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Abstract

Alternative transcript isoforms are common in tumors and act as potential drivers of cancer.

Mechanisms determining altered isoform expression include somatic mutations in splice

regulatory sites or altered splicing factors. However, since DNA methylation is known to reg-

ulate transcriptional isoform activity in normal cells, we predicted the highly dysregulated

patterns of DNA methylation present in cancer also affect isoform activity. We analyzed

DNA methylation and RNA-seq isoform data from 18 human cancer types and found fre-

quent correlations specifically within 11 cancer types. Examining the top 25% of variable

methylation sites revealed that the location of the methylated CpG site in a gene determined

which isoform was used. In addition, the correlated methylation-isoform patterns classified

tumors into known subtypes and predicted distinct protein functions between tumor sub-

types. Finally, methylation-correlated isoforms were enriched for oncogenes, tumor sup-

pressors, and cancer-related pathways. These findings provide new insights into the

functional impact of dysregulated DNA methylation in cancer and highlight the relationship

between the epigenome and transcriptome.

Author summary

In eukaryotes, one gene can be transcribed into multiple RNA sequences (or isoforms)

that are subsequently translated into proteins with different functions in response to

specific cellular needs. Recent studies showed that cancer cells can obtain abnormal func-

tions via expressing different isoforms. In normal cells, isoform expression can be regu-

lated by DNA methylation–a molecular signature with attached methyl groups on DNA

sequences. Given that dysregulation of DNA methylation is a cancer hallmark, we suspect

the same regulation holds in cancer and contributes to cancer progression. In this study,

we analyzed data from 18 human cancer types and found frequent correlations in 11 can-

cer types between specific isoform usage and DNA methylation depending on the location

of the methylated site in a gene. These correlation patterns can classify heterogeneous

tumors in a cancer type into homogeneous subtypes and are predicted to change protein

functions via isoform switching between subtypes. Finally, we found cancer-related genes

often harbored more DNA methylation-isoform correlations than genes not implicated in

cancer. This finding could help us to better understand the functional impact of DNA
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methylation alterations via regulation of isoform expression in tumorigenesis and to fur-

ther improve the cancer treatment.

Introduction

More than 90% of human protein coding genes are capable of producing multiple isoforms,

either by adopting alternative transcription start or termination sites (TSSs or TTSs, respec-

tively) or by switching internal splice sites to generate alternative exons [1]. Utilizing these

approaches, gene function can be tailored to fulfill specific cellular requirements, including

regulating cell-fate in response to stress [2] or nerve cell regeneration after injury [3]. However,

isoform switching–differential usage of gene transcripts between conditions–is also common,

and often biased in cancer versus normal cells [4], where it is predicted to have deleterious

consequences such as sustaining cell proliferation, disturbing apoptosis, and enabling cell

motility and invasion [5–7]. Indeed the presence of isoform switching in tumor cells can pre-

dict patient survival, independent of cancer type [4]. To date, researchers seeking to learn

more about the mechanisms underlying aberrant isoform activity in cancer have primarily

focused on mutations in splicing regulatory sites or altered/deregulated splicing factors. This

line of study has been fruitful [5, 8, 9]. For example, we now know that mutations in the tumor

suppressor gene BRCA1 cause inappropriate exon skipping and inactivation of BRCA1 [10],

whereas upregulation of NUMA1 splice isoforms in breast cancer cause increased cell prolifer-

ation [11]. However, the effect of highly dysregulated DNA methylation (DNAm), a distin-

guishing feature of cancer [12], on isoform usage in tumorigenesis has not been fully

investigated.

We now know that the methylation of intragenic CpG dinucleotides is known as an impor-

tant regulatory mechanism for isoform switching in normal cells at promoters, internal splic-

ing sites and transcription termination sites. For example, CpG island (CGI) methylation can

regulate the activity of internal promoters to provide tissue-specific activity, as evidenced by

differential isoform expression of SHANK3 in distinct brain regions from a single cell type

[13]. Moreover, intragenic DNAm within exons or near exon boundaries can regulate alterna-

tive splicing outcomes by (1) preventing access of the DNA-binding protein CTCF, whose

presence mediates local RNA polymerase II pausing for inclusion of weak exons or (2) facilitat-

ing access of the DNA-binding protein MeCP2, involved in inclusion of alternatively spliced

exons [14, 15]. Affecting differential use of transcription termination sites, CGI methylation

directs imprinting of murineH13 isoforms between paternal and maternal alleles [16]. Finally,

DNAm also plays a more generalized repressive role by preventing spurious intragenic PolII

initiation to ensure transcriptional fidelity throughout gene bodies [17]. Despite abundant evi-

dence that DNAm can regulate isoform switching, research on whether this phenomenon

might drive tumorigenesis has been limited, with past studies focusing on alternative tran-

scription start site utilization in prostate cancer [18] or isoform switching among single genes

in individual cancer types [19–23].

In this study, recent advances in transcriptome sequencing and DNAm analysis, coupled

with expansive collections of tumor samples, enabled us to test the hypothesis that DNAm dys-

regulation in cancers can disrupt isoform usage and contribute to tumorigenesis, as a common

phenomenon. Further, we investigated whether correlated DNAm and isoform disruption

explains differences in tumors from the same organ. Based on a comprehensive analysis of

data for 18 cancer types from The Cancer Genome Atlas (TCGA), we report that, within 11

cancer types, DNAm in the top 25% of variable methylated sites is associated with isoform
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switching, and this isoform switching is predicted to have functional consequences for tumori-

genesis, involving 10–21% of genes.

