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Abstract

For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to

develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular

proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases

labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately man-

ifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions,

including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially

interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hyper-

tension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of

cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology

and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the

state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary

hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing

stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research

and treatments will be briefly discussed.

Keywords

toll-like receptor 9 (TLR9), cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), mitochondrial DNA

(mtDNA), interferonopathy

Date received: 1 February 2021; accepted: 1 February 2021

Pulmonary Circulation 2021; 11(1) 1–16

DOI: 10.1177/2045894021996574

Don’t be so gloomy. After all it’s not that awful. You know

what the fellow said – in Italy, for thirty years under the

Borgias, they had warfare, terror, murder and bloodshed,

but they produced Michelangelo, Leonardo da Vinci and the

Renaissance. In Switzerland, they had brotherly love, they had

five hundred years of democracy and peace – and what did that

produce? The cuckoo clock.

� Harry Lime (Orson Welles)

Introduction

The apocryphal monologue above, from director Carol

Reed’s archetypal 1949 spy-thriller The Third Man, neatly
summarizes the key biologic concept that evolutionary

pressure can yield beauty in complexity, despite often
brutal means. Analogous to this film noir observation is a
key concept in molecular biology; organismal detection of
proliferative versus danger signaling within an environment
as a complicated and evolved form of sophisticated espio-
nage. In order to facilitate health, with successful passage of
genetic material, there is arguably no more important cellu-
lar function—or more complex—than accurate and rapid
processing of information, such as free circulating polynu-
cleotide chains. Functionally cunning, this “spying” on the
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DNA/RNA of neighboring tissues—as well as the self—is

what allows all living creatures to differentiate between: (1)

a hostile-takeover leading to programmed or spontaneous

cell death (due to injection of foreign RNA or DNA from

viral or bacterial infection) versus (2) mitosis or synergistic

sharing of genetic material to promote a healthy response to

deleterious changes in the environment (such as seen with

rapid temperature shifts, circadian light/dark cycles, and

seasonal nutrient supply).
Cellular reconnaissance in this manner is particularly

important to innate immune cells in appropriately reacting

to the presence of free circulating DNA. The concept is

consistent with the primordial role for DNA as a danger

signal, known long before we discovered its function as the

key blueprint of genetic material.1 The importance of this

detection and response is illustrated most prominently by

the highly conserved nature of molecular DNA sensors in a

large number of organisms from humans to sea anemones

and bacteria.2–5 Related, self-DNA sensing is known to be

an integral component of many lung inflammatory dis-

eases,6 including asthma7,8 and pulmonary fibrosis.9

However, the role of this signaling pathway in pulmonary

vascular disease is relatively unknown, despite the well-

described consequence of DNA-damage, particularly mito-

chondrial DNA (mtDNA), in pulmonary hypertension

(PH).10 This is unfortunate, given the multiple drug targets

available to regulate cytosolic DNA sensing pathways, a

large amount of which are already being explored within

the field of cancer and autoimmune disease,11 that could

potentially be applied to re-establishing lung vessel health.
Therefore, the purpose here is to first review in brief the

role of DNA damage in PH (Fig. 1), before examining in

more depth the pathways recently elaborated upon relating

to maladaptive polynucleotide sensing. Finally, we will

review novel therapies related to DNA detection, in partic-

ular seeking to establish a biologically plausible rationale

for application of drugs to patients with a pulmonary vas-

culopathy (Fig. 2 and Table 1). General nucleic acid—

including purinergic and RNA—sensing will not be dis-

cussed; however, these topics have recently been broadly

summarized elsewhere.12,13 Of note, however, is the fact

that free double-stranded RNA detection through toll-like

receptor 3 (TLR3) has previously been described as neces-

sary and sufficient for protection against development of

PH secondary to chronic hypoxia exposure.14 The mecha-

nism for TLR3 involvement in pulmonary arterial hyper-

tension (PAH),15 remains unknown, despite the unexpected

benefit of activation having been noted previously in a large

vessel injury model.16 It appears to be a cell-specific effect,

however, with expression by pulmonary artery smooth

Fig. 1. Overview of the cytosolic DNA sensing apparatus.
mtDNA: mitochondrial DNA; dsDNA: double-stranded DNA; cGAS: cyclic GMP-AMP synthase; cGAMP: cyclic GMP-AMP; STING: stimulator of
interferon genes; TBK1: TANK-binding kinase 1; IRF3: interferon regulatory factor 3; IFN: interferon.
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muscle cells resulting in elevated interleukin (IL)-8 levels—
promoting endothelin-1 (ET-1) expression17 and endothelial
cell expression blunting alternative double-stranded RNA
(dsRNA) signaling leading to canonical inflammatory cas-
cade signaling through nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-jB).14 Thus, an apt role
for accurate and sometimes lethal cellular foreknowledge in
the amplification of abnormal vascular responses within the
lung is established.

