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Abstract: The polylactic acid (PLA) resin Ingeo 4032D was selected as the research object, with a focus
on PLA modification by using polymers such as linear low-density polyethylene (LLDPE), high-density
polyethylene (HDPE) and ethylene–propylene-diene monomer grafted with glycidyl methacrylate
(EPDM-g-GMA), by using fillers such as nano calcium carbonate and zeolite. In order to characterize the
deposition effect of Al2O3 on the film surface by plasma-assisted atomic layer deposition, Bio-oriented
PLA (BOPLA) with more uniform thickness than blown film was purchased for study. The mechanical
properties, friction coefficient, surface contact angle and water vapour transmission rate of the modified
PLA film were compared and discussed. The aim was to find out the most influencing factors of film’s
water vapour resistance.

Keywords: polylactic acid blown film; modification; bio-oriented PLA; atomic layer deposition;
water vapour transmission rate

1. Introduction

PLA resin is a biodegradable polymer material prepared by polycondensation reaction
using lactic acid as the main raw material, which can be extracted from natural renewable
resources such as corn and wheat [1–3]. The production process has no pollution and
the production energy consumption is only equivalent to 20% to 50% of the traditional
petrochemical products, while the carbon dioxide gas produced is only 50%, which can
get rid of the dependence on oil resources. After being discarded, PLA products can be
decomposed in the natural environment and eventually degraded into water and carbon
dioxide [4], without any pollution to the environment and realizing its circulation in the
natural world. The molecular chain structure of PLA is shown in Figure 1. It is considered
to be the most widely used type of biodegradable polymer material and has received wide
attention in recent years.
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Figure 1. Molecular chain structure of PLA.

PLA resin is a thermoplastic aliphatic polyester with a glass transition temperature
between 55 and 65 ◦C, whose melting point is about 175 ◦C and whose processing temper-
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ature is generally controlled between 170 ◦C and 230 ◦C, which is suitable for extrusion,
blow molding, stretching and other processing processes [5].

PLA film has high crystal transparency, stable physical properties such as good solvent
resistance and insolubility in alcohols, fats, hydrocarbons and edible oils. Moreover, there
is a lower temperature heat sealing ability, better printability than polyolen films and good
ink retention, which can retain the flavor and package aesthetics of foods to a greater extent.
It makes PLA resin a good choice for replacing fossil-based plastics generally used in food
packaging industry [1,6–9].

PLA resin also inevitably has certain drawbacks, including its low gas barrier prop-
erties compared to high-performing conventional plastics, its low thermal stability and
its high price still restrict its use in the market [1,9–12], and these deficiencies needs to be
overcome if PLA is to be successfully used in packaging or other applications requiring
good barrier performance.

A barrier is an important standard to measure packaging materials such as moisture
permeability (WVTR) and oxygen permeability (OTR). In recent decades, many researchers
have proposed a variety of feasible methods to improve the barrier performance of poly-
lactic acid. There are usually three physical methods: polymer blending modification,
polymer filling modification and surface coating of film.

For polymer blending modification, Sun et al. [13] prepared the films by blending
poly(ε-caprolactone) (PCL) and PLA, and the barrier performance of the films were im-
proved by controlling the PCL content. Yu et al. [14] improved the barrier properties of PLA
by incorporating of nanocelluloses (NCs) and focused on the influence of the differences
in NC morphology and dimensions on the PLA properties. This comparative study was
very beneficial for selecting reasonable nanocelluloses as nucleation/reinforcing agents in
robust-barrier packaging biomaterials with outstanding mechanical and thermal perfor-
mance. Le Gars et al. [6] also filled NCs into PLA; in contrast, the nanocellulose acts as an
inner layer between the two PLA films to enhance the oxygen barrier in their research.