Results

Correlation between intragenic DNAm and isoform usage in cancer

To investigate the regulatory role of DNAm in isoform production, we first calculated Pearson

correlations between intragenic DNAm and isoform usage (defined here as the proportion of a

given isoform’s expression over the expression of all isoforms for a gene). We did this for every

isoform-methylation probe pair among tumor samples, for all 18 TCGA cancer datasets used

in the study (see Methods). A positive correlation indicates that isoform usage increases as

DNAm increases, whereas a negative correlation indicates the opposite. We found significant

correlations for at least one isoform-methylation probe pair [empirical false discovery rate

(eFDR) < 0.1] in 16 out of 18 cancer types examined. Whether or not a cancer type met the

significance threshold was mainly governed by sample size: those with fewer tumor samples

required higher correlation coefficients, and two were not able to reach the designated eFDR

level at all (colon and glioblastoma). The minimal correlation coefficients (measured as abso-

lute values) required to pass the eFDR cutoff ranged from 0.65 in rectum adenocarcinoma

(’READ’, 33 samples) to 0.16 in breast invasive carcinoma (’BRCA’, 268 samples) (S1 Fig). In

addition, the significant correlations remained across multiple cancer types using Spearman

correlation (S2 Fig), as well as data with batch effects removed (S3 Fig) suggesting the observed

significance was not affected by batch effects and outliers when using Pearson correlation.

To further investigate the connection between DNAm and isoform usage, for each cancer

type we identified methylation probes with the most variable values, which were most likely to

behave differently across samples (i.e., those whose standard deviation across tumors fell

within the top 25% for all sites). From these highly variable methylation sites, we required an

absolute correlation between DNAm and isoform usage > 0.3. To guarantee all of these pairs

are significantly correlated, we excluded seven cancer types whose absolute correlation was

above 0.3 at FDR = 0.1. Although this cutoff value lowered the number of cancer types, it

yielded a substantial number of correlated isoform-probe pairs for downstream analyses in

each of the 11 remaining cancer types (see 11 cancer types and their abbreviations in Table 1).

Depending on the cancer type, we identified significantly correlated isoform-probe pairs from

10% (n = 1,428 in thyroid carcinoma, or ’THCA’) to 21% (n = 3,121 in bladder urothelial carci-

noma, or ’BLCA’) of genes analyzed. We hypothesized that, using this dataset, we could deter-

mine whether the location of DNAm in an isoform affects its usage; thus, these data form the

basis for the analyses that follow.

DNAm around the transcription start site is correlated with decreased

isoform usage, irrespective of CpG island presence

For each cancer type, when DNAm was found in isoform promoters (defined as the areas

upstream of the TSSs or downstream, including the first exon), negative correlations between

DNAm and use of that isoform were overrepresented (see Methods, Fig 1A). This indicates

DNAm at the TSSs acts as a negative regulator of isoform usage. This type of regulation was

supported by a median number of 924 genes across 11 cancer types (denoted as #gene = 924).

To further investigate rules governing DNAm and TSS usage, we investigated all DNAm

probe sites that fell within isoforms’ first exons and flanking regions (including 2-kb upstream

noncoding regions and 2-kb downstream intronic regions). Across all cancer types, we found

that within the 1-kb regions upstream and downstream the first exon boundaries (including
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inside the first exon), negative correlations were enriched between DNAm and isoform usage

(#gene = 753) (Fig 1B). Despite the dominance of negative correlations, some positive correla-

tions were enriched across all cancer types between DNAm and isoform usage among probes

Table 1. The number of tumor samples, normal samples, genes, transcript isoforms, and isoform-probe pairs being analyzed across 11 cancer types.

Cancer Type Abbr. # Tumor # Normal All data analyzed |correlation| > 0.3

(top 25% variable probes)

# Gene # Trans # Pair # Gene # Trans # Pair

bladder urothelial carcinoma BLCA 161 4 14542 82868 1644048 3121 (21%) 6286 18285

breast invasive carcinoma BRCA 268 33 15101 89913 1794567 1770 (12%) 3233 8992

head and neck squamous cell carcinoma HNSC 201 7 14610 84086 1678216 1666 (11%) 2985 8468

liver hepatocellular carcinoma LIHC 136 19 13580 70564 1378646 2030 (15%) 3653 11898

lung adenocarcinoma LUAD 177 6 15151 90076 1796652 1844 (12%) 3288 9507

lung squamous cell carcinoma LUSC 161 2 15299 92539 1846398 2549 (17%) 5007 15141

prostate adenocarcinoma PRAD 189 13 15003 85718 1723875 1991 (13%) 3570 10992

skin cutaneous melanoma SKCM 175 0 14455 84608 1695090 2482 (17%) 5315 17449

stomach adenocarcinoma STAD 147 0 15387 97792 1974208 2345 (15%) 4338 11718

thyroid carcinoma THCA 191 20 14863 87044 1739557 1428 (10%) 2575 5399

uterine corpus endometrial carcinoma UCEC 169 13 14340 76168 1513015 1533 (11%) 2648 8652

Trans = transcript isoform

https://doi.org/10.1371/journal.pcbi.1007095.t001

Fig 1. Negative correlations between isoform usage and DNAm show enrichment in promoter regions relative to isoform bodies. (A) The odds ratios were

computed between the ratio of negative versus positive correlations in isoform promoters and isoform bodies for each cancer type. (B) The median count

