoma, age-related

macular degeneration, retinitis pigmentosa and dia-

betic retinopathy in type 2 diabetes [1–11].

The use of specific wavelengths, stimulus durations

and adaptation states at different locations of the visual

field allows responses from rods, cones and intrinsi-

cally photosensitive retinal ganglion cells to be studied

by pupil campimetry [12]. Based on several studies

using chromatic pupillography that detected changes

of the pupillary light reflex (PLR) to explicitly cell-

addressing stimuli in patients with retinal diseases

[13, 14] and glaucoma [15] the Pupil Research Group

at the Centre for Ophthalmology developed a new type

of device, the Chromatic Pupil Campimeter (CPC): a

combination of cell-specific stimuli and a new pupil-

lographic campimetry device introduced by Stingl

et al. [1]. Kelbsch et al. presented this objective

method to measure pupil responses separately for rods

and L-cones at different locations in the visual field [2]

and found that the mean relative maximal constriction

amplitude (relMCA) caused by cone-specific stimuli

was larger in the centre of the retina and decreased in a

hill-shaped form towards the periphery. Rod-specific

relMCAs were smaller and showed a flatter profile

around the retina with only a minor peak in the centre.

Patients with rod or cone deficiencies showed no rod-

and severely impaired cone-specific pupillary reac-

tions respectively [2].

Despite the arising use of pupillography still only

little is known about the characteristics of pupillomo-

tor receptive fields, especially those of photoreceptor-

specific stimulation.

Skorkovska et al. were the first to explicitly

examine summation effects within the pupillary

pathway using white light and found that pupillomotor

receptive fields are larger than receptive fields for

visual perception, that their size increases with

increasing retinal eccentricity and that their size

decreases with increasing brightness [16].

It is well-known that the amplitude of the PLR is

linearly related to the logarithm of the stimulus

intensity [17–19]. The light-adapted pupil size

depends on the product of stimulus luminance and

area (corneal flux density, CFD) [20, 21]. Hu et al.

found a correlation between the maximum constric-

tion amplitude, eccentricity and CFD when using

white peripheral stimuli [22]. In contrast, Park et al.

investigated the relationship between the CFD and the

PLR using central stimuli and found that only rod- and

melanopsin-mediated pupillary responses were CFD-

dependent. On the other hand, they found that cone-

mediated responses depended only on stimulus lumi-

nance and not on stimulus size [23].

Previous studies have shown an eccentricity effect

on the PLR to local stimuli with a decrease from the

centre to the periphery for white light

[1, 16, 19, 22, 24] and also for dim blue and red light

under rod- and cone-specific conditions [2, 25]. The

eccentricity effect in these studies was larger for cone-

specific stimulation than for rod-specific stimulation.

However, Joyce et al. did not observe a difference in

the relMCA for corneal flux density equated photopic

short- and long-wavelength stimuli presented at 0� and
20� eccentricity [26].

Regarding this limited state of scientific knowledge

about summation effects and the observed eccentricity

effect on the PLR, we wanted to gain more insight into

this topic, particularly on the effect of central versus

peripheral stimulation, which is relevant for clinical

use of pupillography. Our study aimed to assess the

effect of central and peripheral cone- and rod-specific

stimulation on the pupillary light reflex in a clinically

applicable set-up and to detect differences between

cone and rod influence using CPC [1, 2].
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Methods

Participants and ethical aspects

The inclusion criteria were: healthy participants

between 18 and 50 years, no ocular disease, no

medication that could affect the pupillary light reflex

and a refraction error less than or equal to ± 3 D. To

exclude any pathological findings, each participant

underwent a medical anamnesis and an ophthalmo-

logical examination at the neuro-ophthalmology unit

of the University Eye Hospital Tübingen, including

visual acuity test, swinging-flashlight-test, slit-lamp-

examination and funduscopy, optical coherence

tomography (OCT) (Spectralis-OCT; Heidelberg

Engineering GmbH, Germany) and 30� visual field

examination (static automated strategy, Octopus 101

or 900; Haag-Streit International, Wedel, Germany).

