
GigaScience, 8, 2019, 1–8

doi: 10.1093/gigascience/giz105
Technical Note

TE CHNICAL NO TE

rCASC: reproducible classification analysis of
single-cell sequencing data
Luca Alessandrı̀1,†, Francesca Cordero2,†, Marco Beccuti 2,*,
Maddalena Arigoni1, Martina Olivero3, Greta Romano2, Sergio Rabellino 2,
Nicola Licheri2, Gennaro De Libero 4, Luigia Pace5,‡

and Raffaele A. Calogero 1,‡

1Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10125
Torino, Italy; 2Department of Computer Science, University of Torino, Corso Svizzera 185, 10149 Torino, Italy;
3Department of Oncology, University of Torino, SP142, 95, 10060 Candiolo (TO), Italy; 4Department Biomedizin,
University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland and 5Italian Istitute for Genomic Medicine, IIGM,
c/o IRCCS 10060 Candiolo (TO), Italy
∗Correspondence address. Marco Beccuti, Department of Computer Science, University of Torino, Corso Svizzera 185, 10149 Torino, Italy. E-mail:
marco.beccuti@unito.it http://orcid.org/0000-0001-6125-9460
†Both authors equally contributed to the present work.
‡Both authors equally supervised the present work.

Abstract

Background: Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell
subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to
epigenomics, e.g., ATAC-seq. Many related algorithms and tools have been developed, but few computational workflows
provide analysis flexibility while also achieving functional (i.e., information about the data and the tools used are saved as
metadata) and computational reproducibility (i.e., a real image of the computational environment used to generate the data
is stored) through a user-friendly environment. Findings: rCASC is a modular workflow providing an integrated analysis
environment (from count generation to cell subpopulation identification) exploiting Docker containerization to achieve
both functional and computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove
low-quality cells and/or specific bias, e.g., cell cycle. Subpopulation discovery can instead be achieved using different
clustering techniques based on different distance metrics. Cluster quality is then estimated through the new metric ”cell
stability score” (CSS), which describes the stability of a cell in a cluster as a consequence of a perturbation induced by
removing a random set of cells from the cell population. CSS provides better cluster robustness information than the
silhouette metric. Moreover, rCASC’s tools can identify cluster-specific gene signatures. Conclusions: rCASC is a modular
workflow with new features that could help researchers define cell subpopulations and detect subpopulation-specific
markers. It uses Docker for ease of installation and to achieve a computation-reproducible analysis. A Java GUI is provided
to welcome users without computational skills in R.

Keywords: single-cell data preprocessing; workflow; GUI; clustering; cluster stability metrics; cluster-specific gene signature

Received: 23 December 2018; Revised: 12 April 2019; Accepted: 8 August 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-6125-9460
http://orcid.org/0000-0002-1757-2000
http://orcid.org/0000-0003-0853-7868
http://orcid.org/0000-0002-2848-628X
mailto:beccuti@di.unito.it
http://orcid.org/0000-0001-6125-9460
http://orcid.org/0000-0001-6125-9460
http://creativecommons.org/licenses/by/4.0/


2 rCASC: reproducible classification analysis of single-cell sequencing data

Findings
rCASC: a single-cell analysis workflow designed to
provide data reproducibility

Since the end of the 90s omics high-throughput technologies
have generated an enormous amount of data, reaching today
an exponential growth phase. The analysis of omics big data is
a revolutionary means of understanding the molecular basis of
disease regulation and susceptibility, and this resource is made
accessible to the biological/medical community via bioinformat-
ics frameworks. However, owing to the increasing complexity
and the fast evolution of omics methods, the reproducibility cri-
sis [1, 2] demands that we find a way to guarantee robust and
reliable results to the research community [3].

Single-cell analysis is instrumental to understanding the
functional differences among cells within a tissue. Individual
cells of the same phenotype are commonly viewed as identical
functional units of a tissue or an organ. However, single-cell se-
quencing results [4] suggest the presence of a complex organiza-
tion of heterogeneous cell states that together produce system-
level functionalities. A mandatory element of single-cell RNA se-
quencing (RNA-seq) is the availability of dedicated bioinformat-
ics workflows.

