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Abstract: The role of prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR)
was studied in an experimental model of wound healing in cultured fibroblasts. The cells were treated
with PEPD (1–100 nM) and analysis of cell viability, proliferation, migration, collagen biosynthesis,
PEPD activity, and the expressions of EGFR, insulin-like growth factor 1 (IGF-1), and β1-integrin recep-
tor including downstream signaling proteins were performed. It has been found that PEPD stimulated
proliferation and migration of fibroblasts via activation of the EGFR-downstream PI3K/Akt/mTOR
signaling pathway. Simultaneously, PEPD stimulated the expression of β1-integrin and IGF-1 re-
ceptors and proteins downstream to these receptors such as FAK, Grb2, and ERK1/2. Collagen
biosynthesis was increased in control and “wounded” fibroblasts under PEPD treatment. The data
suggest that PEPD-induced EGFR signaling may serve as a new attempt to therapy wound healing.
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1. Introduction

Skin, as the largest organ of the human body, is responsible for several major functions.
It protects against mechanical damage, extreme temperature, microbial infection, radiation,
and other environmental factors [1]. Damage of this protective barrier may lead to serious
disturbances in the functioning of the entire body. For this reason, the repair processes of
this organ are of particular research interest. Skin repair requires the participation of several
different cell types [2] as well as many different factors, cellular proteins, soluble growth
factors, and extracellular matrix (ECM) proteins [3]. In this process fibroblasts and growth
factors play a dominant role. It is well established that during the wound healing process
fibroblast functions are activated by PDGF, EGF, IGF-1, and others [4]. However, not all
defects in wound healing could be explained based on the growth factors. An example is
prolidase deficiency (PD) that is accompanied, among others, by ulceration and impaired
wound healing [5]. It got attention on the role of prolidase in wound healing, particularly
because of recent data showing that prolidase operates as a regulator of epidermal growth
factor receptor (EGFR) and HER2-dependent signaling pathways [6], p53 transcriptional
activity [7], and interferon α/β receptor expression [8,9].

Prolidase, known as peptidase D (PEPD), plays a significant role in collagen metabolism
and matrix remodeling. It participates in the last step of collagen degradation, cleaving
dipeptides with proline or hydroxyproline at the C terminus. Released proline could be
used for collagen resynthesis [10–13]. It has been discovered that PEPD is involved in
the regulation of collagen biosynthesis. Using cellular models it has been shown that
collagen-prolidase axis is affected in fibroblast treated with anti-inflammatory drugs [14],
pyrroline 5-carboxylate (proline metabolite) [15,16], in experimental inflammation of chon-
drocytes [10], during experimental fibroblasts aging [15], activation of integrin receptor
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for type I collagen in osteogenesis imperfecta-derived fibroblasts [17] and cancer cell
models [18–20].

EGFR is a member of the transmembrane receptor tyrosine kinases (ERBB family)
which requires dimerization of receptor subunits for autophosphorylation inducing fur-
ther signaling [21,22]. This process leads to the induction of proliferation, differentiation,
and migration of the cells through the phosphorylation of proteins in several signaling
pathways [23–25]. The key EGFR downstream signaling involves the PI3K/AKT/mTOR,
Ras/Raf/ERK, and JAK/STAT pathways [6,26,27]. EGFR signaling is coupled to adhe-
sion receptor signaling. Growth promoting and anabolic pathways require activation
of integrin receptor pathways. For instance, stimulation of β1-integrin receptor induces
autophosphorylation of FAK that integrates the signal from growth factor receptors leading
to up-regulation of two MAP kinases: ERK1/2 [28,29] inducing cell growth, differentiation,
and metabolism [28,30]. Of special interest is that activation of β1-integrin receptor up-
regulates PEPD activity and collagen biosynthesis [8,9,12,31]. However, the role of PEPD
in the anabolic and growth-promoting processes in tissue regeneration is still unknown.

We hypothesized that PEPD-EGFR interaction may represent an important mechanism
for regenerative processes in the skin. Skin fibroblasts characterized by high PEPD activity
and the capacity to synthesize collagen [8] served as model cells to study the effect of PEPD
on several processes accompanied by experimental wound healing.