Thirty healthy volunteers (14 males, 16 females) with

a mean age of 24 ± 5 years (standard deviation) were

enrolled in the study. They were recruited either from

the staff of the University Eye Hospital Tübingen or

from the student body of the University of Tübingen.

All participants received detailed information about

the study and its aims and gave their written informed

consent. The study was approved by the local insti-

tutional ethics committee (project-number:

775/2016BO2) and obeyed the tenets of the Declara-

tion of Helsinki.

Chromatic pupil campimetry set-up

A modified version of the CPC as described by

Kelbsch et al. [2] was used to specifically stimulate

predominantly rods or cones, respectively. The exper-

iment was performed in a completely dark and quiet

room of the University Eye Hospital and was about

one hour in duration. The participants sat on a

comfortable chair in front of an OLED-monitor (LG

OLED 55C7V), located at a distance of 40 cm in front

of the subject’s eye and presenting the stimuli (see

Fig. 1). The head was placed in a combined chin- and

headrest for stabilization and comfort. Only the left

eye was examined while the right eye was covered by

an eyepatch. An infrared camera (DMK23UV024, The

Imaging Source GmbH) with a temporal resolution of

10 ms and a 50-mm TV-lens 1:1.4, located below the

screen, recorded the pupil continuously. The pupil

diameter was calculated online by a JavaTM-based in-

house software described by Stingl et al. [1] using a

modified Starburst algorithm [27] that detected the

black pupil’s edge from the image captured by the

camera. An ellipse was fitted to the points of the

detected edge using a random sample consensus

(RANSAC) approach [28] and the pupil centre and

diameter were determined in real-time [1]. The

estimated error of the algorithm was approximately

1–2 pixels which correspond to the estimated error of

0.1 mm per image. A dim fixation point (0.01 cd/m2)

with a radius of 1� was presented in the centre of the

OLED screen.

Stimulus characteristics

Stimuli were created by an in-house developed

software as described by Stingl et al. [1]. We used

cone- and rod-specific stimuli whose intensity was

modified according to Kelbsch et al. [2]. The intention

was not to drive the M. sphincter pupillae to its

mechanical limits despite a relatively large stimulus

size. L-cone-specific stimuli (photCPC) had a lumi-

nance of 4 cd/m2 and a wavelength of 620 ± 30 nm

full width at half maximum (FWHM). Stimulus

duration was 1000 ms and stimuli were presented on

a dim blue background with a luminance of 0.01 cd/

m2 and a wavelength of 460 ± 30 nm FWHM. The

test was applied after 10 min of light adaptation to the

background to partially saturate the rods [29]. Rod-

specific stimuli (scotCPC) had a luminance of

0.001 cd/m2 and a wavelength of 460 ± 30 nm

FWHM. Their stimulus duration was 100 ms and they

Fig. 1 The setup of the examinations: participants sat on a

comfortable chair and stimuli were presented on a large monitor

while the examiner sat in front of a darkened computer monitor

behind a partition wall
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were presented on a completely dark background

(0 cd/m2) after 20 min of dark adaptation.

The energy and spectrum of our stimuli were

measured at the position of the proband’s eye using an

LED-Spectrometer (MK-350S-Premium, UPRTek,

Taiwan). The results are shown in supplementary

Fig. S1. Luminance, spectrum and duration of our

stimuli are in accordance with the ISCEV Standard for

(cone- and rod-specific) full-field clinical elec-

troretinography [30] as well as the Standards in

Pupillography [29]. The background during and

before the application of cone-specific stimuli was

used to partially saturate rods.

The baseline period before the first stimulus

presentation for all stimuli was 500 ms and the

interstimulus interval was 4500 ms. The baseline

pupil size was calculated for each step individually.