DNA sensing and its role in PH

Patients with PAH are known to be predisposed to nuclear
and mtDNA damage (recently reviewed elsewhere18).
Accordingly, both an increased susceptibility to muta-
gens—due primarily to malfunction in DNA repair mecha-
nisms—and an increase in baseline systemic DNA damage
have been reported in isolated pulmonary endothelial and
myeloid cells derived from patients with PAH,19 including
enhanced sensitivity to bleomycin-mediated nuclear injury.
In heritable PAH, most commonly due to loss of function
mutations in bone morphogenetic protein receptor II

(BMPR2), there is known intrinsic genomic instability20

associated with specific compensatory upregulation in
DNA repair enzyme poly (ADP-ribose) polymerase 1
(PARP1) in pulmonary artery smooth muscle cells of
patients with disease.21 Of note, a similar phenomenon of
cellular “addiction” to PARP-mediated repair has been
described in several malignancies, drawing yet another par-
allel between PH and cancer biology.22

Several additional components of the DNA damage
response are worth noting, as relevant to development of
PH. Lupus Ku autoantigen (Ku70) antibodies have been
associated with both PAH23 and connective tissue diseases
that predispose to PH.24,25 As an essential nonhomologous
end-joining DNA double-strand break repair enzyme,
Ku70-null mice display an increase in DNA damage and
is associated with apoptotic resistance as well as PH and
emphysema.26 A delicate balance must be struck, however,
as evidenced by the fact that mere inhibition of Ku70, by
either decreased phosphorylation27 directly or epigenetic
regulation,28 results in protection against development of
PH. Similarly, expression of the DNA damage response
sensors MRE11-RAD50-NBS1 and the E3 ubiquitin ligase
UBR5, necessary for promoting endothelial cell health
under homeostatic conditions, predisposes to development
of PH.29 Finally, overexpression of Nudix hydrolase 1
(NUDT1), a detoxifying DNA enzyme, results in increased
incorporation of oxidized nucleotides into DNA, promoting
apoptosis resistance and proliferation secondary to DNA
damage30; NUDT1 inhibitors have been shown to block
development of PH in the monocrotaline and Sugen/hypox-
ia rat models.

A hallmark of connective disease, titers of auto-
antibodies directed against double-stranded DNA
(dsDNA) are known to correlate with development of PH,
especially related to scleroderma31 and systemic lupus ery-
thematosus (SLE).32 This is consistent with what is known
in the DNA sensing literature, where primarily DNA-
derived from mitochondria lead to increased interferon pro-
duction and a worsening of lupus findings using the pristane
mouse model of disease.33 In fact, patients with the mono-
genic form of SLE are heavily predisposed to an amplified
type 1 interferon production cycle, autoinflammatory dis-
ease, and PH.34 The link between autoantibody expression
and PAH continues to be explored.35

mtDNA damage

mtDNA damage has also been associated with BMPR2
mutation, with abnormalities in mitochondrial metabolism
and cytosolic mtDNA associated with altered apoptotic
response to injury in mutant strains.36 The group that first
described these changes in heritable PAH, later also
described a similar phenomenon in another unfortunate
experiment of nature; noting a rampant increase in clinically
diagnosed methamphetamine-induced PH, they asked
whether they could find similar changes in mtDNA in

Fig. 2. Summary figure detailing relevant pathways to cytosolic DNA
sensing in development of pulmonary hypertension (PH).
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patient samples with disease37? In both circulating bone
marrow-derived cell and endothelial cell samples from
patients, as well as mice upon induction with methamphet-
amine, they found an increase in mitochondrial dysfunction
with an expected rise in mtDNA damage, subverting the
adaptive vascular response to reactive oxygen species
(ROS)-mediated injury, and ultimately contributing to
PH.38,39 These findings are interesting in light of known
sex-specific mtDNA mutations in cardiovascular disease40

and mitochondrial haplogroup-specific changes41 associated
with development of PH. These data reinforce how influen-
tial endothelial cell bioenergetics and mtDNA damage pre-
disposing to vascular injury can be, especially in women,42

the population primarily diagnosed with and affected by
heritable PAH.

Related, if mtDNA damage is involved in the pathogen-
esis of PH, it stands to reason that protection against injury
of nucleotide would prove beneficial to prevention and
treatment of disease. As an example, it has been demon-
strated in endothelial cells that DNA repair enzyme
8-oxoguanine glycosylase (OGG1) over-activity protects
against mtDNA damage and subsequent cell death.43

OGG1, a glycosylase enzyme that is heavily involved in
base excision repair, is induced primarily by xanthine
oxidase-induced mitochondrial injury. Therefore, it is
thought to be integral in prevention of further mitochondri-
al dysfunction leading to cellular apoptosis44 and oxidant-
related tissue injury.45 Regarding translational potential of
this protein, OGG1 has thus far been shown to reverse vas-
cular barrier compromise in response to oxidant stress,46

and hypoxia-inducible factor-mediated endothelial cell

injury.47 OGG1-deficient mice also display an increase in

auto-dsDNA antibodies in a lupus model, associated with

increased interferon production and worsened objective

findings of disease.33 Ultimately, a balance must be struck

between these potentially disadvantageous and beneficial

mtDNA injury responses, in order to restore homeostatic

cellular function.

Ligand sequestration and stability

Cells can only respond to that which they are capable of

detecting, however. Therefore, compartmentalization of

substrate—double-stranded mtDNA or nuclear DNA

(nucDNA)—through repair or removal is an effective

method of preventing potential downstream pathology

related to DNA sensing. Effectively, there are two major

methods available to prevent accumulation of poly-nucleic

acids, through: (1) aforementioned DNA repair enzymes or

(2) ligand digestion. The former includes elimination of

damaged or senescent mitochondria through mitophagy

via direct alteration in mitochondrial membrane permeabil-

ity—normally tightly regulated in response to stress in order

to induce immune tolerance or activation and prolifera-

tion—in response to noxious stimuli.48 A similar process

is also involved in the tightly regulated role of nucleic acid

chain sensing in response to mitosis, whereby cell cycle does

not activate DNA sensing pathways. However, during

mitotic arrest, low-level accumulation of nuclear micronu-

clei—containing nucDNA—can lead to induction of apo-

ptosis through secondary protein alterations in

mitochondrial permeability.49

Table 1. Available therapeutics, mode of action and related to DNA sensing pathways.

