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Necroptosis is a new regulated cell-death mechanism that plays a critical role in various cancers. However, few studies have
considered necroptosis-related genes (NRGs) as prognostic indexes for cancer. As one of the most common cancers in the world,
head and neck squamous cell carcinoma (HNSCC) lacks effective diagnostic strategies at present. Hence, a series of novel
prognostic indexes are required to support clinical diagnosis. Recently, many studies have confirmed that necroptosis was a key
regulated mechanism in HNSCC, but no systematic study has ever studied the correlation between necroptosis-related signatures
and the prognosis of HNSCC.*us, in the current study, we aimed to construct a risk model of necroptosis-related signatures for
HNSCC.We acquired 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and compared them with samples
of normal tissue downloaded from *e Cancer Genome Atlas (TCGA), ultimately screening 38 differentially expressed NRGs
(DE-NRGs).*en, by Cox regression analysis, we successfully identified 7 NRGs as prognostic factors. We next separated patients
into high- and low-risk groups via the prognostic model consisting of 7 NRGs. Individuals in the high-risk group had much
shorter overall survival (OS) times than their counterparts. Furthermore, using Cox regression analysis, we confirmed the
necroptosis-related prognostic model to be an independent prognostic factor for HNSCC. Receiver operating characteristic
(ROC) curve analysis proved the predictive ability of this model. Finally, Gene Expression Omnibus (GEO) data sets (GSE65858,
GSE4163) were used as independent databases to verify the model’s predictive ability, and similar results obtained from two data
sets confirmed our conclusion. Collectively, in this study, we first referred to necroptosis-related signatures as an independent
prognostic model for cancer via bioinformatics measures, and the necroptosis-related prognostic model we constructed could
precisely forecast the OS time of patients with HNSCC. Utilizing the model may significantly improve the diagnostic rate and
provide a series of new targets for treatment in the future.

1. Introduction

An uncontrollable form of cell death, accidental cell death
(ACD), can be provoked by exposure to harmful micro-
environmental conditions (e.g., high temperatures, oxygen
deficiency, and external force) [1]. However, cell death can
also be regulated when homeostasis perturbations are mild;
this is known as regulated cell death (RCD), and apoptosis is
considered the main form of RCD [2]. According to tra-
ditional beliefs, necrosis has several morphological features
(e.g., cytoplasmic swelling and loss of plasma membrane
integrity) present during ACD progression, so necrosis is
commonly regarded as a type of passive cell death that al-
ways occurs in ACD [3, 4]. However, in these years,

accumulating studies have found there some nonapoptotic
cell deaths occur with partial or complete necrotic mor-
phology in RCD, such as necroptosis, ferroptosis, and
pyroptosis [3, 5]. For example, swelling and disrupted
membranes were observed morphologically among cells
undergoing necroptosis, which are typical features of ACD
[6]. In addition, many diseases are known to be correlated
with these nonapoptotic cell deaths, including inflamma-
tory, cardiovascular, and neurological diseases [4]. *us,
these nonapoptotic cell deaths were considered as an ex-
ample series of a new type of RCD and have received in-
creasing attention.

Among these nonapoptotic cell deaths, necroptosis is a
recently discovered regulation form of necrosis mediated
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by protein kinase C-related kinases (e.g., PRK1) as well as
receptor-interacting serine-threonine kinase 3 (RIPK3),
which can assemble into the necrosome to initiate nec-
roptosis [7–9]. With the help of executioner protein
mixed-lineage kinase-like (MLKL), necroptotic cells can
permeabilize cell membranes and promote the release of
intracellular contents [9]. *ere is an apparent relation-
ship between necroptosis and prognosis in many cancers.
In a study of >60 tumors, the expression of RIPK3 was
extremely decreased, and patients with lower levels of
RIPK3 had a worse prognosis [10, 11]. By contrast,
necroptosis may also be a promoter of various tumors.
Some studies have found that many cancer cells can in-
duce endothelial cell necroptosis to promote extravasa-
tion and metastasis [12]. Ando et al. demonstrated that, in
pancreatic cancer, by upregulating C-X-C motif chemo-
kine 5 (CXCL5) and C-X-C-motif chemokine receptor-2
(CXCR2), cancer cells can enhance migration and inva-
sion by inducing necroptosis [13]. Collectively, these
studies suggest that necroptosis is an indispensable
mechanism with complicated biological functions in tu-
morigenesis and tumor invasion. However, although
necroptosis is considered a key mechanism in many
cancers, few studies have considered necroptosis as an
independent prognostic indicator.