(among 11 cancer types) of positive and negative correlations computed in binned regions of 500 bp. Regions include upstream, within, and downstream of first

exons. Each dot represents a sliding window of 500bp with a sliding interval of 100bp. Significant or nonsignificant windows in 11 cancer types are indicated by

red and black dots. Negative and positive correlations are shown with solid and dashed lines. Distances within exons of< = 1kb or>1kb from exon boundaries

are illustrated. (C) Negative correlations within 1kb around the first exon boundaries were enriched in open sea regions compared to CGIs or shores and shelves

(OR>1).

https://doi.org/10.1371/journal.pcbi.1007095.g001

Aberrant DNA methylation defines isoform usage in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007095 July 22, 2019 4 / 19

https://doi.org/10.1371/journal.pcbi.1007095.t001
https://doi.org/10.1371/journal.pcbi.1007095.g001
https://doi.org/10.1371/journal.pcbi.1007095


within 500 bp of the first exon (#gene = 232), suggesting that some promoter methylation may

associate with transcriptional activation.

Within the set of negatively correlated sites located within 1-kb of the first exon boundaries,

we tested whether the methylation sites were located in CGIs–a well-known cause of transcrip-

tional silencing in cancer. To do so, we examined probes for overrepresentation in CGIs,

shores and shelves (SSs) or open sea regions (OSRs); (i.e., SS = the 4-kb regions flanking CGIs,

and OSRs = areas that are not CGIs or SSs). We found negative correlations enriched among

probes within OSRs, compared to other regions, in 9 out of 11 cancer types (#gene = 232) (Fig

1C) whereas the same enrichment was seen for CGIs in only 6 out of 11 cancer types, suggest-

ing that TSS-correlated DNAm need not be confined to CGIs to impact transcription

initiation.

DNAm in downstream isoform positions is correlated with increased

isoform usage

Next, we investigated correlations between DNAm within the isoform body (defined as the

areas downstream of first exons) and isoform usage. Here, positive correlations were overrep-

resented (#gene = 888; S4 Fig). This suggests that DNAm in isoform bodies plays a role in tran-

scriptional elongation. To take a closer look, we confined our analysis to methylation probes

around isoforms’ middle exons, defined as exons that were neither the first exons (i.e., those

containing TSSs) nor the terminal exons (i.e., those containing TTSs). Around the second

exon, we unexpectedly found enrichment of negative, rather than positive correlations

between DNAm and isoform usage extending from 300 bp to 1 kb upstream (#gene = 84) (Fig

2A). We reasoned this enrichment could be due to repression of transcription at the first exon,

given that the median distance between first and second exons was minimal (i.e., 266 to 795

bps depending on cancer type). Around the third exon, no enrichment in either positive or

negative correlations was observed. However, flanking fourth exons and beyond, more positive

than negative correlations occurred (Fig 2B). These findings suggest that, across most cancer

types, DNAm at isoform positions > = exon 4 correlates with inclusion of distal exons in the

gene body, indicative of transcriptional elongation.

DNAm near the TTS may define the 3´ isoform boundary

When we repeated the same analysis for probes around the terminal exons to examine DNAm

and use of terminal exons (i.e., exons containing TTSs that were not first exons), we found

enrichment in positive correlations between DNAm and isoform usage only for probes in or

around terminal exons that occupied the fourth or later exon positions (Fig 3A). This trend

was not observed for terminal exons that occupied the second or third exon positions.

For terminal exons in the fourth exon position or beyond, we found an enrichment of posi-

tive correlations (p<0.05) across all cancer types for DNAm probes located within those exons

(#gene = 73) (Fig 3A). When we pooled all terminal exons regardless of their positions within

the isoform (2nd + 3rd + 4th + later; #gene = 125), we found evidence for slightly more positive

correlations and enrichment remained for all cancer types. The signal was strongest when we

focused on those DNAm probes whose distance to either boundary of the terminal exon was

>1kb (#gene = 20), indicating exon length greater than 2 kb (Fig 3B). Furthermore, these posi-

tively correlated methylation probes were enriched in CGIs (#gene = 6) (S5 Fig). Collectively,

these findings suggest that DNAm in terminal exons may be a signal for terminal exon inclu-

sion, where the signal intensifies at long exons with CGI methylation.

We also examined DNAm existing outside the terminal exons and asked whether correla-

tions gave insight to TTS use. We found more positive DNAm correlations than negative
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correlations, up to 1 kb downstream of the terminal exon but not beyond this distance (Fig

3A). Thus, we tested the hypothesis that DNAm in distal downstream locations of a gene may

correspond to usage of a latter TTS rather than a former TTS when alternative TTSs are pres-

ent. Across all 11 cancer types, we collected 10,467 examples of DNAm-correlated isoform

switching in which methylation at a single DNAm probe was positively correlated with use of

one isoform of a gene but negatively correlated with use of another (this number excluded

examples of DNAm-correlated alternative TSSs). Of these, we assessed the distance from the

DNAm site to the correlated terminal exon and identified 5,707 instances in which the DNAm

probe was located 1 kb beyond the preceding terminal exon boundary. In 70% of those cases

(3,977/5,707), the DNAm site was negatively correlated with the use of the preceding TTS, but

positively correlated with use of the more downstream TTS. These data support a hypothesis

that in cases of isoform switching, DNAm more than 1 kb beyond a terminal exon can be a

marker for use of an alternative, more distal TTSs.

Our findings are illustrated by two (DNAm-correlated) isoform switches we detected in

tumor suppressor genes: BLHLE41 (in BLCA) and ITGB3 (in skin cutaneous melanoma, or

’SKCM’). In both cases, the DNAm corresponded to RNA isoform output (Fig 3C and 3D).