To the best of our knowledge, rCASC is the only computa-
tional framework that provides both computational and func-
tional reproducibility for an integrated analysis of single-cell
data, from count generation to cell subpopulation identification.
It is one of the tools developed under the umbrella of the Repro-
ducible Bioinformatics project [5, 8], an open-source community
aimed at providing to biologists and medical scientists an easy-
to-use and flexible framework, which also guarantees the ability
to reproduce results independently by the underlying hardware,
using Docker containerization (computational reproducibility).
The Reproducible Bioinformatics project was founded and is
maintained by the research team of the Elixir node at the Uni-
versity of Turin. An example of stand-alone hardware/software
infrastructure for bulk RNA-seq, developed within the Repro-
ducible Bioinformatics project, was described by Beccuti et al. [9].
Indeed, it was developed following the best-practice rules for re-
producible computational research, proposed in 2013 by Sandve
et al. [6]. It is also listed within the tools developed by the Italian
Elixir node [7].

All the computational tools in rCASC are embedded in Docker
images stored in a public repository on the Docker hub. Param-
eters are delivered to Docker containers via a set of R func-
tions, part of the rCASC R github package [10]. To simplify the
use of the rCASC package for users without scripting experi-
ence, R functions can be controlled by a dedicated GUI, inte-
grated in the 4SeqGUI tool previously published by us [9], which
is also available as a github package [11]. rCASC is specifically
designed to provide an integrated analysis environment for cell
subpopulation discovery. The workflow allows the direct analy-
sis of fastq files, generated with 10X Genomics and inDrop plat-
forms, or count matrices. Therefore, rCASC provides raw data
preprocessing, subpopulation discovery via different clustering
approaches, and cluster-specific gene signature detection. The
key elements of the rCASC workflow are shown in Fig. 1, and the
main functionalities are summarized in the Methods section. A
detailed description of the rCASC functions is also available in
the vignettes section of the rCASC github [10].

The overall characteristics of rCASC were compared
with 4 other workflows for single-cell analysis (Fig. 2): (i)

simpleSingleCell, Bioconductor workflow package [12]; (ii)
Granatum, web-based single-cell RNA-seq analysis suite [13];
(iii) SCell, graphical workflow for single-cell analysis [14]; and
(iv) R toolkit Seurat [15]. The comparison was based on the
following elements: (i) supported single-cell platforms, (ii) types
of tools provided by the workflow, (iii) type of reproducibility
granted by the workflow, and (iv) tool flexibility.

rCASC is the only workflow providing support at the fastq
level because all the other packages require as input the pro-
cessed count table. Cell quality control and outlier identification
is available in all the workflows but Granatum. Association of
ENSEMBL gene IDs to gene symbols is only provided by rCASC.
All the workflows provide gene-filtering tools but simpleSingle-
Cell. All packages provide normalization procedures to be ap-
plied to raw count data. However, rCASC is the only tool pro-
viding both Seurat specific normalization [15] and count-depth
specific normalization [16]. The workflows implement different
data reduction and clustering methods. rCASC integrates 4 clus-
tering tools, i.e., Seurat [15], SIMLR [17], griph [18], and scanpy
[19], which differ in the metrics driving the clustering analysis.
Cluster stability is an important topic in clustering (for a review
see von Luxburg [20]). Stability measurement, taking advantage
of bootstrapping, was also addressed by Hennig [21]. Specifically,
Hennig uses the Jaccard index to evaluate the overall stability
of each cluster. In rCASC, we have implemented a cell stability
score (CSS), which uses the Jaccard index to estimate the sta-
bility of each cell in each cluster. The CSS provides an enhanced
description of each cluster because it allows the identification of
a subset of cells, in any cluster, that are particularly sensitive to
perturbation of the overall dataset structure, i.e., cell bootstrap-
ping. Moreover, the cluster stability measurement proposed by
Henning was included in rCASC. Specifically, we have imple-
mented the “clusterboot” function from the fpc R package [22],
which allows the evaluation of cluster stability using a personal-
ized clustering function (see Supplementary file section 5.3). To
the best of our knowledge, rCASC is the only workflow perform-
ing clustering in the presence of data perturbation, i.e., removal
of a subset of cells, and measuring cluster quality using the CSS
(a cluster quality metric developed by us, which measures the
persistence of each cell in a cluster upon data perturbation; see
Supplementary file section 5.1) and silhouette score (SS), a clus-
ter quality metric measuring the consistency within clusters of
data. In our experiments, CSS provides a better estimation of
cluster stability compared to that of SS (Fig. 2). Gene feature se-
lection approaches are implemented in a different way in the 5
workflows. Granatum is the only one providing biological infer-
ence. Granatum and Seurat implement various statistical meth-
ods to detect cluster-specific gene signatures (Fig. 3). rCASC em-
beds an ANOVA-like statistics derived from the EdgeR Biocon-
ductor package [23] and Seurat/SIMLR gene prioritization proce-
dures (see Supplementary file section 7). Visualization of gene
signatures by heat map, with cells colored on the basis of gene
expression, is only provided by rCASC (see Supplementary file
Fig. 51). Considering reproducibility, only rCASC provides both
computational and functional reproducibility. Finally, rCASC is
the only one providing both a command line interface and GUI
(Fig. 4).

