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Abstract: Fifty-seven compounds were purified from the stems of Tinospora sinensis, including
three new compounds characterized as a lignan (1), a pyrrole alkaloid (11), and a benzenoid
(17), respectively. Their structures were elucidated and established by various spectroscopic and
spectrometric analytical methods. Among the isolates, fifteen compounds were examined for their
anti-inflammatory potential in vitro. The results showed that several compounds displayed moderate
inhibition of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide
anion generation and elastase release.
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1. Introduction

Inflammation is the first response of the immune system to infection or irritation. Neutrophils
play an important role in eliminating most of the exogenous pathogens. Various autoimmune
diseases are linked to neutrophil overexpression, such as rheumatoid arthritis, ischemia, and asthma,
etc. [1–3]. According to response of diverse stimuli, activated neutrophils will secrete a series of
cytotoxins. The superoxide anions and neutrophil elastase are the major secreted products of stimulated
neutrophils in infected tissues and organs, which contribute to the destruction of tissue in chronic
inflammatory diseases [4–6]. Therefore, inhibition of superoxide anion generation and elastase release
by natural compounds is considered to be an effective screening platform to evaluate anti-inflammatory
drug candidates.
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The genus Tinospora, belonging to family Menispermaceae, is composed of more than 20 species
all over the tropical regions of the Eastern Hemisphere [7]. This genus is traditionally medical used
in Southeast Asian countries for treating malaria, skin diseases, gout, and diabetes [8]. The majority
of scientific reports of this genus state their physiological activities including antioxidation,
anti-inflammation, and cytotoxicity, especially with the most extensively explored hypoglycemic
activity [9–13]. However, the bioactive principles of T. sinensis remained poorly understood. Therefore,
this plant was selected for study to discover novel anti-inflammatory lead compounds due to their
relieving rigidity of muscles and activating collaterals effects in long-term folk medicine usage,
which may be related to anti-inflammatory bioactivity. According to the preliminary screening
results, the methanol extract of T. sinensis collected from Vietnam displayed half maximal inhibitory
concentration (IC50) values of 6.66 µg/mL and 4.68 µg/mL in the inhibition of superoxide anion
generation and elastase release, respectively (Table S1). Further chromatography purification resulted
in the characterization of nine lignans (1–9), six pyrrole alkaloids (10–15), seventeen benzenoids
(16–32), ten terpenoids (33–42), eight steroids (43–50), four amides (51–54), one coumarin (55), and
two others (56–57), respectively. The chemical structures of new compounds 1, 11, and 17 (Figure 1)
were established on the basis of nuclear magnetic resonance (NMR) and mass spectrometric analyses.
Some of these purified compounds were examined for inhibition of superoxide anion generation and
elastase release, thereby evaluating their in vitro anti-inflammatory potentials.
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2. Results and Discussion