For example, the very long terminal exon in BHLHE41 contains two internal methylation sites

positively correlated with the inclusion of a long terminal exon but negatively correlated with

the shorter isoform (Fig 3C). The shorter isoform is noncoding and lacks the helix-loop-helix

and ’hairy_orange’ domains, known for DNA binding and interaction with repressive chroma-

tin modifying enzymes (S6A Fig). Similarly, in ITGB3, methylation of a site located>1 kb

beyond the terminal exon of the shorter isoform positively correlates with use of the longer iso-

form and alternative TTS but negatively correlates with the shorter isoform (Fig 3D). Here,

both isoforms produce coding transcripts, but the shorter one lacks EGF_2 domains and

Fig 2. Negative correlations occur upstream of second exons, whereas positive correlations occur at the fourth position or later. (A) The median count (among

11 cancer types) of positive and negative correlations computed for each binned region inside and around the middle exons in the second position in the exon-

intron isoform structure. Negative correlations in the upstream were interpreted as TSS-related repression. (B) The same plot as in (A) but for middle exons in the

fourth or later position, showing majority of positive correlations. Significance across all cancer types was not detected in the fourth exon (or later) data.

https://doi.org/10.1371/journal.pcbi.1007095.g002
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integrin tail and cytoplasmic domains, necessary for activation of Src tyrosine kinase signaling

used in cell movement and proliferation (S6B Fig). Of note, we identified DNAm at five sites

near the TSSs also positively correlated with the longer isoform, but negatively correlated with

the shorter one, suggestive of additional epigenetic relationships in isoform regulation.

Correlated DNAm and isoform usage can be used to classify tumors into

known subtypes

In previous studies, DNAm patterns have been used to classify tumors into known or novel

subtypes, with the goal of reducing heterogeneity and gaining insight into molecular similari-

ties via unsupervised hierarchical clustering. We investigated whether DNAm patterns corre-

sponding to distinct gene isoform usage could also delineate known tumor subtypes. To

address this question, we performed unsupervised hierarchical clustering on samples using

DNAm data from sites whose methylation was correlated with isoform usage for each of the 11

cancer types.

BRCA clusters recapitulated previously defined molecular subtypes (Fig 4). The majority of

basal and luminal A breast tumors, as well as normal tissue samples, clustered according to

Fig 3. DNAm positioned within the terminal exon or relative to an alternative, downstream terminal exon correlates with inclusion. (A) Median count (across

11 cancer types) of positive and negative correlations between DNA methylation and isoform use was computed for each binned region inside and around the

terminal exons in the fourth exon position or beyond (see schematic below plot). Significance across all cancer types is seen only when methylation appears within

the terminal exon (red circles). (B) Positive correlations between DNA methylation and isoform use are enriched when DNAm is within terminal exons,

both> and< 1 kb from the exon boundaries (OR>1), especially in long exons where boundaries are more than 2 kb away (blue bars). (C) In bladder cancer

(BLCA), DNAm within the exon and far from either exon boundary (>1kb) in BHLHE41 is correlated with the inclusion of the long terminal exon, resulting in

increased usage of the longer isoform but decreased usage of the shorter one. (D) In melanoma (SKCM), DNAm in ITGB3 that lies downstream of and� 1 kb away

from the terminal exon of the shorter isoform is positively correlated with usage of the downstream TTS located in the longer isoform, but negatively correlated with

the shorter isoform. Five CpG sites (asterisks) near the transcription start site are also positively correlated with the longer isoform but negatively correlated with the

shorter one.

https://doi.org/10.1371/journal.pcbi.1007095.g003
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their molecular subtypes, displaying distinct DNAm patterns and correlated isoform usage

patterns (Fig 4A). Luminal B and luminal A samples were largely intermixed, but they formed

a cluster distinct from basal and normal samples. Samples without any subtype annotations

(white bars) clustered with samples having defined subtypes, indicative of similar methylation

and isoform use patterns, which may identify their primary subtypes.

Similarly, thyroid carcinoma ’THCA’ clusters recapitulated previously defined histological

subtypes. Classical and follicular histological subtypes formed distinct clusters differentiated

by both DNAm and correlated isoform usage patterns (Fig 4B). Moreover, these clusters corre-

sponded to molecular subtypes defined by somatic mutations in BRAF/HRAS/NRAS. Although

classical and tall-cell tumor samples clustered with one another, they remained separated from

follicular tumor and normal tissue samples.

In the nine remaining cancer types, we found several examples in which DNAm and iso-

form usage clustering patterns were upheld by subtype designations (S7 to S15 Figs). For

example, in BLCA, head and neck squamous cell carcinoma (HNSC), prostate adenocarci-

noma (PRAD), and SKCM, clusters displayed distinct DNAm and isoform usage patterns con-

sistent with many subtypes predefined in TCGA analyses. This suggests that DNA methylation

and related isoform usage are tightly coordinated in many cancer subtypes. In liver hepatocel-

lular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma

(UCEC), although DNAm clusters were significantly associated with their correlated isoform

Fig 4. Clustering patterns of correlated DNA methylation and isoform usage patterns are consistent with predefined cancer subtypes. Two vertically aligned

heat maps were generated using correlated DNAm patterns (top) and isoform usage patterns (bottom) for (A) breast cancer and (B) thyroid cancer. Columns in the

methylation heat maps represent samples clustered based on DNAm levels of isoform-correlated probes. Columns in the isoform usage heat maps represent usage

levels of DNAm-correlated isoforms of clustered samples. Abbreviations: Her2, Her2-positive; LumA, luminal A; LumB, luminal B. Location of DNAm probes as a

subset of CpG positions (CGI, shores and shelves or open sea regions) are shown in side bar. Driver mutations are shown for thyroid cancer samples (NRAS,HRAS,
BRAF).

https://doi.org/10.1371/journal.pcbi.1007095.g004
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usage patterns, DNAm clusters were stronger visually, suggesting that the expression changes

are small in magnitude.