2. Results
2.1. The Viability of Fibroblasts Is Not Affected by Extracellular PEPD

The effect of PEPD on cell viability was evaluated by measurement of MTT (methyl
thiazolyl tetrazolium) concentration (Figure 1A,B) and the integrity of the cell membrane
(Figure 1C,D). PEPD-treated fibroblasts (range of concentration: 1–100 nM) did not affect
cell viability as well as cell membrane integrity in both cell models, control and “scratched”,
after 24 and 48 h of incubation, respectively.
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Figure 1. The effect of PEPD on fibroblasts viability and cell membrane integrity. Control cells, as well as scratched
fibroblasts, were treated with PEPD (1–100 nM) for 24 h (A,C) and 48 h (B,D) followed by measurement of MTT and cell
membrane integrity, respectively. Mean values ± SD of three experiments done in replicates are presented. The results are
significant at a, b < 0.05 indicates a vs. control (0 nM of PEPD) of control cells, b vs. control (0 nM of PEPD) of scratched
cells, respectively. PEPD—prolidase.
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2.2. Fibroblast Proliferation and Migration Are Augmented by PEPD Treatment in an Experimental
Model of Wounded Cells

The effect of PEPD on fibroblast proliferation after mechanical damage, the of the cell
monolayer (by scratch), and DNA biosynthesis were measured by fluorescence assay. The
cells were incubated with the selected concentrations (from 1 nM to 100 nM) of PEPD for 24
and 48 h. As shown in Figure 2A, PEPD promoted similar cell proliferation in both controls
and “wounded” cellular models. The process was also time-dependent since after 48 h
incubation (Figure 2B) the effect was augmented in both models of the cells.
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Figure 2. Extracellular PEPD-dependent proliferation and migration of fibroblasts in a model of closure/scratch assay. (A,B)
Control, as well as “scratched” fibroblasts, were treated with PEPD (1–100 nM) for 24 h and 48 h, and proliferation was
evaluated using CyQuant Proliferation assay. (C,D) PEPD-stimulated fibroblasts migration was calculated using ImageJ
software (https://imagej.nih.gov/ij/) vs. control. PEPD-treated cells were scratched and monitored using an inverted
microscope (40× magnification) at 0, 24, and 48 h. Mean values ± SD of three experiments done in replicates are presented.
The results are significant at a, b < 0.05, and indicates a vs. control (0 nM of PEPD) of control cells and part C of 24 h
incubation, b vs. control (0 nM of PEPD) of scratched cells, and part C of 48 h incubation, respectively. PEPD—prolidase.

Similarly, the effect of extracellular PEPD on fibroblast migration was studied in
wound closure/scratch assay. The data demonstrate that PEPD induced wound closure
and the process was dependent on the dose of PEPD and time of incubation (Figure 2C).
Quantification of the wounded area showed that PEPD-treated fibroblasts migrated faster
to the wounded area than control cells, especially after 48 h incubation. These results
were confirmed by microscopic visualization, as presented in Figure 2D. PEPD-treated
cells for 48 h yielded nearly the entire closure of the wound, whilst the scratched area of
control cells (no PEPD treatment) was slightly decreased. The obtained results showed that
PEPD-driven wound closure is dependent on a dose and time of fibroblasts treatment with
the EGFR ligand.

2.3. Extracellular PEPD Induces EGFR-Downstream Signaling Pathways

To test whether extracellular PEPD functions may undergo via EGFR, the expression
of EGFR-dependent signaling proteins was assessed in fibroblasts after PEPD treatment. As
presented in Figure 3A, in PEPD-treated cells (50, and 100 nM) the phosphorylated and total
forms of EGFR, PI3K (p85), mTOR protein expressions were increased in a dose-dependent

https://imagej.nih.gov/ij/
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manner. The expression of phospho-EGFR and phospho-mTOR in a model of wounded
cells stimulated by PEPD was confirmed by immunofluorescence analysis (Figure 3D).
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Figure 3. Extracellular PEPD-induced epidermal growth factor receptor (EGFR)-downstream signaling pathway. (A)
Western blot for the proteins of EGFR-downstream signaling pathway in lysates of control and “scratched” PEPD-treated
fibroblasts (PEPD, 1−100 nM) for 24 h or PEPD-treated fibroblasts (PEPD, 0 and 50 nM) with an inhibitor of EGFR (Gefitinib
pretreated cells for 2 h, 0 and 45 µM) for 24 h. GAPDH was used as a loading control. (B) Representative blot images were
shown (densitometry of protein stains is presented under protein bands as a ratio versus control; Supplementary Figure S1).
GAPDH was used as a loading control. (C) Illustration of the PEPD-dependent EGFR-downstream signaling pathway.
Created with BioRender.com. (D) Representative results of immunostaining of p-EGFR and p-mTOR in PEPD-stimulated
fibroblasts (50 nM) for 24 h are presented; magnification 200×.