Until 2018, HNSCC had been the sixth most common
cancer worldwide, with a mortality rate that ranked eighth
among all cancers [14]. Nearly 890,000 individuals were
diagnosed with HNSCC and 450,000 deaths from HNSCC
occurred in 2018 worldwide [15]. HNSCC is the most
common malignancy to arise in the head and neck, and
almost all HNSCCs originate from the mucosal epithelium
in the oral cavity, pharynx, and larynx [16]. *e onset of
HNSCC is mainly related to exposure to tobacco-derived
carcinogens, excessive alcohol consumption, and human
papillomavirus infection [16]. Despite several recently de-
veloped inspiring therapeutic strategies, the low survival
rates (about 40%–50%) and few effective indexes for
monitoring cancer development remain primary problems
that need to be resolved [17]. Furthermore, necrosis has
already been considered a promising prognostic factor for
many solid tumors, such as colorectal cancer [18], but it
remains unclear whether necroptosis is an effective prog-
nostic factor. Moreover, necroptosis has been suggested to
be relevant to many HNSCC clinicopathological features
[19], but no systematic studies to date have explored the
association between necroptosis-related signatures and
HNSCC prognosis. *erefore, we systematically evaluated
the RNA-sequencing and clinical data to establish and
validate a necroptosis-related prognostic model and then
take advantage of the model to predict individual prognoses
for HNSCC patients.

2. Materials and Methods

2.1. Human Necroptosis-Related Gene (NRG) Set. A total of
159 genes were collected from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (https://www.kegg.jp/). *e
complete NRGs are listed in Table S1.

2.2.DataAcquisitionandPreprocessing. *eCancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/) was
used to obtain RNA-sequencing (RNA-seq) data about
HNSCC. In total, we obtained 528 clinical and 546 RNA-seq
data points. We excluded samples whose follow-up time was
<30 days. Two independent data sets were downloaded from
the GEO database (accession nos. GSE65858 and GSE4163).
Log2 transformation was utilized to standardize the total
RNA-expression data.

2.3. Differentially Expressed mRNA (DEG) Analysis and
Functional Analysis. *e R programming language (version
4.1.0) was utilized to perform a series of bioinformatics
analyses. Differentially expressed (DE)-NRGs were screened
using the R package limma. To identify biological functions,
we carried out various functional enrichment analyses, in-
cluding KEGG, Gene Ontology (GO), protein-protein in-
teraction (PPI), and gene set enrichment analysis (GSEA)
analyses. *e enrichment plots were completed using the
GOplot package.

2.4. Establishment of the Prognostic Model. Using a uni-
variate Cox regression analysis, we recognized the candidate
NRGs associated with prognosis. Furthermore, a multi-
variate Cox regression analysis was implemented to evaluate
NRGs screened by the univariate Cox regression analysis.
Seven NRGs were successfully identified as the prognostic
indexes contributing to the prognosis of HNSCC. Based on
the expression of each NRG multiplied by a regression
coefficient (β) using the equation risk score-
� 􏽐

n
i�1 βi ∗ (expression of NRGsi), we determined the risk

score for each patient. *en, all patients were classified into
two risk groups using the median risk score. Via log-rank
statistical methods and Kaplan–Meier survival analysis, we
detected the different OS times of the two risk groups. *e
predictivity of the model was also assessed via Cox re-
gression analysis. Finally, we determined the accuracy of this
prognostic model via time-related receiver operating char-
acteristic (ROC) curve analysis.

2.5. Online Databases Verification. A series of online data-
bases were used to verify this prognostic model. *e TIMER
database (https://timer.cistrome.org/) was utilized to analyze
the differential expression of NRGs involved in our model;
Human Protein Atlas (HPA, https://www.proteinatlas.org/)
was used to assess the NRGs protein expression in tumor
and nontumor tissues; and the cBioPortal database (https://
www.cbioportal.org/) was performed to check gene alter-
ation of the NRGs.

