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Abstract: In this work we propose a straightforward and efficient approach to improve accuracy
and convergence of free energy simulations in condensed-phase systems. We also introduce
a new accelerated Molecular Dynamics (MD) approach in which molecular conformational
transitions are accelerated by lowering the energy barriers while the potential surfaces near the
minima are left unchanged. All free energy calculations were performed on the propane-to-
propane model system. The accuracy of free energy simulations was significantly improved
when sampling of internal degrees of freedom of solute was enhanced. However, accurate and
converged results were only achieved when the solvent interactions were taken into account in
the accelerated MD approaches. The analysis of the distribution of boost potential along the
free energy simulations showed that the new accelerated MD approach samples efficiently both
low- and high-energy regions of the potential surface. Since this approach also maintains
substantial populations in regions near the minima, the statistics are not compromised in the
thermodynamic integration calculations, and, as a result, the ensemble average can be recovered.

Introduction

Free energy is probably the most important quantity in
thermodynamics and one of the central topics in biophysics.1,2

Nevertheless, for many relevant systems with local
minimum energy configurations separated by energy
barriers, efficient and accurate calculation of this property
is still a big challenge in computational chemistry. Free
energy differences between different states can be calcu-
lated through Free Energy Perturbation (FEP) and Ther-
modynamic Integration (TI) methods.3-10 Since the first
application of the methodology to the calculation of the
relative free energies of ligand binding and solvation of
the organic molecules methanol and ethane,1,8 FEP and
TI have been widely used to study a wide range of
processes such as solvation, phase transitions, ligand
binding, and protein-protein interactions, just to name a
few.5,11-14 These methods, which are firmly rooted in
statistical mechanics, are usually combined with molecular
dynamics (MD) or Monte Carlo (MC) simulations.15,16

The data obtained from these simulations allows us to
quantitatively evaluate free energy changes and under-
stand, at molecular level, the structural and energetic
factors governing the process.* Corresponding author e-mail: cesar@mccammon.ucsd.edu.

Figure 1. Schematic representation of a hypothetical true
(solid line) and modified (dashed line) potential energy function
with different values of R. The modified potential (generated
with eq 1) converges to the true potential at large values of
R. The dotted line corresponds to the boost energy E.
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However, to obtain accurate free energy values, major
issues like free energy convergence and conformational
sampling still need to be addressed. Although these topics
have been mainly discussed as independent issues, conver-
gence and the amount of sampling are strictly connected.17

For instance, for processes that involve large conformational
changes and reorganization of solvent, poor sampling can
trap the system in local minima and, as a consequence, lead
to apparent but false convergence. In other words, in these
cases the calculated free energy might correspond to
pseudoconverged values obtained from trapped local con-
formations. As we will show in this paper, even for a very
simple system, like propane-to-propane transformation,

independent free energy calculations carried out with con-
ventional MD simulation may not be able to reproduce
accurately the correct free energy difference, though the
simulations may show apparently converged values. Quan-
titative prediction of free energy change is only obtained
when configuration sampling is efficiently improved.

A large number of techniques have been introduced to
enhance sampling over configuration space.18-32 A straight-
forward way of modifying the potential energy surface to
enhance sampling has been proposed by Hamelberg et al.33

This approach, which is based on earlier work of Voter,34,35

has proved to be efficient in accelerating not only confor-
mational transitions36-39 but also millisecond time scale
motions of a protein in explicit water.40

In this work we propose a simple and efficient approach
to improve accuracy and convergence of free energy simula-
tions in condensed-phase systems. The main idea is to
integrate the accelerated MD approach with free energy
simulations. Although the formulation and the results pre-
sented here were obtained by coupling TI with the accelerated
MD method (aMD), the procedure can be easily extended
to the FEP approach. To check convergence and accuracy
of the TI simulations, all calculations were performed on
the propane-to-propane system. This system was chosen
because i) the correct free energy result is rigorously equal
to zero and ii) similar “zero-free energy change” systems
have been used before as model systems to compare the
efficiency and convergence of different approaches to free
energy calculations.41,42

Theory

In order to enhance sampling by increasing the escape rate
from potential energy wells, the accelerated MD approach
modifies the energy landscape by adding a boost potential,
∆V(r), to the original potential surface every time V(r) is
below a predefined energy level E (Figure 1). In other words,

Figure 2. Schematic representation of a hypothetical true
(solid line) and modified (dashed line) potential energy function
with different values of R. The modified potential (generated
with eq 3) converges to the true potential at large values of
R. The dotted line corresponds to the boost energy E.