Activation of EGFR signaling by PEPD is supported by the study showing that inhibi-
tion of EGFR function abolished the effects induced by PEPD. The cells were pretreated
(2 h) with a well-known EGFR inhibitor, Gefitinib (final concentration: 45 µM). It was
used to counteract PEPD-dependent stimulation of EGFR signaling. Gefinitib fully re-
duced PEPD-related phosphorylation of EGFR and diminished expression of total EGFR
protein (Figure 4B). Figure 3C presents a potential PEPD-dependent activation of the
EGFR-downstream signaling pathway in fibroblasts.
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Figure 4. Extracellular PEPD induced expression of the β1-integrin receptor and IGF-1R signaling
proteins in control and “scratched” fibroblast models. (A) The proteins of β1-integrin receptor and
IGF-1R downstream signaling pathways, FAK, Grb2, and (C) NF-kβ and ERK1/2 were analyzed by
Western blot in lysates of PEPD-treated fibroblasts (50, and 100 nM). Representative blot images were
shown (densitometry of protein stains is presented under protein bands as a ratio versus control;
Supplementary Figure S2). GAPDH was used as a loading control. (B) Illustration of the β1-integrin
receptor-downstream signaling pathway. Created with BioRender.com.
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2.4. The Expressions of the β1-integrin Receptor, IGF-1R, and Downstream Signaling Proteins Are
Stimulated by an Extracellular PEPD in Control and “Scratched” Fibroblast Models

PEPD-treated fibroblasts showed elevated β1-integrin receptor and IGF-1R expres-
sions. An increase in the expression of p-FAK and Grb2, downstream proteins to these
receptors was also detected by Western blot (Figure 4A). The potential signaling path-
way induced by studied receptors is mediated by Ras/Raf/ERK signaling as presented
in Figure 4B. PEPD strongly stimulated p-ERK1/2 in cellular models of control and
“scratched” fibroblasts. Interestingly, the expression of NF-kβ (an inhibitor of type I
collagen gene expression) was elevated in PEPD-treated control cells, while “scratched”
fibroblasts did not express the protein (Figure 4C).

2.5. Collagen Biosynthesis Was Stimulated by Extracellular PEPD in Control and “Scratched”
Fibroblast Models

The effect of PEPD on collagen biosynthesis and total protein biosynthesis was mea-
sured by radiometric assay in control and “scratched” fibroblast models. The cells were
treated with the selected concentrations of PEPD (10, 50, and 100 nM) for 24 h and 48 h. As
shown in Figure 5A,C, extracellular PEPD stimulated collagen biosynthesis in both control
and “wounded” cells in a manner dependent on used doses and time of incubation. A
similar effect of PEPD was found concerning total protein synthesis. Figure 5B,D shows
that total protein biosynthesis, which was used for normalization of the results of collagen
biosynthesis, is stimulated by PEPD depending on used doses and time of incubation in
both cell models. Inhibitor of EGFR (Gefitinib) abolished PEPD-dependent stimulation of
collagen biosynthesis (A, C) and total protein biosynthesis (B, D) in studied cell model. The
data suggest that the predominant portion of proteins synthesized due to PEPD stimulation
is represented by collagen.
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Figure 5. Extracellular PEPD activated collagen and total protein biosynthesis in control and “scratched” fibroblast models.
Collagen biosynthesis (A,C) and total protein biosynthesis (B,D) in PEPD-treated fibroblasts (1–100 nM) in the presence
and absence of EGFR inhibitor (Gefitinib, 0 and 45 µM pretreated cells for 2 h) after 24 and 48 h incubation, respectively.
The values were presented as a percent of control cells (0 nM of PEPD). Mean values± SD of three experiments done in
replicates is presented. The results are significant at a, b, c < 0.05, and are marked as a vs. control (0 nM of PEPD) of control
cells, b vs. control (0 nM of PEPD) of scratched cells, c vs. control (0 nM of PEPD) of scratched cells incubated with gefitinib,
respectively. PEPD—prolidase.
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3. Discussion

The development of all organs requires fibroblasts to synthesize connective tissue
constituents and maintain tissue architecture. The cells are of special interest in the repair
phase of wound healing, since fibroblasts migrate into inflammatory sites, proliferate, and
produce extracellular matrix components as glycosaminoglycans and collagen for scar
formation. It is well established that migration of fibroblasts can be elicited by a variety of
growth factors, e.g., EGF, IGF-1, PDGF [4].