2.6. Statistical Analysis. *e R programming language
(version 4.1.0) was utilized to perform data analysis. P< 0.05
was identified to indicate statistical significance. Key NRGs
associated with survival were selected using univariate and
multivariate Cox analyses. Kaplan–Meier survival analysis
with log-rank statistical methods was conducted to compare
OS time and plot survival curves. *e predictive ability of
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this model was testified using ROC and area under the ROC
curve (AUC) analyses.

3. Results

3.1. Identification of 38 DE-NRGs in HNSCC. Using the
TCGA HNSCC data set, we collected RNA-seq data, in-
cluding 502 HNSCC and 44 normal tissues; subsequently,
495 clinical data points of HNSCC patients (follow-up pe-
riod was ≥30 days) were included in this study. *e NRG list
was downloaded from the KEGG. Compared with the
normal samples, we obtained 38 DEG-NRGs (false discovery
rate (FDR) <0.05 and log2|fold change|(log2 FC) >1), in-
cluding 5 downregulating genes (PYGM, SLC25A4,
CAMK2B, ALOX15, IL33) and 33 upregulating genes
(H2AZ1, H2AX, CYBB, FTL, TICAM2, TNFAIP3, TRAF2,
H2AC20, FASLG, TNFRSF10B, JAK3, TNFSF10, PYGL,
BID, STAT2, EIF2AK2, STAT4, STAT1, IRF9, IFNA1, IL1B,
H2AC4, H2AC8, ZBP1, H2AC17, FADD, H2AC12, IFNG,
H2AC11, IL1A, H2AC14, H2AC16, H2AC13). *e ex-
pression profile of these DEGs is exhibited in a heatmap,
boxplot, and volcano plot (Figures 1(a)–1(c)) separately.
*en, we checked the genetic mutation of these DE-NRGs
using the cBioPortal database. As shown in Figure 1(d), we
found 10 genes whose mutation rate was ≥3% among all
DEGs (*e gene alteration of all DEGs in Figure S1); among
these, “amplification” and “deep deletion” were the most
common types of genetic alterations.

3.2. Functional Analysis of the DE-NRGs. To figure out the
detailed biological functions of these genes, 38 DE-NRGs
were incorporated into a functional enrichment analysis. We
illustrated the top 30 results of KEGG and GO enrichment
analyses (Figures 2(a)–2(d)). As shown in Figures 2(a) and
2(b), KEGG enrichment indicated that the DE-NRGs were
mainly involved in the following pathways: (1) JAK-STAT
signaling pathway; (2) diseases involving necroptosis, such
as influenza A and systemic lupus erythematosus; and the (3)
NOD-like receptor signaling pathway. Of note, the coro-
navirus disease 2019 (COVID-19) pathway was also
enriched by the aforementioned DE-NRGs. Recent studies
have suggested necroptosis may also be a promising factor in
COVID-19 [4, 20]. According to our results, it is reasonable
to presume that some similar mechanisms of necroptosis
probably exist in both HNSCC and COVID-19. In the GO
enrichment analysis (Figures 2(c) and 2(d)), the biological
processes of DE-NRGs mainly included apoptosis, necrosis,
chromatin silencing, and epigenetic regulation. Further-
more, to explore the interaction among the proteins tran-
scribed by these DE-NRGs, we analyzed the PPI network
using the STRING database. In total, 33 proteins were in-
volved in the network, and the gene annotations, as well as
combined scores, are summarized in Figure 2(e) and
Table S2.

3.3. Constructing a Model of Necroptosis-Related Signatures.
Using a univariate Cox analysis, we screened 15 NRGs with
prognostic value (P< 0.05) (Figure 3(a) and Table S3). *en, a

multivariate Cox regression analysis was taken advantage to
evaluate these NRGs, and 7 NRGs were finally identified as
significantly associated with prognosis (Figure 3(b)). Among
them, two genes (TRAF5 and TYK2) were protective factors,
and the others (PPID, VDAC1, FTH1, CHMP3, and
CHMP1A) were harmful factors (Figure 3(h) and Table 1).
*en, we constructed a necroptosis-related prognostic model
using the following formula involving the 7 genes: risk
score� (−0.31157 ∗ TRAF5)+ (0.094121 ∗ PPID)+
(0.009295 ∗ VDAC1)+ (0.002142 ∗ FTH1)+ (0.054985 ∗
CHMP3)+ (0.009986 ∗ CHMP1A)+ (−0.06185 ∗ TYK2).
Using the median risk score (median risk score� 1.027), we
separated patients into high-risk (n� 233) and low-risk
(n� 233) groups (Figure 3(d)). As illustrated in Figure 3(c), the
expression of protective factors was extremely increased in the
low-risk group compared with the high-risk group. In contrast,
in the high-risk group, that of harmful factors was strikingly
increased (Figure 3(c)).