Therapeutics Target molecule Mode of action

Poly (ADP-ribose)

polymerase (PARP)

inhibitors

PARP i) Inhibiting double-stranded DNA repair within tumor cells.

ii) Promotes STING activation due to double-stranded DNA (dsDNA) fragment sensing upon

PARP inhibition in tumor cells.

iii) PARP inhibitor expression reverses lung PH and provides vascular remodeling, pulmonary

resistance, right ventricle hypertrophy, and survival.

PD-1/PD-L1 inhibitors PD-1/PD-L1 i) Increase in PD-L1 expression in circulating myeloid cells promotes PH.

ii) aPD-L1 treatment increases FoxP3 and IL 10 expression by pulmonary Tregs and a decrease in

the number of lung PMN-MDSC in a bleomycin induced PH model.

miRNA targets miRNA i) Hypoxia induces the expression of a number of miRNA’s that contribute to PH.

ii) miRNA like miR27a enhances hypoxia induced PH by downregulating peroxisome proliferator-

activated receptor (PPARc).
CD47 inhibitors CD47 i) Anti-phagocytic marker.

ii) High expression in lungs of patients with PH.

iii) CD47�/� mice under hypoxia have normal pulmonary arterial smooth muscle cell proliferation,

RV hypertrophy and elevation in RV pressure compared with WT controls.

iv) Anti CD47 antibody results in a decrease in ET-1 levels.

JAK/STAT inhibitors JAK/STAT pathway i) Improvement in pulmonary pressure associated with myelofibrosis.

ii) Decrease in interferon mediated cytokines.

iii) Functions via down regulation of STAT3 activity.

STING: stimulator of interferon genes; PH: pulmonary hypertension; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand 1; PMN-MDSC:

polymorphonuclear cells; RV: right ventricular; ET-1: endothelin-1; JAK/STAT: Janus kinase/signal transducer and activator of transcription.
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A second method of nucleic acid sequestration, prevent-
ing cytosolic sensing and activation, involves a large family
of DNA-targeting enzymes (DNAse) that function in large
part to digest dsDNA prior to propagation of the danger
signal. Vital to vascular health, deficiency in one of these
proteins, DNAse II—functioning within the phagolysoso-
mal compartment—has recently been linked to development
of PH in a patient with SLE-like symptoms.50 Similarly,
mutations in TREX1 (or DNAse III) have been strongly
linked with autoimmunity and SLE.51 Functioning primar-
ily within the cell cytosol, TREX1 loss-of-function muta-
tions result in a rare disease entity, Aicardi-Goutieres
syndrome (AGS). An illness of constitutive interferon pro-
duction and signaling associated with development of PH at
a young age, AGS is one of several type I interferonopathies
linked to pulmonary vasculopathy including: gain-
of-function mutations in melanoma differentiation-
associated protein 5 (part of the RIG-I-like receptor
family associated primarily with dsRNA-sensing),52 and
the related Singleton-Merten syndrome.53,54

Viral nucleic acid sensing

As described in the introduction, DNA sensing pathways
are ostensibly established in order to distinguish self
versus hostile cytosolic nucleic acid. Relevant to the field
of PH, DNA viruses have long been postulated to serve as a
potential “second-hit” stimulus in genetically predisposed
patients, tipping the scales toward maladaptive vascular
repair and development of disease. This hypothesis was ini-
tially supported by work demonstrating a higher than
expected detection of human herpes virus-8 in the lungs of
patients with PAH,55 but subsequent studies have failed to
replicate these findings,56,57 although all have been relative-
ly underpowered to do so.

A portion of the intrigue related to viral detection in
patients with PAH, however, may be built on a somewhat
faulty premise; that detection of contemporaneous infec-
tion—and thus recently acquired viral DNA—in patients
is the pathologically relevant sentinel event. A recent pub-
lication has colored this assumption in a provocative light,
focusing on the role of ancient viruses—conserved DNA
sequences of retroviral origin that are vertically transmit-
ted—in aberrant vascular remodeling.58 In the referenced
manuscript, the group propose that PAH is a consequence
of sustained immune cell activation due to upregulation of
the endogenous retrovirus Human Endogenous Retrovirus-
K (HERV-K). Presumably, accumulation of the HERV
motifs sustains this chronic inflammatory response,
which—related to the above discussion on TREX1—is
exactly what has been described in AGS patients with PH;
decreased HERV cDNA destruction associated with consti-
tutive innate immune cell activation.59 Although specula-
tive, one could hypothesize based on these data that the
presence of cytosolic DNA—originating from multiple
sources—could potentially become a bottleneck in disease

progression, and therefore a potent area of study for ther-

apeutic targeting of disease. First, however, we need to have

a better understanding of how cell-free DNA is sensed by all

cells, and specific cell types in particular.

Sensing of foreign and self-DNA

damage in PH

Molecular mechanisms

The evolving story of cytosolic DNA sensing,60 and self-

DNA sensing in primary lung disorders,6 is complex. To

this end, a network of molecular and cellular mechanisms

has been described, as relevant to nucleic acid sensing in

disorders and disease models with overlapping pulmonary

vascular disease pathology. The following is thus a brief

overview of mechanistic signaling involved in DNA

detection at a tissue and cellular level, with highlighted rel-

evance to PH.

Toll-like receptor 9. The first described cellular dsDNA

sensor,61 TLR9 functions within the intracellular endoso-

mal compartment, and is crucial to prevention of self-

DNA recognition, particularly by inflammatory cells.62 As

such, TLR9 is normally described as acting through the

canonical inflammatory pathway involving NF-jB, via

myeloid differentiation primary response 88 (MYD88).