A stimulus was repeated automatically if a blink

occurred during the presentation or if at least 90% of

the initial pupil diameter was not reached before the

following stimulus presentation.

There were 9 different stimuli for either rods or

cones and each one was repeated 10 times. Stimuli

consisted of five filled circles with a radius of 3�, 5�,
10�, 20� and 40� and four rings with a constant outer

radius of 40� and inner radii of 3�, 5�, 10� and 20� (see
Fig. 2).

In each protocol the circles were presented first,

beginning with 10 repetitions of the smallest circle and

ending with 10 repetitions of the largest circle.

Subsequently, the rings were presented, starting with

the ring with the largest inner radius (smallest

stimulated area) and ending with the ring with the

smallest inner radius (largest stimulated area).

Table 1 shows the area of the different stimuli in

deg2, calculated using the radii in degree and the

formula A = pr2.

Data management and statistical analysis

Mean relative maximal pupillary constriction ampli-

tude (relMCA) and mean latency to constriction onset

(latency) to the different stimuli were determined (for

more details see supplementary information, Fig. S2).

For the further statistical analysis, one participant was

excluded because his relative pupillary responses to

the rod-specific stimuli lay two standard deviations

below those of all the other participants. Data were

visually inspected for following a normal distribution.

Analyses of variance (ANOVA) for repeated mea-

surements and Bonferroni corrected post-hoc tests

(two-tailed paired t-test) were carried out between

relMCAs as well as between latencies to the cone and

rod-specific circle- and ring-stimuli. Additionally, a

two-tailed paired t-test between the rod-and cone-

specific difference of relMCA between the 20�/40�
and the 3�/40� ring as well as one between the rod- and
cone-specific latencies to the stimuli were performed.

Furthermore, relMCAs to the corresponding ring and

circle stimuli which combined create a 40� circle-

stimulus were summed. An ANOVA for repeated

measurements and a Bonferroni corrected post-hoc

test (two-tailed paired t-test) were subsequently

Fig. 2 Shapes of applied

stimuli. This figure shows

the red versions (cone-

specific stimuli, photCPC;

scotopic stimuli used blue

colour). There were 9

different stimuli for either

cones or rods and 10

repetitions. Below the

stimuli, the abbreviations

are given which are used

hereinafter
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carried out between the different combinations of

summation.

RelMCAs and latencies of 29 participants were

analysed. p-Values smaller than 0.05 were considered

statistically significant. Results are presented with

mean ± standard deviation (SD).

Results

Baseline pupil diameter

The average baseline pupil diameter of the 29

participants during photCPC was 6.3 ± 1.1 mm and

the average baseline pupil diameter during scotCPC

was 7.4 ± 0.8 mm.

Effect of increasing the stimulus: non-linear

increase of pupil response with increasing stimulus

area

Cone-specific protocol: photopic CPC (photCPC)

In Fig. 3 the results of the cone and rod response to

circle and ring stimuli are shown. For cones, the

relMCA significantly increased with increasing the

radius of the circle stimulus (p\ 0.001). The response

to a 3� circle was 16.2 ± 6.3% while the response to a

40� circle was 33.0 ± 4.1%. Likewise, the relMCA

significantly increased with increasing area of the ring

stimulus (p\ 0.001): The response to a 20�/40� ring
was 22.4 ± 5.9%, while the response to a 3�/40� ring
was 30.8 ± 4.6%. The response to the increase of the

stimulated area, whether circles or rings, was non-

linear.

Rod-specific protocol: scotopic CPC (scotCPC)

The results for the rod-specific protocols (Fig. 3)

showed overall smaller relMCAs than those for the

photCPC.

As in the photCPC, the relMCA significantly

increased with increasing radius of the circle stimulus

and there was a significant effect of stimulus size on

relMCA (p\ 0.001). The response to a 3� circle was
7.4 ± 3.3%, while the response to a 40� circle was

20.1 ± 4.6%. Also, the relMCA significantly

increased with increasing area of the ring stimulus,

although the difference is only small: The response to

a 20�/40� ring was 16.7 ± 5.0% while the response to

a 3�/40� ring was 18.9 ± 5.1% (for both: p\ 0.001).