Finally, rCASC was used to re-analyze the single-cell dataset
from Pace et al. [24]. In this article, the authors highlighted that
Suv39h1-defective CD8+ T cells show sustained survival and
increased long-term memory reprogramming capacity. Our re-
analysis extends the information described by Pace et al. [24],



Alessandrı̀ et al. 3

Figure 1: rCASC workflow. Dark gray boxes with white characters indicate preprocessing tools. Dark grey boxes with black characters define clustering tools. Light grey

box with black characters indicates gene signature tools.

Figure 2: Cell stability score vs silhouette score calculated on the dataset of Pace et al. [24] (see Supplementary file section 8) using SIMLR over a set of number of
clusters ranging between 5 and 8. A, Cell stability score violin plot. Mean value and data dispersion suggest that the best number of clusters is 5. Cells remain in the
same cluster ∼80% of the time, repeating the clustering upon random removal of 10% of the cells. B, Silhouette score (SS) violin plot. Mean value of the SS distribution
does not provide clear evidence that one clustering condition is better than another. Furthermore, the dispersion of the SS value shrinks as the number of clusters

increases.

suggesting the presence of an enriched Suv39h1-defective mem-
ory subset. A complete description of the above analysis is avail-
able in section 8 of the supplementary file.

Methods
Count table generation

The inDrop single-cell sequencing approach was originally pub-
lished by Klein et al. [25]. The authors subsequently published

the detailed protocol in 2017 [26]. In rCASC, the generation of
the count table starting from fastq files refers to version 2 of
the inDrop chemistry described in Zilionis et al. [26], which is
commercially distributed by 1CellBio. The procedure described
in the inDrop github [27] is embedded in a Docker image.
The rCASC function ”indropIndex” allows the generation of
the transcript index required to convert fastq in counts, and
the ”indropCounts” function converts reads in unique molecu-
lar identifier (UMI) counts. 10X Genomics Cellranger is packed
in a Docker image and the function ”cellrangerCount” con-



4 rCASC: reproducible classification analysis of single-cell sequencing data

Figure 3: Comparison of analysis features available in rCASC and in the other single-cell analysis workflows.

Figure 4: rCASC graphical interface within 4seqGUI. A, Count table generation menu: this set of functions is devoted to the conversion of fastq to a count table. B, Count
table manipulation menu: this set of functions provides inspection, filtering, and normalization of the count table. C, Clustering menu: these functions allow the use
of SIMLR, t-SNE, Seurat, griph, and scanpy to group cells in subpopulations. D, Feature selection menu: this set of functions allows the identification of cluster-specific

subsets of genes and their visualization using heat maps.

verts fastq to UMI matrix using any of the genome indexes
with the ”cellrangerIndexing” function. A detailed description
of the count table generation is available in Supplementary file
section 2.