Moreover, TLR9 activation in endothelial cells specifically

is associated with an increase in IL-6 paracrine-mediated

increase in smooth muscle cell proliferation and pulmonary

vascular remodeling.62 In this particular study, however,

effects were predominantly felt to be secondary to hemoglo-

bin–lipid peroxidation and generation of ROS in mice and

rats. This must be taken into consideration, however, with

evidence that TLR9 stimulation through ligand CpG

decreased secondary mediators associated with both protec-

tion and susceptibility to PH.63 An example, TLR9/MYD88

signaling through interferon regulatory factor 1 (IRF1), in

synergistic activation with signal transducer and activator

of transcription 1 (STAT1), stimulates release of ET-1 in

human vascular smooth muscle cells, a known causative

factor associated with development of PH.64

Cyclic GMP-AMP synthase and Stimulator of Interferon Genes. A

broader view of cyclic nucleotide-sensing related to nitric

oxide signaling (using either cyclic guanosine monophos-

phate or cyclic adenosine monophosphate intermediates)

and associated redox biology is beyond the scope of this

discussion, with several reviews on the subject having

recently been published, for reference.65–67 However, related

to the current discourse is the role of purinergic sensing in

PH, which has seen a relative explosion in interest within the

past several years.68 Genomewide RNA studies have previ-

ously demonstrated alteration in the purinergic G-protein

coupled receptor P2Y-family in patients with PAH and
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secondary PH, compared to healthy controls.69

Mechanistically, blocking P2Y1 and P2Y12 receptors
blocks adenosine diphosphate (ADP)-induced pulmonary

vasoconstriction in pigs.70 P2X7R—a purinergic receptor
for adenosine triphosphate (ATP) and a pattern recognition

receptor—has likewise been shown to contribute to PH,
through NLR family pyrin domain containing 3 inflamma-
some activation in monocrotaline-treated rats.71 Protection

against hypoxia-induced PH in mice is likewise afforded
through blocking or deletion of CD39, an ectonucleotidase

responsible for conversion of nucleotides ATP and ADP to
AMP.72,73 Finally, antagonism of the adenosine 2B receptor

has demonstrated therapeutic promise, halting progression
of bleomycin-induced PH, in particular.74

Cyclic dinucleotide detection, we now know, originated
in bacteria, with bacterial Stimulator of Interferon Genes

(STING) being particularly adept at response to invader
generation cyclic di-GMP. This is juxtaposed to the refined

mammalian response primarily to the secondary intermedi-
ate cyclic GMP-AMP (cGAMP), and is believed to repre-

sent a prokaryotic defense against bacteriophages and viral
invaders, cellular “spies”.75 Humans do have some retention

of the cellular machinery to respond to bacterial cyclic di-
GMP, however, such as the oxidoreductase RECON-

mediated activation of inflammatory lynchpin, NF-jB.76

First described in a small cohort of six patients in 2014,

the STING-Associated Vasculopathy with onset in Infancy
(SAVI) syndrome illustrates the negative sequelae related to

unmitigated cytosolic DNA sensing, with systemic inflam-
mation, cutaneous vasculopathy, and—most relevant to this

discussion—development of early pulmonary fibrosis and
PH.77 In this disorder, a germline mutation in STING

(also referred to as TMEM173) causes constitutive homo-
dimerization and activation of the protein, independent of

the specific secondary messenger cyclic dinucleotide pro-
duced by cGAMP synthase (cGAS) upstream, which nor-

mally initiates recognition of free DNA. Thus, SAVI—
another member of the interferonopathy family of diseases

which includes the aforementioned AGS—results in elevat-
ed basal levels of type I interferons, including interferon

(IFN)b. Propagation of intracellular inflammatory signal-
ing pathways is then increased, such as phosphorylation of

STAT1 and STAT3. This occurs primarily in peripheral
blood mononuclear cells (CD14þ monocytes), and not T

lymphocytes. However, lung disease has been demonstrated
to develop independently of type I interferon signaling—

and cGAS detection of dsDNA—relying in large part on
the immunophenotype of T cells, in at least one study.78

Likewise, STING activation in vascular endothelial cells
has been shown to be associated with tissue-specific effects
such as elevated apoptosis, a phenomenon dramatically

reduced by treatment with Janus kinase (JAK) inhibitors.77

However, the myeloid and lung changes do appear to be

independent of classical interferon-stimulated gene activa-
tion through phosphorylation of transcription factor

interferon regulatory factor 3 (IRF3) by TANK-binding

kinase 1 (TBK1), in some of the hyper-activating mouse

mutant models.79

Of note, STING gain-of-function mutation does not nec-

essarily have to occur in the dimerization domain of the

gene in order to manifest severe PH,80 though these patients
will often still respond well to JAK inhibition.81 A similar

mutation has also been demonstrated to predispose mice to

gamma herpes virus T cell-mediated pulmonary fibrosis,
similar to patients diagnosed with SAVI, and effect which

is myeloid-cell dependent.82 PH, however, was not assessed

in this report, though mild elevation in pulmonary pressures

would be expected following degree of lung fibrosis.