The hypothesis that the activation of EGFR by PEPD [6] may play a crucial role in tissue
regeneration led us to investigate the functional significance of fibroblast proliferation and
migration in an experimental model of wound healing. In this report, we provide evidence
for PEPD-induced EGFR signaling, cell proliferation, and migration in the experimental
model of mechanically wounded fibroblasts in vitro.

It seems that PEPD is a good candidate as an activator of EGFR-dependent regen-
eration processes. It did not affect cell viability or cell membrane integrity in control
and “wounded” fibroblast models. However, we observed that PEPD induced fibroblast
proliferation in a dose- and time-dependent fashion as detected by evaluation of DNA
biosynthesis. Interestingly, DNA biosynthesis was augmented in “scratched” cells, com-
pared to control. Moreover, we observed that PEPD remarkably accelerated the migration
of cultured human fibroblasts. In this case, we also noticed that PEPD-induced migration
was dose- and time-dependent.

The mechanism explaining this process was related to the EGFR signaling. It is
well established that EGFR activation is followed by an up-regulation of 3 signaling
pathways such as PI3K/Akt/mTOR, the Ras/Raf/ERK, and JAK/STAT [6,26,27]. Our
study shows that extracellular PEPD activated PI3K/Akt/mTOR proteins. The evidence
for the mechanism was proved in the experiment showing that preincubation of the
cells with EGFR inhibitor, Gefitinib, abolished the stimulatory effect of PEPD on total
and phosphorylated forms of EGFR downstream signaling proteins as PI3K, Akt, and
mTOR. These findings confirmed that PEPD binds to EGFR and evokes growth-promoting
activity in the fibroblast model of wound healing. These data are supported by studies of
Lee et al. [32] showing that blockade of the PI3K/Akt/mTOR pathway diminished cell
proliferation and migration.

Growth factor signaling is often coupled to signaling induced by adhesion recep-
tors. The example is IGF-1 and α2β1 integrin receptor that is activated by collagen type
I [9]. The communication between both types of receptors is called cross-talk. The acti-
vation of the β1-integrin receptor and IGF-1 triggers the signaling pathway cascade by
the proteins FAK and MAPK (ERK1 and ERK2) [33]. PEPD strongly induced expressions
of both receptors (β1-integrin and IGF-1R) and their downstream proteins, as FAK and
ERK1/2. This signaling cascade is known to stimulate the biosynthesis of ECM constituents,
especially collagen [8,34,35]. We have shown that up-regulation of ERK contributed to
down-regulation of NF-kβ expression, a well-known inhibitor of collagen biosynthesis [36].
Therefore, the increase in collagen biosynthesis in PEPD-treated fibroblasts is a result of
collagen biosynthesis stimulation by IGF-1R and inhibition of NF-kβ expression, as an
inhibitor of collagen gene expression. These data are supported by other researches [36–38].
It cannot be excluded that in the studied cells collagen biosynthesis is stimulated by EGFR
signaling. The experiment with Gefitinib proved such a possibility. The stimulatory effect
of EGF on collagen biosynthesis was confirmed by other authors [39–41].

The functional significance of our findings could be of importance not only in wound
healing but also in prolidase deficiency (PD). It is a rare autosomal recessive disorder that
is described by massive imidodipeptiduria, skin lesions as well as elevated dipeptides
contained proline in plasma [5,42–47]. The most specific manifestation of PD concerns
connective tissue metabolism. All cases of PD are characterized by skin lesions (e.g., diffuse
telangiectasia, purpuric rash, crusting erythematous dermatitis, progressive ulcerative der-
matitis, particularly on the lower legs). PD results from low or lack of PEPD activity due to
mutations in the PEPD gene [48–50]. Studies so far on PD were focused on the intracellular
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role of PEPD since its extracellular function was described just a few years ago. Given our
data, it cannot be excluded that the described manifestation of PD may derive from a defi-
ciency of extracellular PEPD function since supplementation of PD patients with proline or
proline-convertible amino acids was ineffective in the therapy of the disease [51]. New data
on the role of PEPD as a regulator of p53 function, interferon-α/β receptor maturation, and
activation of EGFR or HER2 create the prospect of discovering new functions of PEPD [30].
As our study evidenced promising effects of PEPD in cell proliferation, migration, and
connective tissue rearrangement (mainly on collagen biosynthesis), further experiments
are crucial to understanding its role in PD and other connective tissue disturbances.