Nevertheless, the increase of the relMCA to rod-

specific rings was statistically significant smaller than

to cone-specific rings. There was an absolute differ-

ence of only 2.2 ± 1.7% between the 20�/40� and the

3�/40� ring for the rod-specific stimuli. For the cone-

specific stimuli, the corresponding difference was

significantly larger at 8.4 ± 3.4% (p\ 0.001). The

difference between the rod-specific relMCAs to the

10�/40� and the 5�/40� ring, as well as the difference
between the ones to the 5�/40� and the 3�/40� ring,

were small and non-significant.

The increase of the response to the rod-specific

circles and rings was also non-linear.

Table 1 The area of each

stimulus in degrees visual

angle2 (rounded to whole

numbers) in phot CPC and

scotCPC

Stimulus Area (deg2)

c3� 28

c5� 79

c10� 314

c20� 1257

c40� 5027

r20�/40� 3770

r10�/40� 4712

r5�/40� 4948

r3�/40� 4998

Fig. 3 The average (of 10 pupil responses per participant)

relMCAs (relative maximal pupillary constriction amplitudes)

to the different stimuli are shown by the box-whisker plots

(n = 29). The mean values are shown by the crosses. Responses

to cone-specific stimuli are coloured red, responses to rod-

specific stimuli are coloured blue. The most important

significant differences mentioned in the text are shown by the

braces. Shapes are explained in Fig. 2
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Supplementary Fig. S3 shows some exemplary

pupil traces of proband number 1.

For both, cones and rods, a circle stimulus with a

radius of 40� created a significantly smaller relMCA

(p\ 0.001) than the summed response to the ring and

circle stimuli which create a 40� circle stimulus if

combined (e. g. c3� ? r3�/40�) (see supplementary

Fig. S4).

Latency to constriction onset

In Fig. 4 we plot the latency to constriction onset for

the cone and rod stimuli for the circle and ring stimuli.

PhotCPC: influence of stimulus configuration

on latency

For the cone-specific stimuli (red boxplots in Fig. 4),

the mean latency decreased significantly with increas-

ing radius of circle stimulus. The effect of stimulus

size on latency was significant (p\ 0.001 for circles,

p = 0.004 for rings). The latency to a 3� circle was

329 ± 34 ms while the latency to a 40� circle was

254 ± 28 ms (p\ 0.001). In contrast, latency stayed

nearly constant with increasing area of the ring

stimulus, though the effect of a smaller inner radius

was still significant. The latency to a 20�/40� ring was

254 ± 35 ms and different from the latency to a 3�/
40� ring that was 239 ± 31 ms (p = 0.029).

ScotCPC: longer latencies

The results for the rod-specific stimuli (blue boxplots

in Fig. 4) showed overall longer mean latencies to

constriction onset than those to the photCPC

(p\ 0.001). The mean latency difference between

rods and cones was 57 ± 32 ms. As in the photCPC,

latency decreased significantly with a larger radius of

circle stimuli. The effect of circle stimulus size on

latency was significant (p\ 0.001). The latency to a

3� circle was 394 ± 40 ms while the latency to a 40�
circle was 297 ± 26 ms (p\ 0.001).

In contrast, there was no significant decrease of

latency with a larger area of the ring stimulus. The

effect of ring stimulus size on latency is not signifi-

cant. The latency to a 20�/40� ring was 306 ± 33 ms

and the latency to a 3�/40� ring was 305 ± 31 ms

(non-significant).

Discussion

Our study focuses on the effect of central and

peripheral stimulation on the pupillary light reflex.

The aim was to detect possible differences between

cone- and rod-driven reactions.