*ere were also several significant differences in survival
status and OS time between the two risk groups. A higher
risk score was present among dead patients, while those that
remained alive had lower risk scores (Figure 3(e)). In ad-
dition, compared with the patients with higher risk scores, a
much longer OS time was discovered among patients with a
lower risk score (Figure 3(f)). We carried out ROC curve
analysis for 3- and 5-year OS times to estimate the prog-
nostic power of the model, and the AUCs of the ROC curve
analysis were calculated to be 0.783 and 0.756, respectively
(Figure 3(g)). *ese results preliminarily indicated that it is
robust to predict the outcome of HNSCC patients.

3.4. 7e Prognostic Model Consisting of 7 NRGs Is an Inde-
pendent Prognostic Index. Since the risk model had accurate
predictivity, we wondered whether this model was an in-
dependent prognostic index. Hence, several clinicopatho-
logical characteristics and risk scores were entered into a
correlation analysis. As there was no striking difference in
tumor M stage among almost all patients, the M stage was
excluded from our analysis. Results suggested deceased
patients (P< 0.001) and patients with high-grade tumors
(P � 0.01) had higher risk scores (Figures 4(a) and 4(b)).
*is meant that the expression of NRGs constituting our
model may significantly influence tumor malignancy and
survival status. Furthermore, the single NRGs (CHMP1A,
CHMP3, FTH1, TRAF5, TYK2, VDAC1, and PPID) were
associated with some clinicopathological parameters as well;
specifically, TRAF5, TYK2, VDAC1, FTH1, and CHMP1A
were correlated with the survival status, while TRAF5,
CHMP3, FTH1, PPID, TRAF, and TYK2 showed great
correlation with the tumor grade (Figures 4(c), 4(d), and S2).
*en, to confirm the model as an independent predictor of
HNSCC, Cox regression analysis was conducted. Our results
suggested that “risk score” and “age” were candidate vari-
ables related to the OS time by univariate Cox regression
analysis (Figure 4(e)). After that, we performed a multi-
variate Cox analysis to assess these variables, and the risk
score was successfully identified as an independent prog-
nostic index (P< 0.001) (Figure 4(f)). *e AUC for the risk
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score was 0.747 (Figure 4(g)). Finally, using 4 clinicopath-
ological parameters and the risk score, a nomogram was
illustrated to predict the survival rates (Figure 4(h)). In
summary, these results confirmed the necroptosis-related
prognostic model as an independent prognostic index of
clinical characteristics.

3.5. Validation of the Necroptosis-Related Prognostic Model
via Two Independent GEO Data Sets. To examine whether
the model had excellent stability and reproducibility, we
conducted external validation using the GEO data sets
(accession nos. GSE65858 and GSE4163). Using the median
risk score, we employed the same formula obtained from the
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Figure 3: Continued.
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TCGA-HNSCC data set to separate patients into two risk
groups. Consistent with the TCGA-HNSCC data set, re-
gardless of whether considering GSE65858 or GSE4163, a
much longer OS time was observed in the patients in the
low-risk group compared with those in the high-risk group
(Figures 5(a) and 5(c)). In GSE65858 and GSE4163, the
ROCs of the 5-year survival rate were 0.791 and 0.678, re-
spectively (Figures 5(b) and 5(d)). In conclusion, by using
the aforementioned 2 GEO data sets, we verified the

generality of our prognostic model, and these results are
similar to those obtained from the TCGA-HNSCC data set,
demonstrating the predictive ability and accuracy of the
model.