Count table exploration and manipulation

rCASC provides various data inspection and preprocessing tools.
The ”genesUmi” function generates a plot where the num-

ber of detected genes is plotted for each cell with respect to the
number of UMI (Fig. 5A and C).

mitoRiboUmi calculates the percentage of mitochon-
drial/ribosomal genes with respect to the total number of
detected genes in each cell and plots the percentage of mito-
chondrial genes with respect to percentage of ribosomal genes.
Cell color indicates the number of detected genes (Fig. 5B and
D). mitoRiboUmi allows researchers to identify cells with low
information content, i.e., those cells with few detectable genes,
e.g., <100 genes/cell, little ribosomal content, and high content
of mitochondrial genes, which indicate cell stress [29].

The function ”scannobyGtf” uses ENSEMBL gtf and the R
package refGenome to associate gene symbol with the EN-
SEMBL gene ID. Furthermore, scannobyGtf allows one to remove



Alessandrı̀ et al. 5

Figure 5: genesUmi plots the number of detectable genes in each cell (a cell is called present if it is supported by at least N UMI/reads; suggested values are N = 3 for
UMI or N = 5 for smart-seq sequencing [28]) with respect to the number of UMI per cell. mitoRiboUmi calculates the percentage of mitochondrial and ribosomal genes

with respect to the total number of detected genes in each cell. It plots the percentage of mitochondrial genes with respect to the percentage of ribosomal genes. Cell
color indicates number of detected genes. A, genesUmi plot for resting CD8+ T cells [24], sequencing average 83,000 reads/cell. B, mitoRiboUmi plot for resting CD8+ T
cells [24]. The majority of the cells with <100 detected genes group together, and they are characterized by a high relative percentage of mitochondrial genes and low
relative percentage of ribosomal genes. Remaining cells are characterized by few detectable genes, 100–250 genes/cell, with a percentage of ribosomal genes >30%. C,

genesUmi plot for Listeria-activated CD8+ T cells [24], sequencing average 83,000 reads/cell. It is notable that the activated cells show a wider range of detectable genes
with respect to resting cells (B). D, mitoRiboUmi plot for Listeria-activated CD8+ T cells [24]. The majority of the cells are characterized by >100 genes and they show a
low percentage of mitochondrial genes and percentage of ribosomal genes between 15% and 35%. The remaining cells, with <100 detected genes, group together and

are characterized by a high relative percentage of mitochondrial genes and low relative percentage of ribosomal genes.

mitochondrial/ribosomal genes (Fig. 5A and C) and “stressed”
cells detectable with the mitoRiboUmi function (Fig. 5B
and D).

The function ”lorenzFilter” embeds the Lorenz statistics
developed by Diaz et al. [14], a cell quality statistic corre-
lated with cell live-dead staining (see Supplementary file sec-
tion 3.3). Specifically, the outlier filtering for single-cell RNA-
seq experiments designed by Diaz et al. estimates which
genes are expressed at background levels in each sample;
then samples with significantly high background levels are
discarded [14].

As count table preprocessing steps, we implemented the
functions ”checkCountDepth/scnorm” to detect the presence
of sample-specific count–depth relationship [16] (i.e., the rela-
tionship existing between transcript-specific expression and se-
quencing depth) and to adjust the count table for it. Specif-
ically, checkCountDepth initially executes a quantile regres-
sion, thus estimating the dependence of transcript expression

on sequencing depth for every gene. Then, genes with simi-
lar dependence are aggregated (see Supplementary file section
Fig. 21). Scnorm, after executing checkCountDepth, performs a
new quantile regression to estimate scale factors within each
group of genes. Then, sequencing depth adjustment is done
within each group using the estimated scale factors. Further-
more, we added 2 other functions ”recatPrediction” and ”ccRe-
move,” which are based, respectively, on Liu et al. [30] and
Barron and Li [31]. The function recatPrediction organizes the
single-cell data to reconstruct cell cycle pseudo time-series and
is used to understand whether a cell cycle effect is present.
The above function embeds reCAT software [30], which mod-
els the reconstruction of time-series as a traveling salesman
problem, thus identifying the shortest possible cycle by pass-
ing through each cell exactly once and returning to the start.
Because the traveling salesman problem is an NP-hard problem,
reCAT is based on a heuristic algorithm, which is used to find the
solution.