For both, cone- and rod-specific stimulation,

relMCA increased with increasing stimulus size (see

Fig. 3). This was expected as a larger stimulus

activates a larger area of the retina. It is well-known

that the amplitude of the PLR is linearly related to the

logarithm of the stimulus intensity [17–19] but

differing results on the relationship between PLR

and stimulus size have been reported in the literature.

Various studies have shown that the light-adapted

pupil size depends on the product of luminance and

stimulus area, the corneal flux density (CFD) [20, 21].

Hu et al. expressed the maximum pupil constriction to

white peripheral stimuli as a function of CFD and

eccentricity [22]. Joyce et al. examined the relMCA

caused by long- and short-wavelength stimuli under

conditions constant for either CFD, irradiance or

stimulus-size [26]: their study revealed that for both

wavelengths a constant CFD resulted in a relatively

constant pupillary constriction. A CFD-dependency of

the maximum pupil constriction agrees with our

Fig. 4 The average (of 10 pupil responses per subject) latencies

to constriction onset to the circle and ring stimuli are shown by

the box-whisker plots (n = 29). The mean values are shown by

the crosses. Latencies to cone-specific stimuli are coloured red,

latencies to rod-specific stimuli are coloured blue. The most

important significant differences mentioned in the text are

shown by the braces
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results as the relMCA of cone- and rod-mediated

responses increased with increasing stimulus size and

consequently a larger CFD.

Cone-specific stimulation revealed that the effect of

central stimulation is dominant for the PLR: although

the stimulated area is much larger, the relMCA to a 40�
circle stimulus was only two times stronger than the

relMCA to a 3� circle (see Fig. 3). Moreover,

increasing the area of central stimulation while the

periphery is also stimulated had a significant effect on

the pupillary response as well: Minimizing the inner

radius of a ring-stimulus increased the pupillary

response amplitude by more than one third.

With rod-specific stimuli, the effect of central

stimulation is less dominant for the PLR than with

cone-specific stimuli. The relMCA to a 40� circle

stimulus was three times as large as the relMCA to a 3�
circle (versus two times as large in photCPC) (see

Fig. 3). Furthermore, in contrast to the photCPC, the

increase of amplitude to the increasing size of ring

stimuli (smaller inner radius) was significantly smaller

than for cone-specific stimuli. Increasing the area of

central stimulation while the periphery was already

stimulated increased the pupillary response amplitude

only minimally. One could argue that this is not

surprising because there are almost no rods in the

centre of the retina [31], but according to Curcio et al.,

the size of the average diameter of the rod-free zone in

the middle of the retina is only 1.25� [31] which is also
the reason for a response to our c3�-rod-stimulus.

For cones and rods, a circle stimulus with a radius

of 40� created a lower relMCA than the summation of

the relMCAs to the corresponding ring and circle

stimuli which combined create a 40� circle-stimulus.

This indicates a non-linear summation.

In our recent publication on CPC [2] and a study by

Haj Yahia et al. [25] a prominent role of cones in the

centre of the retina has also been described, i.e. larger

eccentricity effect for cones than for rods. In patients

with AMD the relMCAs to local stimuli were lower

than those of an age-matched healthy control group,

especially for the centre of the visual field. In addition,

the profile of responses over the retina was flatter [6].

Our results are in line with these studies, although their

results were based on local stimulation. Skorkovska

et al. examined summation effects of the pupillary

light reflex to white light under conditions of light

adaptation and found the amplitude of the PLR being

related to size, intensity and retinal location. They

observed an eccentricity effect with lower relMCAs in

the periphery [16]. However, their results cannot

simply be transferred to our photoreceptor-specific

results as they used other stimulus shapes, white light

and no photoreceptor-specific stimulation. Several

other studies have found an effect of eccentricity on

the PLR to white light [1, 19, 22, 24].

Regarding latency to constriction onset, it can be

seen that latency was significantly shorter for cones

than for rods (see Fig. 4).