STAT protein family. As described previously, STAT signaling

is necessary for appropriate and maladaptive inflammatory
responses in PH.64 Inhibition of STAT1-induced cytokine

production—in particular—has been associated with phar-

maceutical treatment of PH, reducing phosphorylation and
nuclear recruitment of the transcription factor, leading to

improved pulmonary pressures.83 Related, STAT1/3 inhibi-

tion with broad tyrosine kinase-inhibitor imatinib has

been shown protective against the development of
monocrotaline-induced PH in rats.84 STAT3 signaling espe-

cially has received a large amount of interest in the field of

pulmonary vascular disease.85 However, these data are pri-
marily viewed through a smooth muscle cell-specific lens,

due both to oncogenic mediator expression by this cell

type86 and reversal of monocrotaline associated PH with

use of relatively specific STAT3 inhibition.
The relationship between cytosolic DNA sensing and

STAT-activation is in a nascent stage. From investigation

of SAVI patients, and murine modeling, we know that
STING can suppress STAT3 activation tonically along

with IFNb/IL-6 production via alternative phosphorylation

of a TBK1 on serine-residue 754 (Ser754).87 Interestingly,
IL-6-mediated STAT3 intracellular signaling is associated

with familial PAH due to mutations in BMPR2.88

Although not felt to manifest in a cell-specific manner, exo-

some delivery of micro RNA (miRNA) influencing STAT3
activation as a causative agent in PH suggests a paracrine/

endocrine mechanism of disease development.89 Potentially

related immune cell contribution has been demonstrated to
be affected by upstream IL-6 blockade, leading to protec-

tion against heritable PH modeling in mice.90 These changes

in turn correlate with decreased T-helper cell 17 accumula-

tion in the lung, as well as a decreased in the M2 polariza-
tion of pulmonary macrophages.

STAT5a/b differential activation has been hypothesized

to contribute to sex-specific manifestation of animal and
human PH.91,92 contributing to BMPR2 mis-localization

and subsequent dysfunction.93 STAT6, on the other hand,

has been shown to be associated with T cell-mediated effects

on vascular smooth muscle cell proliferation in murine PH
pathology.94 This mechanism is felt to be through
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indirect signaling via soluble mediators—similar to
schistosomiasis-induced PH.95 In particular, the Th2 cyto-
kines IL-4 and IL-13, acting via STAT6, in both the
bleomycin-induced pulmonary fibrosis96 and chronic
hypoxia-induced PH97 models, have been demonstrated to
act in hypoxia-mediated pulmonary vascular remodeling
through the well-characterized mediator hypoxia-inducible
mitogenic factor (FIZZ1/RELMa).98 Specifically, IL-13 has
a direct effect on STAT6 associated smooth muscle cell pro-
liferation via the IL-4 receptor (IL-4R),99 a process that
closely mirrors that of cGAS/STING activation via cyclic
dinucleotide signaling.100 Unsurprisingly, this pathway is
especially relevant to DNA sensing, as activation of
STAT6 by STING is critical for antiviral innate immuni-
ty,101 requiring JAK-independent TBK1 phosphorylation.
Of course, by definition activation or inhibition of any
STAT family member is likely to have potentially profound
side effects, because these are central regulators in the
immune system, and in many tissue homeostatic activities.
Additionally, the different STAT proteins—of which there
are only seven mammalian STAT proteins (1, 2, 3, 4, 5a, 5b,
6)—have quite distinct areas of biologic activity so in the
case that one of them is blocked, others do not necessarily
compensate for the missing function.

Cellular mechanisms

Endothelial cells. Human pulmonary artery endothelial cell
migration has previously been shown to be regulated direct-
ly through interferon-signaling, via IRF3.102 Despite a
single study’s finding that interferon alpha (IFNa) is capa-
ble of reversing PH associated with the combination of vas-
cular endothelial growth factor receptor antagonist (Sugen
5416) and chronic hypoxia exposure,103 there is strong evi-
dence for type I interferon signaling as being detrimental in
the pathogenesis of pulmonary vascular disease.104 It is
worth noting that in the former manuscript, there was no
significant difference in levels of interferon in the circulation
of patients with PAH, compared to matched healthy con-
trols. In the latter report, however, endothelial cells grown
from patients with PAH were more sensitive to effect of
interferon-stimulation than donor controls. Moreover,
interferon alpha receptor type 1 (IFNAR1) null mice were
protected from the deleterious effects of chronic hypoxia
exposure, specifically noted to display a decrease in whole
lung ET-1, which is known to be associated with worsened
disease outcomes. These findings are consistent with human
“experiments” using IFNb as treatment for patients with
multiple sclerosis, where development of PH is a well-
described, although rare, complication.105

Of note, endothelial cell proliferation is promoted specif-
ically by mtDNA detection through cGAS/STING, via
effects on canonical HIPPO-signaling pathway regulation
of transcription factors yes-associated protein 1 (YAP)/
TAZ.106 The latter is especially relevant in light of recent
findings demonstrating that patients with PAH have

aberrantly activated HIPPO-mediated transcription factors

YAP/TAZ signaling within pulmonary vessels, specifically
vascular smooth muscle cells.107 Such paracrine effects may

ultimately explain how type 1 interferon induction is capa-
ble of specialized recruitment of certain myeloid-derived

cells, through elaboration of chemokines such as CX3CL1
and CCL5, within the pulmonary circulation.108

Myeloid cells. Bone marrow-derived cells have previously
been described to play unique roles in development of pul-

monary vascular disease.109 Related, cytosolic DNA sensing
through cGAS/STING signaling is known to tightly regu-

late the innate immune response preventing development of
chronic inflammatory disorders.110 For example, plasmacy-

toid dendritic cells—a unique DC sub-population that spe-

cializes in interferon production—have been described to
increase interferon signaling primarily through cGAS/