Figure 3. Butane molecule.

Figure 4. Plots of dihedral angle of the butane molecule, as defined in Figure 3, sampled with normal MD, aMDtb, and aMDt
approaches.
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V*(r) ) V(r) + ∆V(r). In the Hamelberg et al.33 implemen-
tation, ∆V(r) is given by

∆V(r)) { 0, V(r)gE
(E-V(r))2

R+ (E-V(r))
, V(r) < E

(1)

where R modulates the depth and the local roughness of the
energy basins in the modified potential. Since the torsional
potential governs the rate of sampling of biomolecular
rotameric states, the boost potential has been largely applied
to the torsional term of the potential energy function. This
approach, which will be referred to as aMDt, has been
successfully applied to study several biological systems and
processes.37-39,43,44

More recently, Hamelberg et al. introduced a dual boost
approach in order to efficiently sample both the torsional degrees
of freedom and the diffusive motions.36 In this implementation,
two boost potentials are applied separately to the potential
energy. While the first one is applied only to the torsional terms,
the second one is added to the total potential energy (aMDtT).
The modified potential is given by

V/(r)) {V0(r)+ [Vt(r)+∆Vt(r)]}+∆VT(r) (2)

where ∆Vt(r) and ∆VT(r) are the boost potentials applied to
the torsional terms Vt(r) and the total potential VT(r). V0(r)
is the potential energy excluding contribution from torsional
terms. Both boost potentials are defined according to eq 1.
Here VT(r) is defined as VT(r) ) V0(r) + Vt(r) + ∆Vt(r).

The correct canonical averages of an observable, calculated
from configurations sampled on the modified potential energy
surface, is then fully recovered from the accelerated MD
simulations by reweighting each point in the configuration
space by exp{�[∆V(r)]}. In the dual boost approach, the
boost factor is given by exp{�[∆Vt(r)+∆VT(r)]}.

New Accelerated MD Approach. In this work, a third
approach is introduced in which molecular conformational
transitions are accelerated by lowering the energy barriers,
while the potential surfaces near the minima are left
unchanged. The idea behind this approach has been used
before by Darve et al. to calculate free energies by applying
a scale-force molecular dynamics algorithm.27

Owing to the symmetry of eq 1 in relation to E and V(r),
this approach can be easily implemented by simply redefining
eq 1 as

∆V(r)) { (V(r)-E)2

R+ (V(r)-E)
, V(r)gE

0, V(r) < E
(3)

In this implementation, the boost potential, ∆V(r), is
subtracted from the true potential V(r) whenever the potential

Figure 5. Propane-to-propane transformation. DH stands for
dummy atoms.

Figure 6. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.
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V(r) is greater than the boost energy E; in this case, the
simulation is performed on the modified potential V*(r) )
V(r) - ∆V(r). On the other hand, when V(r) is below the
energy level E, the simulation is performed on the true
potential V*(r) ) V(r). Hereafter, this approach will be
referred to as aMDb and aMDtb when applied to the torsional
terms of the potential energy. Figures 1 and 2 illustrate a
schematic representation of a hypothetical one-dimensional
potential modified using eqs 1 and 3, respectively. In both
cases, as R decreases, the modified potential becomes flatter,
and as R increases, the modified landscape asymptotically
approaches the unmodified potential.