6 rCASC: reproducible classification analysis of single-cell sequencing data

Figure 6: Heat map and cell expression plot for prioritized genes. A, Heat map for the set of 577 genes selected for Pace et al. [24] datasets (see Supplementary file

section 8) by SIMLR prioritization. B, Nkg7 CPM expression in the cell clusters. Nkg7 is expressed in activated T cells (clusters 1, 2, 4, 5) [32] but not in resting T cells
(cluster 3).

Figure 7: Scalability analysis of the clustering tools implemented in rCASC. A, Time required to perform 160 permutations as function of increasing number of cells

on ∼20,000 genes. Left: SIMLR, t-SNE, Seurat, and griph clustering up to 5,000 cells was executed on a SeqBox [9] (1 x CPU i7–6770HQ 3.5 GHz [8 cores], 32 GB RAM, 1 TB
SSD). Right: Seurat, griph, and scanpy analyses were extended until 101,000 cells using an SGI server (10 x CPU E5–4650 2.4 GHz [16 cores], 1 TB RAM, 30 TB SATA raid
disk). B, Time required to perform 160 permutations as function of increasing number of genes on a set of 800 cells, analysis performed on a SeqBox.

The ”ccRemove” function is instead based on the work of
Barron and Li [31] and embeds their scLVM (single-cell latent
variable model) algorithm, which uses a sophisticated Bayesian
latent variable model to reconstruct hidden factors in the ex-
pression profile of the cell cycle genes. This algorithm is able to
remove cell cycle effect from real single-cell RNA-seq datasets.
Thus, ccRemove is used to mitigate the cell cycle effect of
the inter-sample transcriptome, when it is detected by the
”recatPrediction” function (see Supplementary file sections 3.6
and 3.8).

Clustering

For the identification of cell subpopulations we implemented
4 approaches: Seurat (RRID:SCR 016341) [15], SIMLR [17], griph

[18], and scanpy [19]. Seurat is a toolbox for single-cell RNA-seq
data analysis. We implemented in rCASC one of the clustering
procedures present in the Seurat toolbox. The function ”seu-
ratPCAEval” has to be run before executing the clustering pro-
gram to identify the “metafeatures,” i.e., the subset of principal
componet analysis (PCA) components describing the relevant
source of cell heterogeneity, to be used for clustering. The ”seu-
ratBootstrap” function implements data reduction and cluster-
ing. Specifically, cells undergo global scaling normalization, i.e.,
LogNormalize method, and scaling factor 10,000. Subsequently,
a linear dimensional reduction is done using the range of prin-
cipal components defined with ”seuratPCAEval.” Then, cluster-
ing is performed using the cell PCA scores. The Seurat clustering
procedure, embedded in seuratBootstrap, is based on the Lou-
vain modularity optimization algorithm. In contrast, SIMLR im-

https://scicrunch.org/resolver/RRID:SCR_016341


Alessandrı̀ et al. 7

plements a k-mean clustering, where the number of clusters
(i.e., k) is taken as input. SIMLR requires as input raw counts
that are log10 transformed. SIMLR is capable of learning an ap-
propriate cell-to-cell similarity metric from the input single-cell
data and can exploit it for the clustering task. In the learn-
ing phase SIMLR identifies a distance metric that better fits the
structure of the data by combining multiple Gaussian kernels
[17]. Thus, the tool can deal with the large noise and dropout
effects of single-cell data, which could not easily fit with spe-
cific statistical assumptions made by standard dimension re-
duction algorithms [17]. The function ”simlrBootstrap” controls
the clustering procedure and the function ”nClusterEvaluation-
SIMLR,” a wrapper for the R package griph [18], is exploited to
estimate the (sub)optimal number “k” of clusters. Griph clus-
tering [18] is based on Louvain modularity. The griph algorithm
is closer to agglomerative clustering methods because every
node is initially assigned to its own community and commu-
nities are subsequently built by iterative merging. Also, scanpy
[19] uses for clustering a heuristic method based on modularity
optimization.