STING activation.111 This cell-type has likewise been
shown to be correlated with progression of elevated pulmo-

nary pressures in patients with PAH.112,113

More recently, a sub-population of myeloid-derived cells

has been described that is characterized as immunosuppres-

sive, facilitating protection against T-cell activation, primar-
ily. These myeloid-derived suppressor cells (MDSCs),

phenotypically similar to either monocytes (M-MDSC) or
polymorphonuclear cells (PMN-MDSC), are evolutionarily

conserved immature bodies that are liberated from the bone
marrow during periods of stress and induction of emergency

myelopoiesis, and are linked to development of a wide
swathe of illnesses, from cancer to autoimmune diseases.114

Our own group has recently described these cells as playing
a necessary and sufficient role in the development of PH

secondary to chronic hypoxia or interstitial lung disease,115

with evidence of increased circulating levels of myeloid-
derived cells in the blood of patients with PAH.116

Importantly, in response to cellular DNA breakage via
application of external radiation, STING is necessary to

facilitate accumulation of MDSC at tumor bed sites,
through CCR2-mediated chemoattraction of primarily

M-MDSC.117 Although there is evidence that this results
in a pro-immunosuppressive effect—and thus progressive

growth of malignancy—it is a complicated response with

at least one group having shown that high amounts of
MDSC STING stimulation associated with ligand infusion

results in tumor regression.118 In part, this may be explained
by an indirect and differential response to downstream

inflammatory signaling, such as STAT activation. For
example, MDSC STING activates suppressor of cytokine

signaling 1, itself a potent inhibitor of STAT3 signaling,
necessary for facilitating progression of the DNA Epstein-

Barr Virus-associated malignancy nasopharyngeal carcino-
ma.119 This is an exceedingly complex regulatory network,

however, with STAT3 in turn serving to downregulate

STING signaling through ligand inhibition,120 and playing
a role in cytosolic DNA sensing related to immune
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checkpoint expression.121 Ultimately, more work remains to
determine the specific role STING plays in the immunosup-
pressive fate of MDSC in a variety of illnesses.122

Exposures and therapy

Exposures

A host of clinical and bench-side stimuli of systemic inflam-
mation due to DNA sensing pathway activation are linked
to the development of chronic lung diseases, such as idio-
pathic pulmonary fibrosis (IPF) or chronic obstructive
pulmonary disease. Below summarizes some of these
exposures, and how they may relate primarily to
progression of associated PH (World Health Organization
Group 3 PH).

Pulmonary fibrosis-inducing agents. Although TLR9 has previ-
ously been linked to development of rapidly progressive
IPF,123,124 the majority of research into the role of DNA
sensing has focused on cGAS/STING. For example, silica
inhalation is known to induce pulmonary fibrosis in patients
as well as mice. Pulmonary cell death induced by silica leads
to release of dsDNA resulting in STING activation, which
in turn mediates pulmonary fibrosis, a process inhibited by
treatment with DNAse I therapy.9 The same study went on
to confirm that in patients with silicosis and silica-
associated interstitial lung changes, there was an in increase
in circulating levels of dsDNA, which correlated with
myeloid-derived cell activation in sputum and bronchoal-
veolar lavage fluid. These findings are prescient in relation
to PH induced by crystalline silica, specifically involving the
dangerous dyad of endothelial dysfunction and inflamma-
tion, contributing to pulmonary vascular remodeling.125

The mechanism for this phenomenon has only recently
been elucidated, with extracellular oxidative stress—associ-
ated with depression in the activity of superoxide dismutase
3—leading to increased severity of PH upon either silica126

or bleomycin127 exposure.
These conclusions are interesting in comparison to what

is known regarding the previously referred to SAVI and
interferonopathy patient findings, where often the first
and most deadly complication brought to clinical attention
are actually the interstitial lung changes.128 Broadly, muta-
tions resulting in elevated STING signaling are associated
with worse pulmonary fibrosis in both human and murine
models of disease.129 As a further point of interest, it has
recently been demonstrated that a decrease in STING levels
of circulating myeloid cells is associated with acute exacer-
bations of IPF.130 It is unclear if this is a compensatory
response to acute injury, as another study demonstrated
that herpes viral infection alone in mice with a SAVI-
mutation (N153S) was enough to develop severe type 1
interferon-mediated fibrosis.82 Pulmonary vasculature
changes were not addressed in any of these studies,
however.

Tobacco smoke inhalation. Cigarette smoke is well described as
injurious to pulmonary barrier function primarily due to
epithelial cell injury and concurrent release of self-DNA
and activation of the cGAS/STING pathway.131

Downstream interferon signaling and neutrophilic infil-
trates then contribute to tobacco smoke-related fibrosis
and emphysematous changes, with IFNAR1-antibody
acting to inhibit phenotypes in exposed mice.
Complicating the story, another group has uncovered that
STING is actually decreased in settings of cigarette-
exposure-mediated DNA damage and release, resulting in
worsened emphysema, though—again—a compensatory
effect cannot be ruled out.132

Of course, cigarette smoke is also known to induce DNA
damage, through promotion of oxidative stress, in vascular
endothelial cells directly.133 Likewise, nicotine alone is capa-
ble of independently inducing DNA damage via similar
mechanism, in isolated in vitro studies.134 These factors
may ultimately contribute to chronic nicotine-induced
pulmonary vascular remodeling,135 with prevention of
tobacco-smoke associated PH secondary to emphysema
having previously been demonstrated in response to antiox-
idant/vasodilator administration.136

Ionizing radiation. Finally, application of external radiation
(either ambient or therapeutic) acts to increase interferon
activity through STING activation,137 an exposure known
to induce acute pneumonitis and chronic lung fibrosis.138

Interestingly, mtDNA released by tumor cells elicits a
STING priming effect in circulating innate immune cells,
responsible for the abscopal response of distant tumor
burden after treatment.139 Although the pathology of dis-
ease is complex, the latter phenomenon may in part explain
downstream protection against direct and indirect
radiation-induced pulmonary fibrosis through blocking
TBK1 phosphorylation and IRF3 nuclear translocation.140

While broad thoracic radiation has been demonstrated to
result in development of PH in sheep,141 reprogramming of
circulating myeloid cells in response to soluble factors of
vascular injury may explain why even partial lung irradia-
tion in rats results in out-of-field changes to pulmonary
vessels and PH.142 Particular attention must be paid to
both indication for radiation and etiology of PH, however,
given that low dose irradiation in patients with PH associ-
ated with myelofibrosis may actually remit both diseases.143

This, again, suggests a focus on myeloid-derived cells in
patients with PH of any origin.