In this approach, analogously to Hamelberg et al.’s
implementation, the correct canonical ensemble averages of
an observable are fully recovered by reweighting each
configuration by the Boltzmann factor of the negative of the
boost potential energy, exp{-�[∆V(r)]}. The application of
this schema into the dual boost approach is straightforward.
In this case, eq 2 is simply redefined as V*(r) )
{V0(r)+[Vt(r)-∆Vt(r)]}-∆VT(r), and the boost factor as
exp{-�[∆Vt(r)+∆VT(r)]}. This implementation will be
referred to as aMDtTb.

Coupling Accelerated MD Approach with Thermody-
namic Integration Simulations. Thermodynamic integration
is a commonly used technique to compute the difference in free
energy between two thermodynamic states, which differ from
each other according to their intermolecular or intramolecular
interaction potentials.3,8,12 In this case, the interaction potential
can be expressed as a function of a coupling parameter, λ, that
determines the state of the system.10 Thus, by defining the free
energy, F, as a continuous function of λ, the difference in free
energy between two states is given by

∆F)∫λ)0

λ)1 ∂F(λ)
∂λ

dλ (4)

where λ ) 0 and 1 correspond to the initial and final states,
respectively. Since F(λ) can be written as

F(λ))-kbT ln Q(λ) (5)

∆F can be rewritten as45

∆F)∫-� 1
Q(λ)

∂Q(λ)
∂λ

dλ (6)

where Q is the partition function of the system, � ) 1/kbT,
kb is Boltzmann’s constant, and T is the temperature. Here,
we use the partition function for canonical ensemble, which
is defined as46

QNVT )
1

N!
1

h3N
∫∫drdp exp[-�H(p, r)] (7)

where N is the number of particles, h is Planck’s constant,
p and r are the momenta and positions of the particles, and
H is Hamiltonian of the system. Substituting eq 7 into eq 6
and deriving in respect to λ,45 we obtain

∂F(λ)
∂λ

)
∫∫dpdr

∂Η(p, r)
∂λ

exp[-�Η(p, r)]

∫∫dpdr exp[-�Η(p, r)]
(8)

Assuming that the kinetic energy term is separable and not
dependent on λ, eq 8 can be rewritten in terms of the potential
energy V(r) of the system

∂F(λ)
∂λ

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)]

∫ dr exp[-�V(r)]
(9)

and, finally

∆F)∫λ)0

λ)1 〈 ∂V(r, λ)

∂λ 〉λ
dλ (10)

where the integrand is the ensemble average of ∂V/∂λ calculated
on the original potential V(r) at a specific value of λ, and ∆F
is the free energy difference between the initial (λ ) 0) and
final (λ ) 1) states obtained on the unmodified potential surface,
V(r).

Similarly, for the modified potential we have

∂F(λ)
∂λ

/)
∫ dr

∂V(r)
∂λ

exp[-�V/(r)]

∫ dr exp[-�V/(r)]
(11)

now, the ensemble average of true ∂V(r)/∂λ is performed over
the modified potential V*(r).

Since both approaches can be coupled with TI simulations,
we will first express V*(r) as

V/(r))V(r)+∆V (12)

In this case, eq 11 can be rewritten as

∂F(λ)
∂λ

/)
∫ dr

∂V(r)
∂λ

exp{-�[V(r)+∆V]}

∫ dr exp{-�[V(r)+∆V]}

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)]exp[-�∆V]

∫ dr exp[-�V(r)]exp[-�∆V]
(13)

The Boltzmann distribution can be extracted from the non-
Boltzmann distribution using the method introduced by Torrie et
al.19 The corrected canonical distribution can then be recovered
by reweighting the phase space of the modified potential by
multiplying the integrand by the strength of the bias at each
position, which in this case corresponds to exp[�∆V].