The blending of PLA with immiscible organic compounds such as polyethylene (PE)
and polypropylene (PP) has also become a common way to improve the properties of
polylactic acid but requires compatibilizers to achieve stable morphologies and superior
mechanical properties. Thurber et al. [15] showed that catalyst localized at the interface can
compatibilize polyethylene (PE) and polylactide (PLA) blends. In this work, compatibilized
blends of HDPE (high-density PE) and PLA are created using modest amounts of hydroxyl
functional PE. The molecular chain structure of PE is shown in Figure 2. This branching of
PE would give an impact on the entanglement of PE with PLA, which would change the
mechanical strength of blending film.
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In Xu et al. [16], polylactide (PLA) was melt-blended with either polypropylene (PP).
An ethylene−glycidyl methacrylate−methyl acrylate terpolymer (Lotader) was utilized
as compatibilizer through coupling to the end groups of PLA. The remarkable efficacy of
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PEGMMA as a reactive compatibilizing agent allows the bridging of two immiscible but
important classes of thermoplastics, polylactide and polypropylene, and the production of
ductile PLA/PP blend materials.

PP, PE and other auxiliaries are added to the raw materials to achieve biodegradation.
However, this view is doubtful; some people call it “pseudo-degradation”, adding auxil-
iaries can only allow the plastic to be degraded into particles invisible to the naked eye, and
its harm to the environment still exists and cannot be completely biodegraded. At present,
the main purpose is to reduce the cost.

For polymer filling modification, Jong et al. [17] fabricated PLA-based composite films
with different types of nano-clays as strengthening agent by a solvent casting method. They
found that the water resistance of PLA films improved to different degrees. In order to keep
the film’s flexibility, the selection of plasticizer is also important. Giuseppe Mele et al. [18]
combined cardanol oil (CA) with PLA and prepared PLA/CA films by means of hot melt
extrusion processes. The presence of CA increased the oxygen transmission through the
PLA/CA films; consequently, the permeability values were always appreciably higher
for plasticized films. Nevertheless, the CA-plasticized PLA films showed good barrier
properties similar to packaging materials commonly used in the food industry today.

For surface coating of film, Satam et al. [19] found that bioavailable cellulose nanocrys-
tals (CNC), chitin nanofibers (ChNF), are readily dispersed in water, enabling spray-coated
films to be deposited at high rates onto uneven or delicate surfaces. They sprayed coating
of cationic chitin nanofibers and anionic CNC suspensions onto PLA films layer-by-layer
to improve the oxygen barrier. ChNF/CNC multilayers were found to lead to a reduction
in the O2 permeability of the final composite film by as much as 73% with the largest
effects seen in composites with three alternating layers (ChNF-CNC-ChNF). Multilayer
ChNF/CNC coatings were found to have lower O2 permeability and lower haze than
those coated with ChNF or CNCs alone (72% and 86% lower haze, respectively), pointing
to a synergistic effect. The composites had a water vapour transmission rate similar to
the PLA substrate. Mericer et al. [20] prepared multilayer composite films by coating
incompatible microfibrillated cellulose on amorphous polylactic acid and semicrystalline
polylactic acid, respectively. The results showed that the oxygen barrier of multilayer
films was improved by more than one order of magnitude. Mattioli et al. [21] deposited
hydrogenated amorphous carbon on the surface of PLA thin films by CVD to improve the
barrier properties of PLA thin films. They found that the moisture and oxygen permeability
of hydrogenated amorphous carbon/PLA films decreased significantly when the treatment
time was 5 min. Hirvikorpi et al. [22] deposited Al2O3 with different thickness onto 40 µm
thick PLA film with a roll-to-roll process. The results show that the PLA/Al2O3 structure
significantly improves the gas barrier of the film.

Our team’s research starts from three aspects. Firstly, a small amount of synthetic
resin used for packaging film (LLDPE and HDPE) are selected to modify PLA ‘s brittleness
without reducing its rigidity. Due to the different polarity between PLA and PE, there is a
compatibility problem; therefore, GMA-grafted ethylene propylene copolymer (EPDM-g-
GMA) is selected to improve the toughening effect. Secondly, PLA was modified by filling
with nano calcium carbonate, zeolite and plasticizing with Epoxidized soybean oil (ESO).
Finally, for the anisotropy and non-uniformity of surface thickness of blown film, BOPLA
for tape casting was selected for depositing Al2O3 on it. The mechanical, surface and water
vapour barrier properties of PLA film by three modification methods were summarized.
The experimental results have reference value for the production requirements of food and
drug packaging film.