3.5.1. GSEA. We further executed GSEA to evaluate the
necroptosis-related pathways in the TCGA-HNSCC data set.
In total, we recognized 178 KEGG pathways (Tables S4 and
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Figure 3: Establishing a necroptosis-related prognostic model. (a) A univariate Cox analysis of NRGs is illustrated by a forest plot. (b) A
forest plot illustrates the multivariate Cox analysis of the NRGs from (a). (c) A heatmap of 7 NRGs showing the different expressions
between the two risk groups. (d) *e risk scores for HNSCC patient are plotted in ascending order. (f ) Different OS times between the two
risk groups were demonstrated using Kaplan–Meier analysis. (g)*e receiver operating characteristic curve analysis in the Cancer Genome
Atlas head and neck squamous cell carcinoma cohort. (h) Kaplan–Meier curves of single necroptosis-related genes.
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Table 1: Multivariate Cox results of NRGs based on TCGA-HNSCC.

Id coef HR HR.95L HR.95H p value
TRAF5 −0.31157 0.732297 0.528807 1.014091 0.060693
PPID 0.094121 1.098693 1.047821 1.152036 9.98E− 05
VDAC1 0.009295 1.009338 1.002487 1.016236 0.007476
FTH1 0.002142 1.002145 1.001099 1.003192 5.79E− 05
CHMP3 0.054985 1.056525 1.010606 1.104531 0.015295
CHMP1A 0.009986 1.010036 0.997459 1.022771 0.118306
TYK2 −0.06185 0.940028 0.899074 0.982847 0.006504
Note: coef: coefficient; NRG: necroptosis-related genes; HR: hazard ratio.
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Figure 4: Continued.

8 Journal of Oncology



S5) and 5,391 GO terms (Tables S6 and S7). Figure 6 il-
lustrates the top 5 KEGG pathways and GO terms of the two
risk groups. In the TCGA-HNSCC data set, we revealed that
many metabolism-related pathways were activated in the
high-risk group, such as tricarboxylic acid cycle (TCA cycle)
pathway, galactose metabolism, and pentose phosphate
pathway (Figure 6(a)). *is suggested that some critical
metabolic processes might be altered when necroptosis is
occurring. In addition, according to the GO enrichment
results, several biological processes related to protein folding
were also enhanced in the high-risk group (Figure 6(b) and
Table S5). In the low-risk group, KEGG and GO enrichment
results uncovered that the genes were mostly connected with
some immune-related pathways. In summary, we concluded
that necroptosis may effectively enhance metabolism, ac-
celerate the cell cycle, and increase biosynthesis.

3.6. Online Database Analysis. To validate our model, we
checked it against various online databases. First, we ex-
plored the differential expression of 7 NRGs in our model
using the TIMER database, which showed that 6 NRGs
(there are no CHMP3 data available in the TIMER database)
were significantly overexpressed in HNSCC (Figure 7(a)).
Furthermore, the HPA database was also utilized to analyze
the NRGs. In agreement with our results, the HPA database

confirmed that TRAF and TYK2 were protective factors in
HNSCC, and the remaining genes were harmful factors (data
not shown). Considering that HNSCC usually occurs in the
thyroid, and the HPA database does not list normal data of
the head and neck separately, we used normal thyroid tissue
as the control. *e immunohistochemistry (IHC) data of
CHMP3, FTH1, PPID, TRAF5, TYK2, and VDAC1 (no
CHMP1A protein-expression data are available in HPA)
were acquired from HPA, as illustrated in Figure 7(b). Fi-
nally, using the cBioPortal database, we explored the gene
alterations of the 7 NRGs. *e cBioPortal database un-
covered that there was no striking mutation in all 7 NRGs in
HNSCC (Figure 7(c)). It suggested that gene mutation may
not be the main reason for the NRG overexpression ob-
served in the TIMER data set; instead, the abnormal ex-
pression was more likely caused by dysfunctional regulatory
pathways.