∂F(λ)
∂λ

C

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)] exp[-�∆V] exp[�∆V]

∫ dr exp[-�V(r)] exp[-�∆V] exp[�∆V]
) ∂F(λ)

∂λ

(14)

Thus, the corrected ensemble average of ∆FC can be obtained
by dividing both the numerator and the denominator of eq
11 by ∫dr exp[-�V(r)] exp[-�∆V] ) ∫dr exp[-�V*(r)]

∂F(λ)
∂λ

C

)

∫ dr
∂V(r)
∂λ

exp[-�V(r)] exp[-�∆V] exp[�∆V] ⁄

∫ dr exp[-�V(r)] exp[-�∆V]

∫ dr exp[-�V(r)] exp[-�∆V] exp[�∆V] ⁄

∫ dr exp[-�V(r)] exp[-�∆V]
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)
∫ dr

∂V(r)
∂λ

exp[-�V/(r)] exp[�∆V] ⁄∫ dr exp[-�V/(r)]

∫ dr exp[-�V/(r)] exp[�∆V] ⁄∫ dr exp[-�V/(r)]

and integrating over λ.

∆FC )∫λ)0

λ)1 [〈 ∂V(r, λ)
∂λ

exp[�∆V]〉λ* ⁄ 〈exp[�∆V]〉λ*]dλ

)∫λ)0

λ)1 〈 ∂V(r, λ)
∂λ 〉λ

dλ

)∆F
(16)

Analogously, if the modified potential is defined as V*(r) )
V(r) - ∆V, eq 16 can be redefined as

∆FC )∫λ)0

λ)1 [〈 ∂V(r, λ)
∂λ

exp[-�∆V]〉λ* ⁄ 〈exp[-�∆V]〉λ*]dλ

)∫λ)0

λ)1 〈 ∂V(r, λ)
∂λ 〉λ

dλ

)∆F (17)

Therefore, independent of the approach applied, the accelerated
molecular dynamics simulation method converges to the
canonical distribution, and the corrected canonical ensemble
average of the system is obtained by simply reweighting each
point in the configuration phase space on the modified potential

by the strength of the Boltzmann factor of the bias energy,
exp[�∆V] or exp[-�∆V], at that particular point.

Results

The first question to be answered about the aMDb approach
is if this method is able to improve conformational transi-
tions. To address this question, we performed MD simula-
tions of a butane molecule in explicit water and monitored
the dihedral angle shown in Figure 3. Figure 4 shows the
result obtained from normal MD simulations. It is worth
noting that even for a simple system like this, the number
of conformational transitions is still very limited. Figure
4-middle displays the results obtained from the aMDb

approach. In this simulation, only the torsional term of the
potential energy was applied in the boost potential (aMDtb).
Parameters E and R were set to 0.5 and 0.2 kcal/mol,
respectively. For comparison, Figure 4-bottom shows the
dihedral transitions calculated with the aMDt approach. In
this case, parameters E and R were set to 5.0 and 0.5 kcal/
mol, respectively. As expected, more conformational transi-
tions are observed with aMDtb and aMDt than with normal
MD simulations. Figure 4 also reveals that, even though both
methods improved conformational sampling, aMDtb still
produces a much larger number of transitions than aMDt.

Free Energy Calculations. The propane-to-propane sys-
tem (Figure 5) was used to test convergence and accuracy
of the accelerated TI simulations. A similar system, ethane-

Figure 7. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.

1520 J. Chem. Theory Comput., Vol. 4, No. 9, 2008 de Oliveira et al.



to-ethane transformation, has been used before by other
groups to test the performance of different approaches to
calculate free energy changes. This transformation is par-
ticularly interesting because independent of the force field,
water model, or simulation method used, the free energy
change should be equal to zero (∆G ) 0).

The free energy changes obtained with normal MD
simulations are compared to the ones obtained with aMDtb,
aMDt, and aMDTtb. Figures 6, 7, 8, 9, and 10 show the free
energy change, the average free energy, and the error
associated with the propane-to-propane transformation cal-
culated from five independent TI simulations. In all simula-
tions, the same amount of sampling was performed at each
window, and an equal amount of time was spent in
equilibration and data collection. The error was estimated
by calculating the standard deviation of the five independent
simulations as a function of time. All TI calculations with
normal MD fail to reproduce the expected free energy value
(Figure 6), converging to free energy values of ≈-0.4 kcal/
mol. The change with time of the average free energy toward
the expected free energy value is rather slow, and it is clear
that this normal MD requires much longer simulations to
reproduce accurate results. Figure 7 displays the TI results
obtained with aMDtb. Although the calculated average free
energy change is closer to the corrected free energy value,
like normal MD, longer simulations are still required to
reproduce the correct average free energy change. Similar
results were obtained when the aMDt approach was
applied (Figure 8). However aMDtb still seems to converge

better than aMDt. Nevertheless, both approaches perform
better than normal TI simulations, and this improvement
can be mainly attributed to the increasing in conforma-
tional sampling.