Functional implications of DNAm-correlated isoform switching in cancer

To determine whether these subtype-discerning, isoform switching-linked DNAm alterations

could impact tumorigenesis, we analyzed the functional outcomes of isoform switching

among BRCA subtype samples, and also in normal breast tissue samples, using software

designed for this purpose, IsoformSwitchAnalyzeR [4]. Collectively, the isoform switches were

predicted to cause functional protein changes in six possible ways: (i) by modifying coding

potential; (ii) swapping functional domains; (iii) causing gain or loss of introns; (iv) inducing

nonsense-mediated decay; (v) changing the length of open reading frames; or (vi) toggling sig-

nal peptide inclusion, which is important for protein secretion. Next, we tallied the number of

affected genes for each of these categories of predicted functional change in pairwise compari-

sons of basal, luminal A, luminal B, and normal samples (S16 Fig). For each comparison except

luminal A vs luminal B, we found more than 20 genes affected by one or more type of pre-

dicted functional change. Most functional changes involved a protein domain gain or loss, a

switch from a coding isoform to a noncoding isoform or vice versa, or extension or shortening

of an open reading frame. For example, 42 genes were predicted to lose functional domains

after a switch from the isoform common in normal samples to the isoform common in luminal

B samples (S16 Fig). These findings suggest that DNAm-correlated isoform switching can alter

gene functions, providing a mechanistic explanation for the molecular/histological differences

between tumor subtypes and between tumor and normal samples.

To take a closer look at one such alteration, we examined FOXA1, whose expression is asso-

ciated with extended disease-free survival in BRCA [24]. Expression of the long terminal exon

was correlated with DNA methylation levels (r>0.7) (Fig 5A and 5B). We found evidence for

switching between the coding and noncoding isoforms that was relevant to tumor subtypes,

where higher usage of the coding isoform occurred in basal tumors and normal samples, and

higher usage of the noncoding isoforms occurred in luminal A and B tumor types (Fig 5C).

DNAm-isoform correlations denote genes enriched in cancer and other

biological pathways

We predicted that if DNAm-correlated isoform alterations play an important role in cancer,

genes relevant to tumorigenesis should be affected more often than genes that are not. To test

this hypothesis, we first identified 53 genes that met our conditions for DNAm-isoform usage

correlations across all 11 analyzed cancer types (where |r|> 0.3). Of these genes, nine (16%)

were annotated as oncogenes or tumor suppressor genes by Cosmic [25] and the TSGene data-

base [26] (hypergeometric test; p = 7E-4), yielding statistical significance for enrichment as

well as evidence of importance in cancer phenotypes. Next, we expanded the pool of genes by

varying the least number of cancer types across which correlations were shared (n). As the

number of cancer types decreased, more genes were recovered, causing enrichment for onco-

genes and tumor suppressor genes to decrease from 12% (at n = 10; 19 genes) to 8% (at n = 2;

374 genes). Nevertheless, the overrepresentation remained statistically significant across all n
values (hypergeometric test; p< 1E-2) (S1 Table), suggesting DNAm-correlated isoform alter-

ations may be positively selected in cancer-related genes, consistent with our hypothesis.

To understand whether molecular pathways important to carcinogenesis were dispropor-

tionately affected by the isoform switching we observed, we selected a set of 1,222 genes that

showed correlations between DNAm and isoform usage across more than half of the 11 cancer

types (n� 6). Pathway enrichment analyses identified 479 pathways (or gene sets) from 7

Aberrant DNA methylation defines isoform usage in cancer
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databases that were significantly enriched (q<0.05), involving 637 of the 1,222 genes (S2

Table). Top pathways included the cytoskeleton, focal adhesion, actin binding, Ras/GTPase

signaling transduction, SH3/PH/RhoGEF protein domains, developmental biology, and can-

cer. This suggests that DNAm-correlated isoform alterations in cancer can be common in

genes that promote cancer formation, growth, and metastasis.

Given the frequent gain/loss of functional domains in DNAm-correlated isoform switching,

we wondered whether genes involved in the top pathways identified above encoded particular

protein domains whose loss could affect their functional roles. We visualized the genes by per-

forming hierarchical clustering on 60 out of the 1222 genes that were most frequently involved

in 21 top pathways or gene sets. We found clustering of numerous genes with PH or RhoGEF

domains that were assigned to GTPase/Ras signal transduction, and a number of distinct

genes with SH3 domains, which were assigned to developmental biology and cancer pathways

(Fig 6). Thus, alteration of the DNAm of these genes may correspond to alteration of their

functional domains and influence pathway functions in many types of cancer.