2. Experimental
2.1. Materials

PLA (Ingeo 4032D, Degree of polymerization:200) was purchased from Nature Works
Company (Blair, NE, USA). At a temperature of 190 ◦C, loading pressure of 2.16 kg and
cutting time interval of 30 s, the MFR of Ingeo 4032D PLA was 5.872 g/10 min.
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BOPLA film (40 µm) was purchased from Shandong Shenghe Plastic Development
Company (Weifang, China).

LLDPE (7042, Mw: 2.71 × 104) was purchased from China Petrochemical Corp.
(Beijing, China).

HDPE (DMDA8007, Mw: 7.36 × 104) was purchased from Shenhua Energy Company
(Beijing, China).

EPDM-g-GMA (E533, grafting rate: 1%,) was purchased from Ningbo New Mate-
rial Corp. (Ningbo, China). The molecular chain structure of EPDM-g-GMA and GMA
(Glycidyl methacrylate) is shown in Figure 3.
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Figure 3. Molecular chain structure of EPDM-g-GMA (a) and GMA (b).

Nano-CaCO3 (Nanometer scale calcium carbonate, with an average particle size of
10–100 nm) was purchased from Haofu Chemical Co., Ltd. (Shanghai, China).

Zeolite (3A molecular sieve, with an average particle size of 2–5 µm) was purchased
from Yuanli Chemical Co., Ltd. (Tianjin, China).

Epoxidized soybean oil (ESO) was purchased from Xinjinlong Plastic Additives Co., Ltd.
(Guangzhou, China).

Trimethyl aluminum (TMA, purity: 99.99%) was purchased from Sigma-Aldrich
Trading Co., Ltd. (Shanghai, China).

2.2. Film Manufacting and Depositing Methods

Pretreatment: PLA resin was dried in vacuum drying oven at 80 ◦C for 4 h.
Mixed granulation: Raw materials were mixed in different proportions, and the

granular resin for blowing film was produced by the extruding part of torque rheometer.
Film sample preparation: The granular resin was then added to Blown-Film part of

torque rheometer. The processing temperatures of each heating area are 155 ◦C, 170 ◦C,
175 ◦C, and 185 ◦C, the rotating speed is 35 rpm, the blow-up ratio is 2.6 and the draw ratio
is 5.0. May vary slightly according to different materials.

Surface deposition: Plasma-assisted atomic layer deposition is carried out by input
TMA using a self-designed equipment under atmospheric pressure (Figure 4). The deposition
temperature is 80 ◦C.
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2.3. Performance Testing and Characterization Methods
2.3.1. Mechanical Property Test

According to the plastic tensile test method of GB/T1040.2-2006, the longitudinal
tensile strength of each sample was tested by intelligent electronic tension tester (XLW
(EC)), which made by Labthink Electromechanical Technology company of China. The size
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of sample is 100 mm × 15 mm, and the tensile speed is 200 mm/min. Each sample was
tested more than 5 times and the average value was taken.

2.3.2. Friction Coefficient Test

According to the method of measuring the friction coefficient of plastic film and sheet
by GB/T10006-1988, Friction coefficient meter (MXD-01) made by Labthink Electromechan-
ical Technology company of China was used to measure the friction property. Two samples
with specifications of 200 mm × 80 mm and 63 mm × 63 mm were cut and moved relatively
at a consistent speed. The force values were recorded and calculated. Each sample was
tested more than 5 times, and the average value is taken. For the calculation method of
friction coefficient, see Formulas (1) and (2):

µs =
Fs

Fp
(1)

where µs is the coefficient of static friction, Fs is the static friction with N as units, Fp is the
normal force with N as units.