As mentioned before, aMDtb and aMDt approaches modify
the energy landscape by adding a boost potential to the
potential surface, and, in these cases, the boost potential is
based on the torsional terms of the potential energy. Even
though the conformational sampling is clearly enhanced in
both approaches, those approaches still fail to generate
accurate results. The reason for that might be the absence
ofenergy terms in theboostpotentialdescribingsolute-solvent
and solvent-solvent interactions. Therefore, in order to also
accelerate the solvent response along the propane-to-propane
transformation, the dual boost approach was also tested with
TI calculations (∆VT was applied with parameters E and R
set to -3.0 and 30.0 kcal/mol per atom, respectively). Owing
to instabilities introduced by the application of aMDTt
approach in TI simulations, only results obtained with
aMDTtb are displayed in Figure 9. By comparing aMDTtb

and aMDtb, we see clearly that inclusion of the potential
energy terms describing solute-solvent and solvent-solvent
interactions in eq 3 dramatically improves the accuracy and
convergence of the TI simulations. It is worth mentioning
that all calculated free energy values using aMDTtb, with at
least 100 ps of data collection, converged to the correct value
and are within the estimated error. For the system studied
in this work, aMDTtb was the only approach to achieve

Figure 8. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.
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converged and accurate results from TI simulation (∆G )
-0.027 ( 0.04 kcal/mol).

Figure 10 shows the accumulated free energy for each value
of λ. In this plot, the accumulated free energy was calculated

by using equilibration ) data collection time ) 250 ps for each
window. Except for the aMDTtb, which performed remarkably
well, all approaches failed to reproduce the corrected free energy
change for the propane-to-propane transformation.

Figure 9. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.

Figure 10. Accumulated free energy change for the propane-to-propane simulations calculated with 250 × 103 of data collection
steps per λ. The same number of equilibration and data collection steps were used for each λ.
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Distribution of the Boost Energy along the TI Simula-
tions. The main difference between the two approaches (eqs
1 and 3) consists of how the modified potential surface is
generated. For methods based on the aMD approach, the
molecular motions are accelerated by raising the energy
basins on the potential surface. Although this method proved
to be excellent to enhance conformational sampling of
biomolecules, some issues concerning the calculation of
thermodynamics properties still need to be addressed. For
instance, to fully recover ensemble average properties, each
point in the phase space should be multiplied by its respective
Boltzmann factor of the boost energy, exp(�∆V). In some
cases, when this procedure is applied, relatively few con-
figurations in the entire trajectory have significant contribu-
tions to the ensemble average. As a consequence, the
statistics are compromised, and the thermodynamic property
is not fully converged. This is the main issue to be addressed
when the aMD method is coupled with TI calculations. It is
worth mentioning that in this implementation ∆V is a non-
negative number, and its respective Boltzmann factor pro-
duces numbers in the interval [1f∞). Thus, large values of
exp(�∆V) correspond to configurations near energy minima
of the potential surface, while small values correspond to
relatively high-energy regions. Figure 11, on the right,
displays the distribution of the boost factor along the aMDt
simulations at three different values of λ. It is clear from
those plots that, even for this rather low acceleration
condition, the system spends almost the entire simulation in
regions of relatively high energy. Only very few configura-
tions (for instance configurations with exp(�∆V)>50) will
effectively contribute to the ensemble average.