Discussion

In this study, we showed that intragenic DNAm is correlated with isoform usage across

numerous cancer types, tying together the aberrantly modified epigenome and the transcrip-

tome. Within cancer types, DNAm correlated to isoform usage patterns can be used to classify

tumors into known histopathological subtypes, implicating distinctive protein alterations in

functional differences among tumors. Furthermore, we show that DNAm-correlated isoform

Fig 5. In breast cancer samples, DNAm at FOXA1 is correlated with subtype-linked switching from coding to non-coding isoforms. (A) A schematic plot

of the FOXA1 locus shows two CpG islands (CGIs), a coding isoform (top, with functional domains labeled), and three non-coding isoforms (bottom). CGIs

shown in dark green. (B) Across the breast cancer subtypes and normal samples, DNAm in CGI-2 of the coding FOXA1 isoform (ENST00000250448) was

positively correlated with differential (coding) isoform usage. (C) Box plots indicate significant differences (P< 0.05; Wilcoxon rank sum test) in usage of the

FOXA1 coding isoform and non-coding isoforms between basal vs luminal A and B samples, and between basal subtype and normal samples.

https://doi.org/10.1371/journal.pcbi.1007095.g005
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usage is enriched in oncogenes and tumor suppressor genes as well as pathways pertinent to

tumorigenesis, such as cell adhesion and signaling. Thus, this study shows that DNAm-corre-

lated isoform usage alterations are common, could functionally contribute to cancer processes,

and represent a new paradigm in the cancer epigenomic landscape.

Although this study focused on DNAm-linked isoform switching in cancer, some of the trends

we identified are consistent with previous findings in normal cells. For example, we found

DNAm near the 5’ end of a gene was primarily negatively correlated with the use of nearby TSSs,

which is consistent with its previously documented repression of promoter activity [13, 27, 28].

We also noted that a few TSS showed positive correlations with methylation, which we predict

this may occur when repression of one weakly defined TSS enables activation of another in close

proximity. Such examples of proximal TSSs are strongly associated with CpG islands [29]. In addi-

tion, our findings shed light on a subject of debate in the literature regarding the role of intragenic

DNAm in transcript elongation [30–32] vs wholesale transcriptional repression [33]. Except for

regions around first exons, we found primarily positive correlations between gene body DNAm

and isoform usage, supporting a role of DNAm in transcriptional elongation.

Some trends identified in this study have not been previously reported in normal cells—or

in any study of DNAm and isoform switching. For example, we showed that DNAm that is

negatively correlated with nearby TSSs shows enrichment for OSRs (Fig 1C). In addition, our

data suggest that exonic DNAm occurring far from exon boundaries in alternative terminal

exons, may promote the inclusion of those exons. These correlations suggest a potential blue-

print for DNAm-regulated isoform activities worthy of further experimental elucidation while

controlling for other isoform-regulating mechanisms such as aforementioned splicing factor

alterations and recently reported regulation via miRNA binding at 3’UTRs [34].

In the past, the connection between DNAm and dysregulated isoform usage in cancer has

been overlooked for two main reasons. First, the main functional role established for cancer-

associated DNAm alterations is gene silencing via promoter CGI methylation. Thus, most can-

cer studies have focused on causal relationships between aberrant promoter hypermethylation

and tumor suppressor gene silencing [35], paying less attention to the functional consequences

of intragenic DNAm alterations. Second, the impact of DNAm alterations on the transcrip-

tome is mostly studied at the gene rather than the isoform level. For example, to detect pro-

moter DNAm-induced gene silencing and to study the impact of intragenic DNAm on gene

Fig 6. Genes exhibiting DNAm-correlated isoform usage in multiple cancer types show pathway and functional relationships. Red squares indicate involvement

in 21 pathways/gene sets (rows) for 60 genes with DNAm-correlated isoform usage (columns). The 21 pathways/gene sets are the most frequently enriched from

assessments of seven pathway/gene set databases (listed on bottom left). The genes were part of a larger set of 1,222 genes whose DNAm and isoform usage were

correlated in at least 6 (out of 11) cancer types.

https://doi.org/10.1371/journal.pcbi.1007095.g006
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transcription, gene-level expression data are used [36]. However, tumor samples with similar

gene expression levels can display significant differences in isoform usage [4]. Our findings

emphasize the need to conduct analyses at the isoform level in order to understand the impact

of DNAm on the transcriptome.

Our study has several important limitations. First, the potential regulatory paradigms

reported in this study (e.g., DNAm around the TSS is correlated with decreased isoform usage)

may vary in a condition-specific manner. Our findings were based on majority rule, but we

noted a few exceptions, including positive correlations between DNAm and nearby TSSs at

some sites and negative correlations between DNAm and expression of isoform bodies at

other sites. Second, our analysis was based on correlations between methylation at individual

CpG sites and usage of individual isoforms. Whether (and how) DNAm at CpGs dispersed

throughout a locus collectively regulates isoform usage is still unclear. Third, we did not

directly investigate the role of DNAm in alternative splicing, although such alterations have

been shown to contribute to cancer progression [7], and can be modulated by interactions

between DNAm and proteins such as CTCF [15], MeCP2 [14] and HP1 [37]. Integrative analy-

sis of these factors (using ChIP-Seq datasets, for example) coupled with exon-level expression

data may provide insights into a mechanistic link between DNAm alterations and deleterious

alternative splicing in cancer. Fourth, our analysis relied on Ensembl gene annotation. Thus,

we may have missed links between DNAm and aberrantly expressed isoforms in cancer that

have not yet been annotated. Finally, DNAm detected in this study could not distinguish its

most abundant form, 5-mC, from other variants such as 5-hmC, 5-fC, and 5-caC, which might

have different roles in isoform regulation.

In conclusion, this comprehensive analysis highlights the potential functional role of

DNAm in dysregulating isoform usage in cancer. These findings provide new insights into the

mechanistic links connecting DNAm and cancer, as well as the rules defining DNAm-isoform

interactions. Experimentally validating the rules defining correlated DNAm-isoform expres-

sion in the future could give us more comprehensive understanding of cancer biology. Most

importantly, given recent advances in targeted DNAm editing [38], if researchers are able to

identify DNAm-induced isoform switching that drives cancer progression, the findings could

launch a new field focused on epigenetic therapy.