We developed, for Seurat, SIMLR, griph, and scanpy, a proce-
dure to measure the cluster quality on the basis of data struc-
ture. The rationale of our approach is that cells belonging to a
specific cluster should be little affected by changes in the size of
the dataset, e.g., removal of 10% of the total number of cells used
for clustering. Thus, we developed a metric called CSS, which de-
scribes the persistence of a cell in a specific cluster upon jack-
knife resampling and therefore offers a peculiar way of describ-
ing cluster stability. A detailed description of the CSS metric is
available in Supplementary file section 5.1. CSS is embedded
in ”seuratBootstrap,” ”simlrBootstrap,” ”scanpyBootstrap,” and
”griphBootstrap.”

Feature selection

To select the most important features of each cluster we im-
plemented in the ”anovaLike” function the edgeR ANOVA-like
method for single cells [23] and in the functions ”seuratPrior”
and ”genesPrioritization/genesSelection,” respectively, the Seu-
rat and SIMLR gene prioritization methods. The ”hfc” function
allows visualization of the genes prioritized with the above
methods as a heat map and provides plots of prioritized genes
in each single cell (Fig. 6).

Scalability

To estimate the scalability of rCASC clustering we used the
GSE106264 dataset made of 10,035 cells and published by Pace
and coworkers in 2018 [24] and the 10,000/33,000/68,000 cells pe-
ripheral blood mononuclear cell (PBMC) human datasets, avail-
able at the 10X Genomics repository [33]. We randomly gener-
ated from the 10,035 cells (27,998 ENSEMBL gene IDs) the fol-
lowing subsets of cells: 400, 600, 800, 1,000, 2,000, and 5,000.
Moreover for the subsets with >600 cells we randomly sampled
the genes: 10,000, 8,000, 6,000, 4,000, 2,000, 1,000, 800. We ran
SIMLR, t-SNE, griph, and Seurat using 160 permutations within
SeqBox hardware [9]: Intel i7 3.5 GHz (4 cores), 32 GB RAM, and
500 GB SSD disk. SIMLR turned out to be the slowest and, given
the above hardware implementation, it cannot allocate for the
analysis >2,000 cells (Fig. 7A left panel). All the other tools were
able to handle up to 5,000 cells within the limit of 32 GB of
RAM. Computation time was nearly linear for all tools until 1,000
cells. Only griph clustering turned out to be nearly insensitive to
the increasing number of cells (Fig. 7A). We extended, for Seu-

rat, griph, and scanpy, the scalability analysis to 10,000, 33,000,
68,000, and 101,000 cells, using 10,000/33,000/68,000 cells from
PBMC human datasets, available at the 10X Genomics reposi-
tory [33], and a 101,000-cell dataset, made by assembling the
aforementioned 33,000 and 68,000 PBMC datasets. The analysis
was executed on an SGI server (10 x CPU E5–4650 2.4 GHz [16
cores], 1 TB RAM, 30 TB SATA raid disk) allocating 40 threads
for each analysis. Scanpy outperformed the other 2 methods,
and griph behaved slightly better than Seurat (Fig. 7A right
panel).

All the above samples were preprocessed removing riboso-
mal/mitochondrial protein genes and cells with a total count of
UMIs <100.

The computing time as a function of increasing number of
genes had a quite limited effect on the overall computing time
(Fig. 7B).

The definition of the computing time for an analysis depends
on multiple parameters: (i) the number of permutations per-
formed in parallel, (ii) the number of cells under analysis, (iii) the
clustering tool in use, and (iv) the hardware used for the analy-
sis. Concerning the amount of RAM required for each permuta-
tion run in parallel, for up to 5,000 cells the maximum amount
of RAM required is ∼4 GB; from 10,000 to 100,000 cells, the max-
imum RAM required is ∼20 GB. Independently by the clustering
approach and the size of the dataset, we suggest running ≥100
permutations to correctly estimate CSS.

Availability of supporting data and materials

Snapshots of the code and test data are available from the Giga-
Science GigaDB repository [34]. All the Docker images are stored
in the Docker hub: https://hub.docker.com/u/repbioinfo.