In order to address this issue, here, we introduce the aMDb

approach aiming to improve sampling without compromising
the statistics in the TI calculations. As mentioned before, in
this approach, regions near the minima in the potential

surface are left unchanged, and the Boltzmann factor of the
boost energy is now defined as exp(-�∆V). In this imple-
mentation, exp(-�∆V) assumes values in the interval (0r1].
Thus, unlike the aMD approach, all configurations near the
low-energy regions of the potential surface (∆V ) 0), which
are the ones that most contribute to the ensemble average,
have the same weight of exp(-�∆V) ≈ 1. Besides that,
configurations sampled in high-energy regions of the con-
formational space have rather small weights, exp(-�∆V) ,
1, and, as a consequence, have a fairly small contribution to
the ensemble average. Figure 11, on the left, shows the boost
factor distribution along the aMDTtb simulations at three
different values of λ. It is clear that the aMDb approach is
not only able to sample both low- and high-energy regions
of the potential surface but also to keep regions near the
minima well populated. As a consequence, the statistics are
not compromised in the TI calculations, and the ensemble
average is recovered (Figure 9).

Methods

All calculations were performed using the Sander module
in the AMBER847 package that was modified to carry out
the accelerated MD simulations. The GAFF force field was
used to describe the solute in all simulations. The butane
molecule was solvated in a periodic box of explicit TIP3P
waters,48 which extends on each side 10 Å from the closest
atom of the solute, by using the Leap module in AMBER.
To bring the system to its correct density, we carried out an
MD simulation for 1 ns in which the NPT ensemble (T )
300 K, P ) 1 atm) was applied. All data collection was
carried out over MD simulations of 1 ns, during which the
NVT ensemble (T ) 300 K, density) 0.984 g/mL) was
applied. The final configuration was then used as the starting
point for the propane f propane simulations. In both

Figure 11. Distribution of Boltzmann factor of the boost potential calculated from propane-to-propane simulations using the
aMDTtb (left) and aMDt (right) approaches.
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systems, butane and propane f propane simulations, each
solute atom was assigned with zero partial charge. The free
energy change was calculated by varying λ form 0 (initial
state) to 1 (final state). All TI simulations were carried out
using seven discrete points of λ, which were determined by
Gaussian quadrature formulas. Normal and accelerated MD
simulations of 500 ps were carried out for each λ point. The
NVT ensemble was used in all TI simulations. Temperature
and pressure were controlled via a weak coupling to external
temperature and pressure baths49 with coupling constants of
0.5 and 1.0 ps, respectively. Apart from all TI simulations
where the time step was set to 1 fs, the equations of motion
were integrated with a step length of 2.0 fs using the Verlet
Leapfrog algorithm.50 For further analysis, the trajectory was
saved every 1.0 ps. The PME summation method was used
to treat the long-range electrostatic interactions in the
minimization and simulation steps.51,52 The short-range
nonbonded interactions were truncated using a 8 Å cutoff,
and the nonbonded pair list was updated every 20 steps.

Conclusions

In this work, we showed a straightforward way of coupling
the Thermodynamic Integration approach with the acceler-
ated MD method. We also introduced a new approach, aMDb,
aiming to improve convergence and efficiency of free energy
calculations in condensed-phase systems. The results ob-
tained with aMD and aMDb were compared with conven-
tional TI calculations. Our results showed that both accel-
erated MD approaches improve conformation sampling when
compared to normal MD simulations. When applied to just
torsion terms of potential energy, both approaches, aMDt
and aMDtb, increased substantially the number of conforma-
tion transitions of the butane molecule in explicit water when
compared to normal MD simulations. In addition, the
accuracy of free energy simulations was significantly im-
proved when sampling of internal degrees of freedom of
solute was enhanced. However, accurate and converged
results were only achieved when the solvent interactions were
taken into account in the accelerated MD approaches. When
combined with aMDb, the application of dual-boost approach
improved markedly the convergence and accuracy of TI
calculations. By analyzing the distribution of the boost
potential along the free energy simulations, we observed that
the aMDb approach efficiently samples both low- and high-
energy regions of the potential surface. Since this approach
also maintains well populated regions near the minima, the
statistics are not compromised in the TI calculations, and,
as a result, the ensemble average can be recovered.
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