Methods

We analyzed samples for which both isoform expression data and DNA methylation data were

available. These samples represented 18 cancer types: bladder urothelial carcinoma (BLCA),

breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme

(GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma

(KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC),

lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarci-

noma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin

cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors

(TGCT), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC).

Out of 18 cancer types, 11 types were used to conduct most analyses in this study. The number

of tumors and controls (tissue samples adjacent to tumors or from healthy donors) for each of

the 11 cancer types is listed in Table 1.

Data preprocessing

TCGA level 3 DNA methylation array-based data (Illumina Infinium HumanMethylation450

BeadChip array) were downloaded from the UCSC Cancer Genomics Browser (https://
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genome-cancer.ucsc.edu) on October 26, 2015. DNA methylation levels were measured with β
values. We normalized β values for type I and II probes using the β mixture quantile method

[39]. The following types of probes were removed from the analysis: (i) probes on the X and Y

chromosomes, (ii) cross-reactive probes [40], (iii) probes near single nucleotide polymor-

phisms, and (iv) probes with missing rates� 90% across all samples for a given cancer type. A

final set of 314,421 probes was analyzed for each cancer type.

TCGA level-3 gene expression data measured by TPM-normalized RNA-seq (Illumina

HiSeq) counts were downloaded from Google cloud pilot RNA-Sequencing for the Cancer

Cell Line Encyclopedia and TCGA [41] (https://osf.io/gqrz9/) on November, 2016. Lowly

expressed transcripts (median TPM� 0) were removed. Genes with any of following condi-

tions were also removed: (i) with only one isoform, (ii) on the sex chromosomes, or (iii) with

no methylation probe in the intragenic regions (defined as the gene segment plus 2kb up/

downstream based on Ensembl gene annotation).

TCGA tumor subtype classification was obtained from TCGA clinical data, which was

downloaded from the UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu)

and TCGA publication website (https://cancergenome.nih.gov/publications).

Statistical significance of isoform-probe correlation

The empirical false discovery rate of isoform-probe correlation was estimated by permuting

sample labels for each isoform-probe pair.

Batch effect analysis

We were able to obtain batch IDs for 14 cancer types and checked if isoform-probe correlation

was driven by batch effects. Samples without batch IDs and methylation probes with NA values

were removed. We first computed dispersion separability criterion (DSC) to quantify batch

effects in the 14 types [42]. Then, batch effects were removed using the R package limma and

the statistical significance of isoform-probe correlation was re-evaluated the same as above for

the 14 types.

Analyses for correlations between DNAm and isoform usage within or

around the first, middle, and terminal exons

Each analysis only included relevant isoform-probe pairs depending on the probe site location

in the exon-intron structure of the paired isoform. For example, the analysis for DNAm-iso-

form correlation around the first exon only considered isoform-probe pairs whose probes

were located in or around the first exon of the paired isoforms. Thus, a probe paired with mul-

tiple isoforms could be counted multiple times in one or more analyses. For example, using

this approach, a probe p could be located in the first exon of isoform A but in the second intron

of isoform B in two distinct isoform-probe pairs (A-p and B-p). When we analyzed probes

inside or around the first exon, the pair A-p would be included in the analysis, but the pair B-p
would not (S17 Fig).

In analyses of DNAm-isoform correlations around the first, middle, and terminal exons,

counts of isoform-probe pairs were binned into regions near (<1kb) and far (�1kb) from the

exon boundaries if probes were inside the exon. For pairs in which probes were outside the

exon, we then computed counts across 500 bp sliding windows, moving outward from the

exon boundaries up to 2000 bp up/downstream, and shifting 100 bp at a time. In cases where

flanking exons were within 2000 bp regions, we only included the counts up to the boundaries

of flanking exons.
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Enrichment of positive/negative correlations for a particular bin/window as computed

using the odds ratio. The odds were computed between the number of positive and non-posi-

tive (or negative and non-negative) correlations. The odds ratio was computed between the

ratio in that bin and the ratio in other bins in the same analysis. The odds ratio of positive/neg-

ative correlations for OSRs in a bin was computed using the positive/negative odds in the

OSRs versus positive/negative odds of CGI and SS regions in that same bin. Statistical signifi-

cance was evaluated using hypergeometric test.

Functional analysis for DNAm-correlated isoform switching in breast

cancer

The analysis was restricted to correlated isoform-probe pairs in BRCA. Statistical significance

of isoform usage changes between any pair of tumor subtypes and normal samples was evalu-

ated using Wilcoxon rank sum test followed by Benjamini-Hochberg false discovery rate cor-

rection. We loaded data for statistical significance of DNAm-correlated isoform usage changes

and corresponding Ensembl isoform annotations into the R package IsoformSwitchAnalyzeR

[4] for each pair of subtypes (as two conditions to be compared for isoform switching). The

package identified isoform switches between two subtypes using default parameters. External

tools were used to predict coding potential ("Coding-Potential Assessment",[43], protein

domains (Pfam,[44], and signaling peptide (SignalP 4.0, [45] for each isoform analyzed.

Enrichment analysis for DNAm-isoform correlated genes in biological

pathways and the known set of oncogenes and tumor suppressor genes

We tested whether DNAm-isoform correlated genes were overrepresented in cancer-related

genes annotated by Cosmic [25] and TSGene [26] using hypergeometric test. For pathway

enrichment analysis, we tested whether DNAm-isoform correlated genes were overrepre-

sented in pathways in curated databases including KEGG [46], Reactome [47], NCI-Nature

Interaction Pathway Database [48], and Gene Ontology (i.e., molecular function / biological

process / cellular component), and gene sets characterized by Pfam/InterPro domains [44]

using Enrichr [49].