µd =
Fd
Fp

(2)

where µd is the dynamic friction coefficient, Fd is the dynamic friction with N as units, Fp is
the normal force with N as units.

2.3.3. Contact Angle Test

The standard Deionization Water Drops were added to the surface of the tested sample
with a micro sampler to form drops. We waited for 3 min until the drops were stable and
then measured the contact angle between the sample and water. Static drop contact angle
measuring instrument (DSA100) made by Kruss company of Germany was used to measure
the contact angle of pure water on PLA film. Each sample was tested more than 5 times
and the average value was taken.

2.3.4. Moisture Barrier Property Test

A: According to the test method for water vapour transmission of plastic film by
GB/T 30412-2013, moisture permeability instrument (PERMATRAN-W 1/50G) made by
MOCON company of USA was used to measure the moisture permeability on modified
PLA film. The working principle is shown in Figure 5. The size of sample is 50 cm2 and
the experimental temperature is 38 ◦C. Each sample was tested more than 5 times and the
average value was taken.
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Figure 5. Schematic diagram of measuring principle of moisture permeable tester, where 1: Weighing
sensor; 2: Moisture permeable cup; 3: Deionization water; 4: Sealing ring; 5: Constant temperature
and humidity environment; 6: Film.

B: According to the test method for water vapour transmission of plastic film (Cup
method) by GB/T 1037-1988, constant temperature and humidity testing machine (GT-7005-T)
made by the Gotech testing instruments (Dongguan) company of China was used to measure
the moisture permeability on PLA film. The sample is a disc with a diameter of about 40 mm.
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The experimental temperature and relative humidity were 38 ◦C and 90%, respectively. The
moisture permeable cup needed for the experiment is shown in Figure 6. Each sample was
tested more than 5 times and the average value was taken. The permeability is calculated
using Equation (3) below,

Q =
24 × ∆m

t × A
(3)

where Q is the Water Vapour Transmission Rate (WVTR), the unit is g/(m2·24 h), ∆m is the
amount of vapour passing through the film per unit time, the unit is g, t is per unit time,
and A is the effective area of sample; the unit is m2.
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3. Results and Discussion
3.1. The Mechanical Properties of Modified PLA Films

PLA resin, as a self-degrading biopolymer, has many advantages, but it still cannot
fully meet all the requirements for packaging. It is an aliphatic polymer with a loose helical
molecular chain [23]. The longitudinal tensile strength of its blown film is nearly twice that
of the transverse strength. It is hard, brittle and low in crystallinity. It can easily absorb
moisture in a humid environment, resulting in film swelling, and it has poor a barrier to
water vapour. However, its biaxial tension film by tape casting method is highly oriented
and crystalline with uniform high strength and elongation, as shown in Table 1.

Table 1. Mechanical properties of pure PLA blown film and bio-oriented PLA film.

Film Material Thickness (µm) Longitudinal Tensile
Strength (MPa)

Longitudinal Elongation
at Break (%)

Transverse Tensile
Strength (MPa)

Transverse
Elongation at

Break (%)

Pure PLA blown film 35 ± 15 82.546 8.0 48.819 5.7
Bio-oriented PLA film 40 ± 5 120.8 73.4 138.1 122.1

Linear Low-Density Polyethylene (LLDPE), High Density Polyethylene (HDPE) or
EPDM rubber grafted glycidyl methacrylate (EPDM-g-GMA) are selected for PLA blend
modification. LLDPE is ethylene with a small amount of α- Olefin copolymerization in
the presence of catalyst between the copolymer; it has a linear ethylene main chain with a
very short molecular structure of comonomer branches and has good strength, toughness
and rigidity. HDPE is linear and has a long molecular chain with a molecular weight of
hundreds of thousands. EPDM-g-GMA is an elastomer, EPDM is a copolymer of ethylene,
propylene and a small amount of non-conjugated dienes. GMA is a polar graft group with
good compatibility with PLA. Nano calcium carbonate (nano-CaCO3) and zeolite were
used as fillers, and ESO was used as plasticizer. All these three polymers and additives
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meet the hygienic requirements for the use of food and drugs. At first, the mixture was
granulated in an extruder and then blown to obtain various films.