The mean difference in latency between rods and

cones was 57 ± 32 ms. This confirmed previously

published results of our group [2] and those of other

groups [32–34] reporting latency differences in the

range of 20 ms—100 ms. In our previous paper

(applying small focal stimuli) we found a cone-

specific latency of 277 ± 25 ms and a rod-specific

latency of 372 ± 13 ms [2] which is in accordance

with the current results.

Latency differences between photCPC and

scotCPC are most probably caused by differences in

the retinal processing of the cone and rod system.

According to current knowledge, a rod on-stimulation

is either transferred from rod bipolar cells via AII

amacrine cells to cone bipolar cells or directly via gap

junctions from the rod to a cone and thereafter to a

cone bipolar cell [35–39]. Consequently, the rod ON-

pathway includes at least one additional cell compared

to the cone ON-pathway.

Latency decreased with increasing radius of circle

stimuli for cones and rods (see Fig. 4). The latency

difference between the different steps of circle sizes in

our study was very similar, no matter how large the

change of area was. This indicates a non-linear

relation to stimulus size while the relation to the

logarithm of stimulus size is negatively linear. These

observations are in line with the results of Cibis et al.

and Hu et al.: Cibis et al. found shorter latencies for

larger stimuli and additionally a negative linear

relation between the logarithm of the stimulus inten-

sity and the pupillomotor latency [40] and Hu et al.

determined latency to be a function of CFD [22]. In

ERG, a faster b-wave can be determined with

increasing light for both rods and cones [34] which

is consistent with our results as well. In contrast,

latency remained nearly constant with increasing ring

stimulus size for both photoreceptors. This effect

indicates that peripheral retinal stimulation might

fasten pupillary dynamics leading to a decreased
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latency in comparison to central stimulation. On the

other hand, saturation due to stimulus size can be

considered.

In conclusion, the main outcome of this study is that

the effect of central stimulation on the relMCA is more

dominant for cone-specific stimuli than for rod-

specific stimuli while latency dynamics are similar

for rods and cones despite their absolute latency

difference.

The clinical relevance of our study is that smaller

stimulus sizes in the range of 3�—5� as used in the

CPC or multifocal approaches are necessary to detect

central defects under rod-specific test conditions.

We are aware of certain limitations of our study.

The pupillary light reaction is a complex process that

receives its input not only from rods and cones but also

from intrinsically photosensitive retinal ganglion cells

(ipRGCs) and will therefore be influenced by diffuse

bipolar cells and dopaminergic amacrine cells [29].

Nevertheless, our stimuli were designed to stimulate

the photoreceptors as specifically as possible while

keeping clinical practicability [2] and being in terms

with the ISCEV- and Pupillography-Standards

[29, 30]. Finally, we did predominantly address rods

or cones by using different light levels, wavelengths

and states of adaptation, but cannot claim an absolute

separation of their inputs.

Furthermore, we cannot completely exclude the

effect of light scatter. If there was an effect of scatter, it

would be expected to be stronger for scotCPC than for

photCPC, as rods are more sensitive than cones [41]

though a lower stimulus intensity leads to less light

scatter. However, as the average retinal diameter of the

rod-free zone is only 1.25� and as there are even more

rods than cones at an eccentricity of 3� according to

Curcio et al. [31], it is unlikely that our strong response

to the 3� circle is an effect of scattering. Additionally,

none of our probands reported any blurred stimulus

margin.

Another point is the effect of refractive errors.

Minor refractive errors do not influence pupillary light

responses in CPC. However, it is difficult to define a

numerical limit. According to our experience from

former studies, we believe the limit of ± 3 D is

reasonable. Because we examine without corrective

glasses, higher hyperopia might induce a pupillary

near response. In younger subjects, an accommodative

near response up to 3 D is very small, in most cases

absent [42].

Finally, we evaluated the results of 29 healthy

young participants. Whether the same effects apply to

other age groups remains open.

Code availability:

The in-house developed software that was used for

pupil measurements is described by Stingl et al. [1]

and its code is stored at the Centre for Ophthalmology,
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