4. Discussion

Necroptosis has been identified as a new form of RCD with
necrotic-like features. Various special features in necroptosis
differ from those in apoptosis, such as membrane per-
meabilization, releasing damage-associated molecular pat-
terns, and cell swelling [21]. However, necroptosis is also a
“double-edged sword.” Importantly, the protective

1.0

0.8

0.6

Tr
ue

 p
os

iti
ve

 ra
te

0.4

0.2

0.0

0.0 0.2 0.4 0.6

False positive rate

risk score (AUC=0.747)
age (AUC=0.553)

0.8 1.0

gender ( AUC= 0.456)
grade (AUC=0.487)
Stage (AUC=0.468)
T (AUC=0.476)
N (AUC=0.482)

(g)

0

15 25
F

2

1 3

4

2

1

0 2 4 6 8 10 12 14 16 18 20 22 24

0 10 20

0.9 0.8 0.7 0.5 0.3 0.1 0.01

0.8 0.7 0.5 0.3 0.1 0.01

0.8 0.7 0.5 0.3 0.1 0.01

30 40 50 60 70 80 90 100 110 120

3

4

M

35 45 55 65 75 85

10 20 30 40 50 60 70 80 90 100Points
age
gender
grade
Stage

Total Points
riskScore

1-year survival
3-year survival
5-year survival

(h)
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effectiveness of necroptosis can maintain homeostasis and
trigger powerful antitumor immunity, while, on the other
hand, necroptosis can be a tumor-driver facilitating invasion
and migration [19, 22]. In HNSCC, necrosis has been
confirmed as a common pathological characteristic [23].
Many researchers have found that necrosis can effectively
promote tumor invasion and progression via inducing
hypoxia inside the tumor [18, 24]. Recently, Li et al. dem-
onstrated that about 50% of necrosis in HNSCC is caused by
necroptosis and suggested that necroptosis can release
damage-associated molecular patterns to enhance the mi-
gration and invasion of HNSCC cells [19]. Hence, the ne-
crosis observed in HNSCC tumors may not simply be caused

by ACD, and the necroptosis, also causing necrosis, is
perhaps another important phenomenon at play during
HNSCC development.

Although many studies have argued connections be-
tween NRG and HNSCC, there are no systematic studies
considering necroptosis-related signatures as a prognostic
index to forecast the prognosis of HNSCC patients. As the
field of bioinformatics develops, accumulating novel mea-
sures can provide effective tools to explore gene signatures.
Hence, by utilizing the TCGA-HNSC data set, we firstly
identified 38 differentially expressed NRGs and then in-
corporated them into KEGG, GO, and PPI analyses. *e
results indicated these genes are mostly enriched in

1.00
GSE65858

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

0.50

0.25

0.00

High risk
Low risk

0 1 2 3 4 5 6

133 118 84 26 4 2 0
134 116 90 41 21 14 3

Time (years)

0 1 2 3 4 5 6
Time (years)

Risk
High risk
Low risk

p<0.001

(a)

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0

0.0 0.2 0.4 0.6

1 – specificity

ROC curve (AUC = 0.791)

0.8 1.0

(b)

1.00
GSE4163

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

0.50

0.25

0.00

High risk
Low risk

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

48 37 28 21 19 13 5 1 0
49 42 38 36 33 25 10 1 0

Time (years)

Time (years)

Risk
High risk
Low risk

p=0.004

(c)

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0

0.0 0.2 0.4 0.6

1 – specificity

ROC curve (AUC = 0.678)

0.8 1.0

(d)

Figure 5: Validation of the risk model via two independent databases. (a, c)*e different overall survival (OS) time between two risk groups
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necroptosis-related disease, regulation pathways of nec-
roptosis and apoptosis, and other processes associated with
necroptosis. Unexpectedly, the DE-NRGs in HNSCC were
also enriched in the COVID-19 pathway. Recently, some
studies have suggested necroptosis is a promising factor that
plays a vital role in COVID-19 [4, 20]. *erefore, we de-
duced that some similar necroptosis-related mechanisms
may exist in both HNSCC and COVID-19. Future studies

focusing on exploring this potential connection may provide
some new targets for COVID-19 clinical treatment.