Statistical significance of association between DNA methylation clusters

and correlated isoform usage patterns in LIHC, LUAD, LUSC, STAD, and

UCEC

In S11 to S15 Figs, because association between DNA methylation clusters and isoform usage

patterns was not visually clear, we evaluated whether the association was statistically signifi-

cant. We first identified 4 methylation clusters using hierarchical clustering for each cancer

type. Then we tested whether the isoform usage patterns were more similar within clusters

than between cluster by computing the test statistic T as follows:

Dw ¼
X4

c¼1

Xnc

i¼1
ðxi;c � mcÞ

T
ðxi;c � mcÞ

Db ¼
X4

c¼1
ncðmc � mÞ

T
ðmc � mÞ

T ¼ Db=Dw

where xi,c is the isoform usage vector for sample i in cluster c, μc is the mean isoform usage for

cluster c, nc is the number of samples in cluster c, and μ is the mean isoform usage across all
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samples. Conceptually, T quantifies the ratio of between-cluster distance and within-cluster

distance. T would be large if within-cluster isoform usages were similar compared to between-

cluster isoform usages. We evaluated the statistical significance of the observed T using the

null distribution of T constructed by permuting clustering labels 1,000 times.

Supporting information

S1 Fig. Significantly correlated isoform-DNA methylation probe pairs (empirical false dis-

covery rate < 0.1) were observed in 16 out of 18 cancer types (not COAD and GBM), and

significantly correlated isoform-probe pairs with a correlation > 0.3 were observed in 11

cancer types.

(TIFF)

S2 Fig. Significantly correlated isoform-DNA methylation probe pairs (empirical false dis-

covery rate < 0.1) were observed in all 18 cancer types using Spearman correlation.

(TIFF)

S3 Fig. Significantly correlated isoform-DNA methylation probe pairs were not affected by

batch effects in 14 cancer types where batch IDs were available. (A) Dispersion separability

criterion (DSC) < 0.5 in each cancer type suggested batch effects were not very strong [42].

(B) Significant correlated isoform-DNA methylation probe pairs were still observed after

removing batch effects.

(TIFF)

S4 Fig. Positive correlations between DNA methylation and isoform use were enriched in

isoform bodies (defined as regions downstream of the first exons) relative to isoform pro-

moters (defined as the first exons and regions upstream of the TSS). The odds were com-

puted between the ratio of positive versus non-positive correlations in isoform bodies and that

in isoform promoters for each cancer type.

(TIFF)

S5 Fig. DNA methylation in terminal exons that was located >1 kb away from both exon

boundaries was positively correlated with isoform use, and these methylation sites dispro-

portionately occurred in CPG islands (OR > 1).

(TIFF)

S6 Fig. Examples of DNAm correlated with inclusion of a long terminal exon and usage of

a downstream alternative transcription termination site. (A) and (B) correspond to Fig 3C

and 3D respectively, with functional domains also indicated.

(TIFF)

S7 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in bladder cancer (BLCA). Figures were plotted in the same way as Fig 4A and 4B.

Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S8 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in head and neck cancer (HNSC). Figures were plotted in the same way as Fig 4A

and 4B. Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S9 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in prostate cancer (PRAD). Figures were plotted in the same way as Fig 4A and 4B.
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Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S10 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in melanoma (SKCM). Figures were plotted in the same way as Fig 4A and 4B. Sam-

ples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S11 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in liver cancer (LIHC). Figures were plotted in the same way as Fig 4A and 4B. Sam-

ples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S12 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in lung adenocarcinoma (LUAD). Figures were plotted in the same way as Fig 4A

and 4B. Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S13 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in lung squamous cell carcinoma (LUSC). Figures were plotted in the same way as

Fig 4A and 4B. Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S14 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in stomach cancer (STAD). Figures were plotted in the same way as Fig 4A and 4B.

Samples were clustered based on DNAm levels of isoform-correlated probes.

(TIFF)

S15 Fig. Link between DNAm patterns, isoform usage patterns, and previously identified

subtypes in uterine corpus endometrial carcinoma (UCEC). Figures were plotted in the

same way as Fig 4A and 4B. Samples were clustered based on DNAm levels of isoform-corre-

lated probes.

(TIFF)

S16 Fig. Number of genes predicted to be functionally affected by DNAm-correlated iso-

form switching among breast cancer subtypes and normal samples. Each bar represents the

number of genes affected by a particular type of functional change due to DNAm-correlated

isoform switching from subtype A to subtype B, as predicted by IsoformSwitchAnalyzeR [4].

(TIFF)

S17 Fig. A schematic plot illustrates how isoform-probe pairs were analyzed in this study.

(TIFF)

S1 Table. Results of enrichment test of cancer-related genes in DNAm-isoform correlated

gene sets. DNAm-isoform correlated genes that were shared across at least n cancer types

(where n = 2 to 11) were assessed in datasets from Cosmic [25] and TSGene, a tumor suppres-

sor gene database [26] using the hypergeometric test.

(DOCX)

S2 Table. Results of enrichment test of biological pathways and gene sets in DNAm-iso-

form correlated genes. Among 1,222 DNA methylation–isoform correlated genes shared

across at least 6 out of 11 cancer types, biological pathways and gene sets from seven curated

databases were enriched, as determined using Enrichr [49].

(XLSX)
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