From Figure 7, the longitudinal tensile strength of the blend films are higher than
that of pure PLA film. The result of adding LLDPE has the best tensile strength and
EPDM-g-GMA has the best elongation. This means that a small amount of polyolefin has
good compatibility with PLA and has no much difference on the rigidity of PLA itself and
EPDM-g-GMA has indeed played a toughening effect.
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Figure 7. The longitudinal tensile strength and longitudinal elongation at break of PLA blends (film
thickness: 30–80 µm, tensile speed: 200 mm/min).

From Figure 8, compared with PLA resin and its blends with HDPE or HDPE together
with LLDPE, the addition of 2 phr of nano-CaCO3 really plays a reinforcing role and
improves the strength slightly but cannot improve the toughness of the blends.
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Figure 8. The longitudinal tensile strength and longitudinal elongation at break of filled PLA (film
thickness: 30–80 µm, tensile speed: 200 mm/min).

From Figure 9, adding ESO as plasticizer can improve the toughness of PLA film, but
significantly reduce the strength of the material. As a filler, Nano-CaCO3 works better than
zeolite because the particle size of zeolite is relatively large at an average particle size of 2–5 µm.
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Figure 9. The longitudinal tensile strength and longitudinal elongation at break of filled and plasti-
cized PLA (film thickness: 30–80 µm, tensile speed: 200 mm/min).

Plasma-assisted atomic layer deposition technique was used to deposit Al2O3 thin
films on extruded bio-oriented PLA film of 40 µm [24]. Seen from Figure 10, with the
increase in deposition cycles, the tensile strength of both vertical and horizontal direction
of the films increased significantly and the elongation had not changed much.
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Figure 10. The longitudinal tensile strength and longitudinal elongation at break of Al2O3-deposited
BOPLA film (tensile speed: 200 mm/min).

The above three modification methods do not significantly reduce the mechanical
properties of PLA as packaging film; the influence of modification on the surface properties
of the film is discussed below.

3.2. The Surface Properties of Modified PLA Films

The coefficient of friction is a measure of the friction between two contact surfaces.
In the micro world, the material surface is uneven. When the two materials are in contact
with each other, only the convex parts are in real contact, and the atoms in the convex
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parts are in close contact to form a strong interaction force. When the contact surfaces
moves relative to each other, this force will be hard shear. The convex parts of the two
contact surfaces collide with each other and break and wear, forming an obstacle to the
movement of the object. The shear force parallel to the contact surface and destroying the
convex part is friction. Adhesion is an adhesion phenomenon between plastic film contact
layers, which is usually caused by two situations: the extremely smooth film surface is in
close contact and almost completely isolated from the air; the pressure and temperature
cause the adhesion and melting of the film contact surface. Adhesion will make the friction
coefficient show an upward trend.

When used as packaging film, the inner and outer surfaces of the film shall have
good smoothness to ensure smooth filling on the high-speed automatic filling machine.
Therefore, the dynamic and static friction coefficient of the film surface shall be relatively
low, generally from 0.2 to 0.4 [25].

As seen from Table 2, the dynamic and static friction coefficients on the inner side
of all blown films are greater than those on the outer side. This is because in the film-
blowing process, the film forms a closed cylindrical shape of closed compressed air, the
temperature of the inner surface film higher than that of the outer surface. The reason for
this phenomenon is that the crystallization speed of PLA is relatively slow. There was a
wind ring on the outside during the film blowing process, the film was quenched, and the
crystal was generated to a lesser extent. The inner side of the film was hot air, the molecular
chain can be arrayed into lattice before cooling, and the crystal was generated. Therefore,
the inner surface is rough and the friction coefficient is larger than that of the outer surface.

Table 2. Friction Coefficient Data of PLA blends.