The dried stems of T. sinensis were refluxed with methanol and the obtained extract was
divided into chloroform (CHCl3) and water (H2O) soluble fractions by liquid–liquid partition.
Further purification over silica gel column and preparative thin layer chromatography (pTLC)
resulted in the isolation of fifty-seven compounds. Among the isolated compounds, 1, 11, and 17
were new compounds. The other fifty-four known compounds were identified, including eight
lignans, (+)-pinoresinol (2) [14], syringaresinol (3) [15], medioresinol (4) [16], (+)-epi-syringaresinol
(5) [15], (+)-pinoresinol monomethyl ether (6) [17], (+)-glaberide I (7) [18], sesamin (8) [19],
and sesamolin (9) [20]; five pyrrole alkaloids, 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde
(10) [21], methyl 4-[formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoate (12) [22,23], methyl 4-[formyl-
5-(methoxymethyl)-1H-pyrrol-1-yl] butanoate (13) [22,23], 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]
butanoic acid (14) [22,23], and 4-[formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid (15) [23];
seventeen benzenoids, rhodiolate (16) [24], methyl ferulate (18) [25], β-hydroxypropiovanillone
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(19) [26], 2-methyl-4,5-dimethoxybenzoic acid (20) [27], vanillic acid (21) [28], p-hydroxyl phenethanol
(22) [29], tachioside (23) [30], icariside D2 (24) [31], salidroside (25) [32], syringin (26) [33],
cordifolioside A (27) [34], p-hydroxybenzoic acid (28) [35], 4-(2-hydroxyethyl)benzoic acid (29) [36],
syringic acid-4-O-α-L-rhamnoside (30) [37], isovanillic acid (31) [38], syringic acid (32) [39]; ten
terpenoids, loliolide (33) [40], abscisic acid (34) [41], 3(17)-phytene 1,2-diol (35) [42], malabarolide
(36) [43], lupeol (37) [44], 3-O-acetyloleanolic acid (38) [45], cycloeucalenol (39) [46], cycloabyssinone
(40) [47], cycloartane-3β,25-diol (41) [48], and cycloart-22-ene-3β,25-diol (42) [49]; eight steroids,
β-sitosterol (43) [50], stigmasterol (44) [50], 7α-hydroxysitosterol (45) [51], 7α-hydroxystigmasterol
(46) [51], 6β-hydroxystigmast-4-en-3-one (47) [52], 6β-hydroxystigmasta-4,22-dien-3-one (48) [52],
7-ketositosterol (49) [53], and 3β-hydroxy-stigmasta-5,22-dien-7-one (50) [53]; four amides,
5,6-dimethoxy-N-methylphthalimide (51) [54], N-trans-feruloyldopamine (52) [55], N-trans-
feruloyltyramine (53) [56], N-cis-feruloyltyramine (54) [57]; and one coumarin, scopoletin (55) [58]; and
two others, lichexanthone (56) [59] and 2,6-dimethoxy-p-quinone (57) [60], respectively. The chemical
structures of these new constituents were determined on the basis of 1D and 2D NMR and mass
spectrometric analyses elucidated as follow.

The molecular formula of compound 1 was determined as C34H48O19 by high resolution
electrospray ionization mass spectrometry (HR-ESI-MS) which showed a quasi-molecular ion peak
[M − H − H2O]− at m/z 741.2612. The 1H and 13C-NMR spectra (Table 1) revealed the presence
of two sets of 1,3,4,5-tetrasubstituted symmetrical aromatic rings [δH 6.66 (H-2, 6, 2′, 6′) and
δC 133.7 (C-1, 1′), 104.2 (C-2, 6, 2′, 6′), 152.6 (C-3, 5, 3′, 5′), 137.1 (C-4, 4′)], two oxymethylenes
[δH 4.18 (dd, J = 9.0, 6.7 Hz), 3.84 (dd, J = 9.0, 3.2 Hz) and δC 71.3 (C-9, 9′)], two methines
[δH 3.09 (m, H-8, 8′) and δC 53.6 (C-8, 8′)], two oxymethines [δH 4.66 (brd, J = 3.8, H-7, 7′) and
δC 85.0 (C-9, 9′)], and two methoxy groups (δH 3.76 and δC 56.4). The correlation spectroscopy
(COSY) spectrum provided key correlations between H-7 (δH 4.66) and H-8 (δH 3.09), and between
H-8 (δH 3.09) and methylene H-9 protons (δH 4.18 and 3.84). Its heteronuclear multiple bond
correlation (HMBC) spectrum provided further correlations from H-7 to C-1, C-2, C-6, and C-8
suggested the aromatic ring was attached to C-7 (Figure 2). From these spectral information, 1 was
indicated as a 2,5-diaryl tetrahydrofuranoid type lignan. Two sets of β-glucopyranosyl unit [δH 4.90
(br d, J = 5.2 Hz) and δC 102.6 (G-1, 1′), δH 3.59, 3.40 and δC 102.6 (G-6, 6′)] were also observed.
The glucosylation shifts at C-9, -9′ (δC 71.3) and C-8, -8′ (δC 53.6) constructed the location of the
glucosyl units at C-9 and C-9′ of the aglycone, when compared with unbound C-9 (δC 61.2) and
C-8 (δC 54.9) reported in the literature [61]. The relative configurations between C-7 and C-8
(also C-7′ and C-8′) were established as trans-configurations due to no nuclear Overhauser effect
(NOE) correlations between H-7 and H-8 (also H-7′ and H-8′) in the nuclear Overhauser enhancement
spectroscopy (NOESY) experiment (Figure 2). Thus, the structure of compound 1 was determined
as dihydroxymethylbis(3,5-dimethoxy-4-hydroxyphenyl)tetrahydrofuran-9,9′-O-β-diglucopyranoside
and named trivially as tinosporide A.
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Compounds 11–15 all exhibited similar ultraviolet (UV) and infrared (IR) absorption
characteristics. Their UV spectra all displayed absorption maxima close to 293 nm, which are
characteristic of the pyrrole-2-carbonyl basic skeleton [62]. The 1H-NMR spectrum (Table 2) exhibited
signals for two methine protons at δH 6.16 (d, J = 3.9 Hz, H-4) and 7.01 (d, J = 3.9 Hz, H-3). Chemical
shifts at δC 110.8 (C-4), 119.0 (C-3), 121.6 (C-2), and 136.9 (C-5) in 13C-NMR spectrum implied the
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occurrence of a heterocyclic ring containing a nitrogen atom and their proton coupling constants
also indicated the 2,5 di-substituted pyrrole ring (Table 2). The 1H and 13C-NMR spectra of 11
also evidenced the presence of a butanoic acid moiety which appeared at δH 4.37 (br t, J = 7.6 Hz,
H-1′), 2.36 (t, J = 7.3 Hz, H-3′), and 2.04 (m, H-2′), confirmed by HMBC correlations from H-3′