4. Materials and Methods
4.1. Fibroblasts Cell Cultures

Fibroblasts cells were cultured as we described previously [16]. Fibroblasts were
subjected to treatment with porcine kidney prolidase (Sigma-Aldrich, Saint Louis, MO,
USA) at a concentration of 1–100 nM. Moreover, cells were pretreated with an EGFR
inhibitor, Gefitinib (Sigma-Aldrich, Saint Louis, MO, USA) at a final concentration of 45 µM
for 2 h before supplementation with prolidase.

4.2. Cell Viability

The cell viability of treated cells was measured using the MTT assay, as described
previously [16]. Cells survival was calculated as a percentage of living cells when compared
to control (0 nM of PEPD, 100% survival).

4.3. NRU Assay

Neutral red uptake (NRU) assay was performed according to the protocol by Borenfre-
und and Puerner [52] to elucidate the permeability of prolidase treated cells. At indicated
time-points, the culture medium was removed, after washed cells, Neutral Red solution
(final concentration: 50 µg/mL; Sigma-Aldrich, Saint Louis, MO, USA) was added. Af-
ter 30 min, the cells were washed, dye from viable cells was released by extraction with
a mixture of acetic acid, ethanol, and water (1:50:49, respectively; Sigma-Aldrich, Saint
Louis, MO, USA). After shaking, the absorbance was measured at 540 nm in a microplate
reader (Asys UVN 340 microplate reader, Biochrom, Cambridge, UK) using a blank as a
reference. Cytotoxicity was calculated as a percentage of the control (0 nM of PEPD, 100%
of intact membranes).

4.4. Cell Proliferation Assay

The effect of extracellular prolidase on proliferation capability and DNA biosynthesis
in treated cells was assessed using the CyQUANT Cell Proliferation Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s guidelines. At the
indicated times, the culture medium from treated cells was discarded, cells were washed
with PBS, and plates were frozen. Then, samples were thawed at room temperature and
lysed using CyQUANT dye mix, and total cellular nucleic acid was measured by fluorome-
ter at 480/520 nm wavelengths (VICTOR™ X4 Multilabel Plate Reader, PerkinElmer, MA,
USA). The results were calculated as a percent of the control value.

4.5. Total Protein and Collagen Biosynthesis

The cells were cultured in 6-well plates at 1 × 106 cells/well with 2 mL of growth
medium. After 48 h, the cells were incubated with 5[3H]-proline (5 µCi/mL; Hartmann
Analytic, Braunschweig, Germany) and prolidase (1–100 nM) for 24 or 48 h. Total protein
biosynthesis and collagen biosynthesis were measured by the incorporation of radioactive
proline into proteins. Then, collagen was subjected to digestion by purified Clostridium
histolyticum collagenase (Sigma-Aldrich, Saint Louis, MO, USA), according to the method of
Peterkofsky et al. [53]. After isolation of proteins, the incorporation of tracer was measured
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in total proteins and collagenase-digestible proteins. The results were shown as combined
values for cell plus medium fractions.