Furthermore, to identify HNSCC prognosis-related
NRGs, we carried out Cox regression analyses. Seven NRGs
manifested outstanding correlations with the OS time of
HNSCC and were utilized to establish prognostic models.
According to the median risk score, HNSCC patients were
separated into two groups. Compared with the high-risk
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group, patients in the low-risk group had longer OS times. A
necroptosis-related risk model was also confirmed as an
independent prognostic index. In addition, we found the risk

score was extremely related to survival status and tumor
grade. In conclusion, these results demonstrated that our
necroptosis-related prognostic model had a great ability to
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Figure 7: Online database analysis. (a) *e TIMER database illustrated the differential expression of 6 necroptosis-related genes (NRGs)
involved in our model (no CHMP3 data are available in the TIMER database). (b) *e HPA database showed the protein expression of 6
NRGs involved in our model (no CHMP1A data are available in the HPA database). (c) *e gene alterations of 7 NRGs involved in our
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predict the pathogenesis and progression of HNSCC;
moreover, it was also highly correlated with OS time.

Previous studies have confirmed some NRGs involved in
our risk model are indispensable in HNSCC. As the regu-
latory gene with the smallest hazard ratio (HR) (0.732) in our
study, TAR5 has been studied in many cancers. Previous
studies have demonstrated that TAR5 is a key target to
inhibit tumor cell migration or proliferation, and the ex-
pression of TRAF negatively correlates with prognosis
[25–27]. However, in this study, we obtained the opposed
conclusion that TAR5 is a protective factor for HNSCC, and
TAR5 expression contributed to a longer OS time. Why does
TAR5 have an opposing function profile between HNSCC
and other cancers? *is is a valuable question to be explored
in the future. In addition, FTH1 (HR, 1.002), CHMP1A (HR,
1.01), and TYK2 (HR, 0.94) showed similar results in pre-
vious studies [28–30]. *e rest of the genes have not been
explored in HNSCC at present, so further research could
concentrate on understanding the exact molecular mecha-
nism of these genes. To verify the generality of this model,
two independent GEO data sets (GSE65858 and GSE4163)
were utilized to validate the effectiveness. Using the
Kaplan–Meier curves of OS time and ROC curve analysis,
similar results generated from GSE65858 and GSE4163
proved the feasibility of our prognostic model.

In addition, we made use of GSEA to explore the en-
richment ways and characteristics in the two risk groups.
Several metabolisms and mitochondrion-related pathways
were found to play indispensable roles in the TCGA cohort,
indicating that the metabolic phenotype may be significantly
altered during necroptosis. In addition, mitochondria, the
center of energy supply and biosynthesis, maintain basic cell
survival, and dysfunctional mitochondria usually lead to cell
death [31–33]. When mitochondria are impaired, numerous
reactive oxygen species (ROS) are released, and the effects of
increased ROS have been identified as an essential driver of
cancer cell necroptosis [34, 35]. Previous studies have revealed
that ROS, stimulated by tumor necrosis factor, can stabilize
the necroptosis complex to induce cell necroptosis via pro-
moting RIPK1 autophosphorylation and recruiting RIPK3
[36, 37]. Moreover, in colon cancer cells, by cooperating with
RIPK1/RIPK3, ROS can facilitate cytosolic calcium accu-
mulation and give rise to striking necroptosis [38]. Similarly,
Basit et al. confirmed that, in melanoma cells, increased
mitophagy-dependent ROS, caused by mitochondrial com-
plex I inhibition, could also trigger necroptosis [35]. Taken
together, according to these conclusions, it is undoubtedly a
fact that mitochondrial ROS is essential for necroptosis, and
the enhanced mitochondrion activity, as well as metabolism
processes in our results, may be greatly associated with the
elevated ROS level in HNSCC.

Finally, to validate our results, we utilized various online
databases to analyze the seven NRGs involved in our model.
*e TIMER database was used to check the differential ex-
pression of NRGs, HPA was utilized to analyze the protein
expression of NRGs in different tissues, and the cBioPortal

database analyses were performed to explore gene alterations.
Across these analyses, we obtained similar results, which
suggested that the dysfunctional regulatory pathways, not the
gene mutation, may be the main reasons for the alterations in
NRG expression. Future explorations could focus on the
regulatory pathways related to these seven NRGs to clarify the
detailed necroptosis mechanism in HNSCC.

5. Conclusions

Collectively, we established a model of necroptosis-related
signature with excellent ability to predict the OS time of
HNSCC patients and validated it by two independent GEO
data sets (GSE65858, GSE4163). Furthermore, we provided
some new insights into the relationship between necroptosis
and HNSCC. Future studies should continue to examine the
validity of our model in order to applicate it in the clinical
diagnosis one day.
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