and H-2′ to a carbonyl carbon (δC 173.4, C-4′). The connection of the butanoic acid moiety on the
nitrogen atom was suggested by observing long range correlation peaks from δH 4.37 (H-1′) to
δC 136.9 (C-5) and δC 121.6 (C-2) in the HMBC spectrum (Figure 3). These spectral data clearly
determined that a butanoic acid moiety was attached to N-1 of the pyrrole ring. An oxomethylene
group connected to C-5 of pyrrole ring was proved by the HMBC correlation of δH 4.43 (H-7) and δC

136.9 (C-5). Two additional methoxy groups (δH 3.34, δC 51.6; δH 3.67, δC 57.7) were also observed
and deduced to be located at C-7 and C-4′ by HMBC analysis (Figure 3). However, the HR-ESI-MS
analytical data was unavailable due to the sample lability. Therefore, the molecular formula of 11
was proposed as C12H17NO5 according to the above-mentioned NMR spectral analysis and gas
chromatograph–mass spectrometer (GC–MS) analytical results which exhibited a molecular ion peak at
m/z 255 (see Supplementary Materials). On the basis of these data, the structure of 11 was determined
as 1-(4-methoxy-4-oxobutyl)-5-(methoxymethyl)-1H-pyrrole-2-carboxylic acid and named trivially as
tinosporin A.