Therapy

Given the dearth of curative PH therapies, the benefit of
exploring cytosolic DNA sensing as a viable pathway in
disease augmentation lies in the variety of translational
pharmaceutical therapies under investigation for targeting
specifically DNA damage and release, proximal and distal
to the cGAS/STING pathway. A full review of drugs that
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directly target cGAS/STING has been summarized recent-

ly,144 therefore we include only those related pathways with

previously established connection to DNA sensing and PH.

PARP inhibitors. As mentioned, PARP is an enzyme necessary

for accurate DNA base excision repair. Inhibitors of PARP

have shown promise clinically in treatment of BRCA posi-
tive breast and ovarian cancers, acting to induce a STING-

dependent antitumor response and proliferative cell death;

this occurs in a synergistic manner with combination

immune checkpoint blockade.145 The interaction is com-

plex, however, with cGAS acting to suppress homologous
recombination through the PARP-complex, promoting

tumor growth. Thus, effects on cGAS signaling enable

unfettered PARP activity allowing the protein to be an

attractive target for oncologic treatment itself. This is an

important concept related to potential PH treatment appli-
cations, as overexpression of PARP allows PAH smooth

muscle cell proliferation and resistance to apoptosis with

an induced return to homeostasis resulting in protection

against PH.146 Furthermore, PARP inhibitors can induce

a STING-dependent immune response, due to accumula-
tion of toxic DNA double-stranded break, inducing antitu-

mor immunity complemented by concurrent upregulation

of the immune checkpoint proteins programmed cell death

protein 1 (PD-1) and programmed death-ligand 1 (PD-

L1).147 Thus, the STING pathway can potentially be uti-
lized to exploit cellular addiction to both repair mechanisms

(PARP) and quiescent re-programming. “Olaparib for

PAH: a Multicenter Clinical Trial (OPTION)”, an open

label Phase 1b clinical trial examining the use of the only
orally available PARP1 inhibitor in patients with PAH will

hopefully shed light on future advanced phase clinical trials

in this area of study (ClinicalTrials.gov Identifier:

NCT03782818).

PD-1/PD-L1 inhibitors. The latter is a reoccurring theme in the

literature, whereby STING activation enhances antitumor

immunity through induction of immune checkpoint protein

expression, increasing susceptibility broadly to inhibitor
blockade.148 In particular, cGAS is known as the essential

component for the antitumor effect of immune checkpoint

blockade, wherein cGAS deficiency renders immune check-

point inhibitors non-efficacious in a disease model of mela-

noma.149 However, priming the STING pathway with a
combination of cGAMP and anti-PD-L1 antibodies

enhanced antitumor response greatly. This is especially pro-

vocative in light of our own group’s recent description of

the necessary role for PD-L1 in development of Group 3 PH

models of PH,150 though caution must be exercised in
patients with suspected autoimmune disease.

miRNA targets. In particular, hypoxia is known to influence
miRNA transcription, increasing miR27 specifically in

human pulmonary artery endothelial cells, inducing PH

through downregulation of PPARc.151 Relevant to cytosolic

DNA sensing is that miR27 is suppressed in certain types of

cancer, inhibiting STING signaling and blunting T lympho-

cyte response malignancy.152 Although a potentially minor

component, the findings do give further credence to study of

miRNA signaling related to cGAS/STING activation, given

the multitude of conceptual overlap between PH and cancer

immunotherapy.153

CD47 blockade. STING is ultimately necessary for facilitat-

ing CD8þ T cell mediated anti-proliferative effects, in par-

ticular in conjunction with CD47 blockade.154 CD47 is a

phagocytosis inhibiting receptor—the “don’t eat me” pro-

tein—that when absent increases phagocytic consumption;

increased expression of CD47 is in turn linked to poor prog-

nosis in cancer patients. Again, partly mediated though a

coordinated cellular response with immune checkpoint

expression, the response to enhanced CD47 expression

occurs unsurprisingly in a dendritic cell-dependent

manner, privileging mutational burdens in the tumor micro-

environment through promotion of adaptive cell immuno-

suppression.155 This is interesting in light of the fact that

CD47 is known to have higher expression in the lungs of

patients with PAH, with blockade of the protein preventing

development of PH in hypoxia-exposed animals,156

although no DNA-damage response pathway analysis was

performed. Supporting empiric data demonstrated normal-

ization of pulmonary pressures in CD47–/– mice, as well as

ex vivo demonstration of decreased ET-1 production by

human pulmonary artery endothelial cells treated with a

neutralizing CD47 antibody.157 Finally, in a model of

sickle cell disease-associated PH severity of pulmonary vas-

cular disease correlated with levels of CD47.158 This study

also demonstrated that mice with myeloid cell deficiency of

CD47 were conferred protection against development of

PH, associated with decrease ROS generation and a

decreased DNA damage response. Thus, CD47 regulation

through cytosolic DNA sensing in innate immune cells

remains a plausible—and thought-provoking—novel

method of treating the underlying pathophysiology predis-

posing to pulmonary vascular disease.