4.6. Western Blot

The cells, after incubation with PEPD (50–100 nM) for 40 min and 24 h (respectively),
were washed and then incubated on ice for 15 min with a mixture of lysis buffer (Cell
Signaling Technology, Danvers, MA, USA) and a mix of protease inhibitors (Protease
Inhibitors Mix G, SERVA, Heidelberg, Germany). Lysates were sonicated, centrifuged, and
then the supernatant was stored at −80 ◦C until Western blot assay. The total concentration
of protein was measured by the method of Lowry et al. [54]. The procedure of Western blot
analysis was described previously [55]. Equal amounts (30 µg/lane) of protein were diluted
in lysis buffer. Cell lysates were subjected to SDS-PAGE electrophoresis. After semi-dry
transfer, membranes were blocked with non-fat dry milk in TBS-T. The membranes were
incubated with primary antibodies (all from CST and in 1:1000 dilution; Cell Signaling,
Danvers, MA, USA) overnight, including anti-EGF Receptor, anti-phospho-EGF Receptor,
anti-PI3 Kinase p85, anti-phospho-PI3 Kinase p85, anti-mTOR, anti-phospho-mTOR, anti-
Integrin β1 Receptor, anti-IGF-1 Receptor β, anti-FAK, anti-phospho-FAK, anti-Grb2 (in
1:1000 dilution, Becton, Dickson and Company, Franklin Lakes, NJ, USA), anti-NF-κβ
p65, anti-p44/42 MAPK (ERK1/2), anti-phospho-p44/42 MAPK (ERK1/2), anti-GAPDH.
Then membranes were washed and incubated with anti-mouse or anti-rabbit HRP-linked
secondary antibodies at concentration 1:7500 (Sigma-Aldrich, Saint Louis, MO, USA). Then,
the membranes were incubated with Amersham ECL Western Blotting Detection Reagent,
(GE Healthcare Life Sciences, Helsinki, Finland) followed by an image capturing performed
using the BioSpectrum Imaging System UVP (Ultra-Violet Products Ltd., Cambridge,
UK). The band intensity was measured by ImageJ software (https://imagej.nih.gov/ij/).
Western blot analysis was performed at least in triplicates.

4.7. In Vitro Wound-Healing Assay

An analysis of cell migration was conducted using an in vitro wound-healing assay.
Fibroblasts were cultured in six-well plates to confluency, then they were scratched with a
sterile 200 µL pipette tip. Before PEPD treatment, the cell monolayer was rinsed three times
with PBS. The cells were treated with PEPD concentrations in the range 10–50 nM for 24 and
48 h. Image capture of cells (at least in triplicates) was made using an inverted optical mi-
croscope (Nikon, Tokyo, Japan) every 24 h with a 40× magnification to monitor the wound
closure. The wound closure was counted by ImageJ software (https://imagej.nih.gov/ij/)
and calculated according to the following formula [56].

4.8. Immunocytochemistry

Immunocytochemistry was conducted according to BDB Bioimaging protocol, as de-
scribed previously [55]. Cells grown on a 96-wells plate were fixed with paraformaldehyde,
then permeabilized with Triton and blocked with 3% foetal bovine serum. Cells were
incubated with primary antibodies (anti-phospho-EGFR and anti-phospho-mTOR, dilution
1:1000), then with FITC-linked secondary antibody and Hoechst. A confocal laser scanning
microscope (BD Pathway 855 Bioimager; Becton, Dickson and Company, Franklin Lakes,
NJ, USA) with AttoVision software was used for image capture.

4.9. Statistical Analysis

All experiments were run at least in triplicates and the experiments were repeated
twice. Data represent a mean ± standard deviation (SD). For statistical analysis, we
used one-way analysis of variance (ANOVA) with Dunnett’s correction and t-test using
GraphPad Prism 5.01 (GraphPad Software, San Diego, CA, USA).

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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5. Conclusions

In this report, we demonstrated results presenting that extracellular PEPD binding
to EGFR accelerates wound healing in cultured fibroblasts. The potential mechanism is
outlined in Figure 6. It suggests that PEPD may be considered as a therapeutic agent for
skin wound healing.
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Abbreviations

Akt protein kinase B
ECM extracellular matrix
EGF epidermal growth factor
EGFR epidermal growth factor receptor
ERBB family of proteins contains four receptor tyrosine kinases
ERK1/2 extracellular signal-regulated kinase 1/2
FAK focal adhesion kinase pp125FAK

GAPDH glyceraldehyde 3-phosphate dehydrogenase
Grb2 growth factor receptor-bound protein 2
HER 2 epidermal growth factor receptor 2
IGF-1 insulin-like growth factor 1
IGF-1R insulin-like growth factor 1 receptor
JAK Janus kinase
MAPK mitogen-activated protein kinase
MEK mitogen-activated protein kinase kinase
mTOR mammalian target of rapamycin
NF-κβ nuclear factor kappa beta
p53 tumor protein p53
PD prolidase deficiency
PDGF platelet-derived growth factor
PEPD prolidase
PI3K phosphoinositide 3 kinase
Pro proline
Shc SHC adaptor protein 1
Sos1 son of sevenless 1
STAT signal transducer and activator of transcription
Src proto-oncogene Src
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