Direction Longitudinal Inner Side Outer Side

Pure PLA
Static 0.503 0.470

Dynamic 0.466 0.444

PLA/LLDPE (95:5 wt%)
Static 0.593 0.302

Dynamic 0.531 0.211

PLA/HDPE (95:5 wt%)
Static 0.553 0.330

Dynamic 0.499 0.292

PLA/EPDM-g-GMA (95:5 wt%) Static 0.337 0.315
Dynamic 0.330 0.316

As shown in Table 2, compared with pure PLA, the friction coefficient of the blend
film is lower than the original, indicating that the packaging opening of the blend film is
improved. Table 3 shows that, after adding Nano-CaCO3, the friction coefficient of the film
increases because the dispersion of Nano-CaCO3 in PLA is not so good that many Nano-
CaCO3 particles migrate to the material surface to increase the surface roughness. As shown
in Table 4, after adding ESO, the friction coefficient of the blend membrane decreased. ESO
increases the compatibility between the filler and PLA and acts as a lubricant. However, the
amount of ESO should not be too much; otherwise it will cause adhesion on the film surface
and increase the friction coefficient. Compared between Nano-CaCO3 and Zeolite, because
the size of Nano-CaCO3 (10–100 nm) is smaller that of Zeolite (2–5 µm) and the dispersion is
uniform, the friction coefficients are smaller.

The surface contact angle is another method to characterize the surface properties of
thin films. Plasma-assisted atomic layer deposits Al2O3 on PLA film, the surface properties
of the base film affect the deposition effect (Figure 11). When polar groups are introduced
into the surface, the smaller the water contact angle is, the more conducive it is to deposition.
However, controlling the dense, uniform and ultra-thin deposit on PLA surfaces remains
a challenge.
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Table 3. Friction Coefficient Data of filled PLA.

Direction Longitudinal Inner Side Outer Side

Pure PLA
Static 0.503 0.470

Dynamic 0.466 0.444

PLA/Nano-CaCO3 (100:2 wt%)
Static 0.593 0.302

Dynamic 0.531 0.211

PLA/HDPE (95:5 wt%)
Static 0.553 0.330

Dynamic 0.499 0.292

PLA/HDPE/LLDPE (90:5:5 wt%)
Static 0.490 0.359

Dynamic 0.459 0.328

PLA/HDPE/Nano-CaCO3 (95:5:2 wt%)
Static 0.623 0.327

Dynamic 0.558 0.232

PLA/HDPE/LLDPE/Nano-CaCO3 (90:5:5:2 wt%)
Static 0.605 0.275

Dynamic 0.529 0.224

Table 4. Friction Coefficient Data of filled and plasticized PLA.

Direction Longitudinal Inner Side Outer Side

Pure PLA
Static 0.503 0.470

Dynamic 0.466 0.444

PLA/ESO/Nano-CaCO3 (100:3:4 wt%)
Static 0.456 0.420

Dynamic 0.421 0.400

PLA/ESO/zeolite (100:3:4 wt%)
Static 0.535 0.490

Dynamic 0.501 0.467
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3.3. The Water Vapour Resistance of Modified PLA Films

Packaging is the most important way to protect commodities, especially food. In order
to make packaging materials used in the circulation of commodities, we must improve
their barrier to gas, especially water vapour. Barrier performance is not only an important
evaluation standard to measure packaging materials, but also one of the main bases by
which to predict the shelf life of products. The barrier refers to the performance of materials
that hinder the penetration of small molecule gases, water vapour and organic solution
vapour. Among them, moisture permeability is the main parameter to judge the water-
vapour resistance of the film. When there is a pressure difference between the water vapour
on both sides of the film, the water vapour will expand from the high-humidity side to
the other, as seen in Figure 12. In this study, the film was prepared by a speed of 35 rpm
at 155–185 ◦C, which suggested the possibility that the disentanglement rate > shear rate
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determined the crystallinity of films [26]. This crystallinity of film might determine the
water vapour permeability shown in Figure 12.
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Figure 12. The expand process of water vapour from high humidity side to the other side.