JAK/STAT inhibitors. With respect to interferonopathies, such

as the discussed AGS and SAVI, JAK/STAT inhibitors

have shown tremendous efficacy at symptom improvement

in a limited number of patients with this rare form of auto-

immune disease. Although one study has shown that treat-

ment with immunobiologic agent baricitinib resulted in

improved clinical outcomes in patients with SAVI, AGS,

and Chronic Atypical Neutrophilic Dermatosis with

Lipodystrophy and Elevated Temperature syndrome were

improved, the authors did not report outcomes related to

any change in pulmonary pressures as a result of

treatment.80

Pulmonary Circulation Volume 11 Number 1 | 9



Regarding the PH literature on the subject, another
JAK/STAT inhibitor (ruxolitinib) has been demonstrated
to improve pulmonary pressures associated with myelofi-
brosis,159 attributed primarily to decrease in circulating
interferon mediated cytokines (IL-6, IL-8, IL-4, and
TNFa).160 Interestingly, the same group demonstrated
that JAK inhibition acted primarily through downregula-
tion of STAT3 activity, in PAH vascular lesions, imparting
decreases in diseased endothelial cell survival, migration,
and angiogenesis.161 There is consequently a biologically
plausible rationale for further exploration of this drug
class in the treatment of patients with PH of many
etiologies.

Caution must be exercised, however, with respect to les-
sons learned from studies regarding imatinib, a biologic
agent with overlapping kinase inhibitor function. Though
imatinib showed early promise in Phase II trial analysis,162

when empirically tested as add-on therapy in patients with
PAH (IMPRES; a randomized, double-blind, placebo-con-
trolled clinical trial), serious adverse events were more
common in the experimental-arm, with expected higher dis-
continuation rates, including an increased risk of subdural
hematoma in patients receiving anticoagulation.163

Unfortunately, these effects persisted upon long-term anal-
ysis, despite some derived benefit in right ventricular func-
tion being noted in those able to tolerate drug.164 There
remains hope, though, as despite the potential for off-
target effects leading to development of PH in oncology
patients receiving chemotherapy,165 more recent work has
described successful reversal of PH predisposing smooth
muscle cell proliferative activity with use ruxolitinib, pro-
moting ameliorative reversal effects on vessel
remodeling.166,167

Future directions

Therapeutic development

Multiple promising immunotherapeutic drugs targeting cel-
lular DNA sensing are under development, primarily in the
field of cancer research. This includes cGAS/STING-
directed treatments168 that could also prove promising in
reversal of pulmonary vascular disease. Specifically, there
are numerous pathways shared between the DNA sensing
apparatus and known PH-associated signaling pathways
that could potentially still be exploited for novel therapies.

Absent in melanoma 2/IRF3. Inflammasomes are emerging as a
viable target in PH-directed therapy.169,170 A necessary
component for appropriate inflammasome response in
cells is through absent in melanoma 2 (AIM2), a vital pro-
tein in bacterial and viral DNA liberation that thus directly
participates upstream in STING activation and stabilization
of IRF for interferon response element transcription.171

AIM2 has likewise been implicated in smooth muscle cell
migration related to development of atherosclerosis in

Apoe–/– mice.172 In a similar manner, IRF3 specifically

has been implicated in human pulmonary artery endothelial

cell migration in vascular regeneration related to PH pathol-

ogy.102 Thus, these proximal and distal elements of cell

DNA handling may yet prove to yield targets regarding

application to pulmonary vasculopathies.

TBK1. Of special note, IRF3 is phosphorylated by TBK1

in a final step prior to translocation to the nucleus with

binding to the IRE.173 However, the kinase undergoes reg-

ulation by several canonical inflammatory networks, includ-

ing tonic inhibition of TBK1 downstream of STAT3,

through differential phosphorylation of serine residue at

position 754 in the transactivation domain of the intracel-

lular signaling protein.87 Thus, TBK1 can also function to

inhibit interferon-signaling through suppression of cytokine

IL-6 signaling. With the potential to finetune the response

of such an important signature of cytokine and chemokine

release, either up- or downregulating depending on post-

translational modification, TBK1 represents a ripe area to

be explored in models of PH.

Conclusions

Despite progress in study of PH related to DNA damage

and signaling, many questions remain such as: What is the

role of interferon-independent cGAS/STING signaling?

How does cytosolic DNA sensing in non-immune cells in

the lung contribute to disease pathogenesis? What is the

contribution of classical genetic mutations predisposing

to PAH in interferon potentiated disease? While

rigorous study design and testing of translational

pharmaceuticals are still necessary to safely bring any ther-

apy from bench-to-bedside, our hope is that by taking

advantage of current knowledge in sister fields of research

(oncology and immunology, in particular), we can stream-

line delivery of possibly curative drugs to a currently under-

treated population.
Of course, several of the connections between polynucle-

otide signaling and PH are ultimately inference at this stage.

The relevance for continued exploration of DNA sensing is

potentially bolstered, however, by examining further the

initial cinematic conceit; “The Third Man” did not originate

as a suspense-laden film noir, instead derived from

Aristotle’s “Third Man Argument”. The discourse focuses

on the infinite regress of forms whereby the description of X

(in this case, X as a perfectly functioning pulmonary vascu-

lar bed) is self-predicated upon the existence of X, begging

yet another description of X and X, ad infinitum. Such a

paradox of endlessly defining the perfect form can be paral-

leled in the possible delay in bringing safe novel therapeutics

applied to an incurable disease state, while awaiting the full

“perfect” mechanistic understanding of disease. We simply

cannot afford to wait.
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