Availability of supporting source code and
requirements

Project name: rCASC: reproducible Classification Analysis of Sin-
gle Cell sequencing data
Project home page: https://github.com/kendomaniac/rCASC; ht
tps://github.com/mbeccuti/4SeqGUI
Operating system: Linux
Programming language: R and JAVA
Other requirements: None
License: GNU Lesser General Public License, version 3.0 (LGPL-
3.0)
RRID:SCR 017005

Additional files

Supplementary Methods: Details about the implemented meth-
ods.

Abbreviations

ANOVA: analysis of variance; ATAC-seq: Assay for Transposase-
Accessible Chromatin using sequencing; CPU: central process-
ing unit; CSS: cell stability score; griph: Graph Inference of Pop-
ulation Heterogeneity; GUI: graphical user interface; PBMC: pe-
ripheral blood mononuclear cell; PCA: principal componet anal-
ysis; RAM: random access memory; rCASC: reproducible Classi-
fication Analysis of Single Cell sequencing data; RNA-seq: RNA
sequencing; SATA: Serial Advanced Technology Attachment;
scanpy: Single-Cell Analysis in Python; SIMLR: Single-cell Inter-

https://hub.docker.com/u/repbioinfo
https://github.com/kendomaniac/rCASC
https://github.com/mbeccuti/4SeqGUI
https://scicrunch.org/resolver/RRID:SCR_017005


8 rCASC: reproducible classification analysis of single-cell sequencing data

pretation via Multi-kernel LeaRning; SS: silhouette score; SSD:
solid-state drive; t-SNE: T-distributed Stochastic Neighbor Em-
bedding; UMI: unique molecular identifier.

Authors’ contributions

L.A. and F.C. equally participated to write R scripts, to create
the majority of Docker images, to package the workflow and
release code. M.B. wrote the Java and C++ code and acted as
corresponding author. N.L. implemented scanpy and extended
the Java GUI. M.A. and M.O. prepared the single-cell data to be
used as examples of the workflow functionality. G.R. prepared
the Dockers for fastq to count table conversion. S.R. revised all
packages and generated the Docker files for Docker image main-
tenance and further development. G.D.L. gave scientific advice
and provided an unpublished dataset for MAIT resting and ac-
tivated T-cells (generated with Fluidigm C1 platform) to inves-
tigate gene detection limits in 3′-end sequencing technologies
and whole-transcript sequencing. R.A.C. and L.P. equally over-
saw the project and gave scientific advice. All authors read, con-
tributed to, and approved the final manuscript.

References

1. Allison DB, Shiffrin RM, Stodden V. Reproducibility of re-
search: issues and proposed remedies. Proc Natl Acad Sci U
S A 2018;115(11):2561–2.

2. Nature: Challenges in irreproducible research. 2018. https:
//www.nature.com/collections/prbfkwmwvz.Accessed date:
June, 2019.

3. Calogero RA. Reproducibility in computational biology.
2017. http://www.global-engage.com/life-science/reproduci
bility-computational-biology/. Accessed date: June, 2019.

4. Buettner F, Natarajan KN, Casale FP, et al. Computational
analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat
Biotechnol 2015;33(2):155–60.

5. Reproducible Bioinformatics project. http://reproducible-bio
informatics.org/. Accessed date: June, 2019.

6. Sandve GK, Nekrutenko A, Taylor J, et al. Ten simple rules
for reproducible computational research. PLoS Comput Biol
2013;9(10):e1003285.

7. rCASC. https://bio.tools/rCASC. Accessed date: August, 2019.
8. Kulkarni N, Alessandri L, Panero R, et al. Reproducible Bioin-

formatics project: a community for reproducible bioinfor-
matics analysis pipelines. BMC Bioinformatics 2018;19(Suppl
10):349.

9. Beccuti M, Cordero F, Arigoni M, et al. SeqBox:
RNAseq/ChIPseq reproducible analysis on a consumer
game computer. Bioinformatics 2018;34(5):871–2.

10. rCASC R Package. 2018. https://github.com/kendomaniac/r
CASC. Accessed date: August, 2019.

11. 4SeqGUI. 2018. https://github.com/mbeccuti/4SeqGUI. Ac-
cessed date: August, 2019.

12. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow
for low-level analysis of single-cell RNA-seq data with Bio-
conductor. F1000Res 2016;5:2122.

13. Zhu X, Wolfgruber TK, Tasato A, et al. Granatum: a graph-
ical single-cell RNA-Seq analysis pipeline for genomics sci-
entists. Genome Med 2017;9(1):108.

14. Diaz A, Liu SJ, Sandoval C, et al. SCell: integrated analysis

of single-cell RNA-seq data. Bioinformatics 2016;32(14):2219–
20.

15. Butler A, Hoffman P, Smibert P, et al. Integrating single-
cell transcriptomic data across different conditions,
technologies, and species. Nat Biotechnol 2018;36(5):
411–20.

16. Bacher R, Chu LF, Leng N, et al. SCnorm: robust nor-
malization of single-cell RNA-seq data. Nat Methods
2017;14(6):584–6.

17. Wang B, Zhu J, Pierson E, et al. Visualization and analysis of
single-cell RNA-seq data by kernel-based similarity learning.
Nat Methods 2017;14(4):414–6.

18. Serra D, Mayr U, Boni A, et al. Self-organization and sym-
metry breaking in intestinal organoid development. Nature
2019;569(7754):66–72.

19. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-
cell gene expression data analysis. Genome Biology
2018;19(1):15.

20. von Luxburg U. Clustering stability: an overview. Found
Trend Mach Learn 2010;2(3):235–74.

21. Hennig C. Cluster-wise assessment of cluster stability. Com-
put Stat Data Anal 2007;52(1):258–71.

22. Hennig C. fpc R package. https://cran.r-project.org/web/pac
kages/fpc/index.html. Accessed date: June, 2019.

23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bio-
conductor package for differential expression analysis of
digital gene expression data. Bioinformatics 2010;26(1):
139–40.

24. Pace L, Goudot C, Zueva E, et al. The epigenetic control
of stemness in CD8+ T cell fate commitment. Science
2018;359(6372):177–86.

25. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for
single-cell transcriptomics applied to embryonic stem cells.
Cell 2015;161(5):1187–201.

26. Zilionis R, Nainys J, Veres A, et al. Single-cell barcod-
ing and sequencing using droplet microfluidics. Nat Protoc
2017;12(1):44–73.

27. indrops github repository. https://github.com/indrops/indro
ps. Accessed date: August, 2019.

28. Chhangawala S, Rudy G, Mason CE, et al. The impact of
read length on quantification of differentially expressed
genes and splice junction detection. Genome Biol 2015;16:
131.

29. AlJanahi AA, Danielsen M, Dunbar CE. An introduction to the
analysis of single-cell RNA-sequencing data. Mol Ther Meth-
ods Clin Dev 2018;10:189–96.

30. Liu ZH, Lou HZ, Xie KK, et al. Reconstructing cell cycle pseudo
time-series via single-cell transcriptome data. Nat Commun
2017;8:22.

31. Barron M, Li J. Identifying and removing the cell-cycle effect
from single-cell RNA-sequencing data. Sci Rep 2016;6:33892.

32. Turman MA, Yabe T, McSherry C, et al. Characterization of
a novel gene (NKG7) on human chromosome 19 that is ex-
pressed in natural killer cells and T cells. Hum Immunol
1993;36(1):34–40.

33. 10X Genomics. www.10xgenomics.com. Accessed date: May,
2019.

34. Alessandri L, Cordero F, Beccuti M, et al. Supporting data for
“rCASC: reproducible Classification Analysis of Single Cell
sequencing data.” GigaScience Database 2019. http://dx.doi
.org/10.5524/100636.

https://www.nature.com/collections/prbfkwmwvz
http://www.global-engage.com/life-science/reproducibility-computational-biology/
http://reproducible-bioinformatics.org/
https://bio.tools/rCASC
https://github.com/kendomaniac/rCASC
https://github.com/mbeccuti/4SeqGUI
https://cran.r-project.org/web/packages/fpc/index.html
https://github.com/indrops/indrops
http://www.10xgenomics.com
http://dx.doi.org/10.5524/100636