Two kinds of methods were used to measure the Water Vapour Transmission Rate
(WVTR) by a moisture-permeable cup or moisture permeability tester. The former is the
weight gain method, and the latter is the weight loss method. The surface roughness,
hydrophilicity, thickness and thickness uniformity of the film all affect the test results.
The inner surface of the blown film was the high humidity side. The WVTR test range
of the instrument (Mocon PERMATRAN-W 1/50G) is 0.1–100 g/m2, 24 h. PLA blown
film’s WVTR is too high to test it by, so a moisture-permeable cup method was used
for blown films. As shown in Table 5, when blended with general plastics, elastomer
filler with plasticizer significantly reduces WVTR of films; however, it cannot meet the
requirements of moisture barrier materials. The shape, particle size and dispersion of
filler, dosage, adhesion to matrix and porosity all affect WVTR. Another reason that film of
PLA/ESO/nano-CaCO3 (100:3:4 wt%) has the best effective barrier effect on water vapour
may be that nano-CaCO3 is well dispersed in PLA, and as a nucleating agent, the film has
higher crystallinity.

Table 5. Moisture permeability of different films by moisture permeable cup (the thickness is from
30 µm to 50 µm).

Film Material WVTR/(g/m2, 24 h), 38 ◦C, (90–0)%RH

Pure PLA 263.10 ± 13.64
PLA/LLDPE (95:5 wt%) 165.44 ± 8.34
PLA/HDPE (95:5 wt%) 122.12 ± 5.22

PLA/EPDM-g-GMA (95:5 wt%) 88.81 ± 6.43
PLA/ESO/nano-CaCO3(100:3:4 wt%) 65.88 ± 4.36

PLA/ESO/Zeolite (100:3:4 wt%) 67.62 ± 3.54

Compared with the non-stretched film, the mechanical properties and barrier proper-
ties of film produced by bi-axial stretching technology are significantly improved. BOPLA
film was used as deposited base film.

In order to meet the requirements of moisture resistance under harsh conditions,
atomic layer deposition is an effective method to prepare high barrier films [27]. Compared
with the traditional lamination technology, it has the advantages of obviously saving the
weight of packaging materials, significantly reducing production costs, and effectively
avoiding environmental pollution.

Table 6 shows that it has a significant effect on improving the water vapour barrier per-
formance of Al2O3 films, because dense Al2O3 has strong inter-atomic and inter-molecular
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bonds, as well as short-range ions and covalent bonds, leaving little space between atoms
for the dissolution and diffusion of water vapour.

Table 6. Moisture permeability of Al2O3-deposited BOPLA film by moisture permeability tester (the
thickness is about 40 µm).

Deposite Degree/Cycle WVTR (g/m2, 24 h), 38 ◦C, (90–10)%RH

0 80.040 ± 8.336
100 16.352 ± 2.210
200 0.683 ± 0.086
300 0.617 ± 0.115
400 0.505 ± 0.054
500 0.511 ± 0.093

4. Conclusions

Blending, filling, both filling and plasticizing, and depositing Al2O3 all can keep
or increase the longitudinal tensile strength of modified film, but the improvement of
elongation is not obvious. The surface properties characterized by the friction coefficient
show that most of the film meets the requirements of high-speed filling. Although filling
reinforcement can improve the performance of packaging materials, food contact materials
containing nano materials and plasticizers may cause safety problems, such as the inherent
toxicity of materials and the risk of migration from materials to food and possible ingestion
by consumers. Stretching oriented technology and plasma-assisted atomic layer deposition
of Al2O3 is an effective tool to enhance the barrier performance of PLA and expand its
application in the future. Surface deposition can significantly reduce WVTR of PLA, with
a reduction range from 79.57% to 99.36%, while other methods can reduce it to a small
extent, with a reduction range from 37.11% to 74.30%.

However, the preparation of ultra-thin solid Al2O3 barrier layer on PLA surface is still
challenged by the very low glass transition temperature of PLA. In addition, whether the
deposition of Al2O3 will affect the optical and degradation properties of PLA films is also
one of the problems to be considered.
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