Compound 12 displayed very similar 1H and 13C-NMR signals (Table 2) as those of 11 except an
additional aldehyde signal (δH 9.42 (s, H-6) and δC 180.9 (C-6)) and one methoxy group (δH 3.66
(s, OCH3) and δC 52.2 (OCH3)). Its HMBC spectrum exhibited the correlations from methoxy
protons to butanoic acid C-4′ (δC 175.1), as shown in Figure 3. The molecular formula of 12 was
proposed as C11H15NO4 also based on the GC–MS analytical data of the molecular ion peak at
m/z 225 (see Supplementary Materials). Accordingly, the structure of 12 was established as methyl
4-[formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoate. Compound 13 was shown to possess the
molecular formula of C12H17O4N by GC–MS measurement. An additional methoxy group (δH 3.36)
was observed in 13 by comparison of its 1H-NMR spectra with that of 12. The structure of compound
13 was elucidated as a methyl 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoate. Furthermore,
compounds 14 and 15 were determined as 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid
and 4-[formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid, respectively, by comparison of their
spectral data with those reported [22,23]. According to the above results, pyrrole alkaloids 10–15 were
reported from Tinospora genus for the first time.
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Compounds 16 and 17 showed the same adduct ion peaks and were both assigned the same
molecular formula C17H22O6. The 1H-NMR spectrum of 16 revealed the existence of an aromatic
protons at δH 7.07 (dd, J = 8.2, 1.8 Hz, H-6), 7.04 (d, J = 1.8 Hz, H-2), and 6.92 (d, J = 8.2 Hz, H-5);
five methylenes at δH 4.19 (t, J = 6.6 Hz, H-6′), 2.34 (t, J = 7.4 Hz, H-2′), 1.67 (m, H-3′, 5′), and 1.47
(m, H-4′); and two methoxy singlets at δH 3.95 and 3.67. Additional signals at δH 7.59 (d, J = 16.0 Hz,
H-7) and 6.47 (d, J = 16.0 Hz, H-8) suggested the presence of a trans double bond. The 13C-NMR
spectrum revealed the existence of seventeen carbon atoms included an aromatic ring (δC 109.3, 112.7,
123.1, 127.0, 146.6, and 147.9), five methylenes (δC 64.0, 33.8, 28.1, 25.3, and 24.5), two methoxyls
(δC 55.9 and 51.5), two carbonyls (δC 173.9 and 167.5), and a pair of olefinic carbons (δC 144.8 and
115.5). A 3,4-disubstituted cinnamoyl group linked with a hexanoyl alcohol was deduced from the
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NMR data which described above (Table 1). This was further confirmed by the key HMBC correlations
from δH 3.67 (OCH3) to 173.9 (C-1′), from δH 4.19 (H-6′) to δC 167.5 (C-9), and 28.1 (C-5′), as shown
in Figure 4. Therefore, compound 16 was confirmed as rhodiolate by comparison of its spectral data
with those reported [24]. Compound 17 displayed closely related 1D NMR spectroscopic and mass
spectrometric characteristics to 16 and was determined to have a similar structure to 16. However,
a pair of olefinic protons at δH 6.80 (d, J = 12.9 Hz, H-7) and 5.81 (d, J = 12.9 Hz, H-8) suggested the cis
double bond feature. However, 2D NMR spectral analysis of 17 could not be furnished because of the
rapid transformation of cis–trans double bond. Thus, the structure of compound 17 was concluded
to be methyl 6-((Z)-3-(4-hydroxy-3-methoxyphenyl)acryloyloxy)-hexanoate and assigned the trivial
name as tinosporin B.
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Table 1. NMR Spectroscopic Data of Compounds 1, 16, and 17.

Position
1 a 17 b 16 b

δH δC HMBC (H→C) δH δH δC

1 133.7 s 127.0 s

2 6.66 s 104.2 d 85.0, 104.2, 137.1, 152.6 7.76 d (1.9) 7.04 d (1.8) 109.3 d

3 152.6 s 146.6 s

4 137.1 s 147.9 s

5 152.6 s 6.88 d (8.3) 6.92 d (8.2) 112.7 d

6 6.66 s 104.2 d 85.0, 104.2, 137.1, 152.6 7.10 dd (8.3, 1.9) 7.07 dd (8.2, 1.8) 123.1 d

7 4.66 br d (3.8) 85.0 d 53.6, 71.3, 104.2, 137.1 6.80 d (12.9) 7.59 d (16.0) 144.8 d

8 3.09 m 53.6 d 5.81 d (12.9) 6.28 d (16.0) 115.5 d

9 3.84 dd (9.0, 3.2) 71.3 t 53.6, 85.0 167.5 s

4.18 dd (9.0, 6.7) 53.6, 85.0, 104.2

1′ 133.7 s 173.9 s

2′ 6.66 s 104.2 d 85.0, 104.2, 137.1, 152.6 2.31 t (7.6) 2.34 t (7.4) 33.8 t

3′ 152.6 s 1.66 m 1.67 m 24.5 t

4′ 137.1 s 1.37 m 1.47 m 25.3 t

5′ 152.6 s 1.66 m 1.67 m 28.1 t

6′ 6.66 s 104.2 d 85.0, 104.2, 137.1, 152.6 4.12 t (6.6) 4.19 t (6.6) 64.0 t

7′ 4.66 br d (3.8) 85.0 d 53.6, 71.3, 104.2, 137.1

8′ 3.09 m 53.6 d

9′ 3.84 dd (9.0, 3.2) 71.3 t 53.6, 85.0

4.18 dd (9.0, 6.7) 53.6, 85.0, 104.2

Bz-OMe 3.76 s 56.4 q 3.93 s 3.95 s 55.9 q

OMe 3.67 s 3.67 s 51.5 q

Glc H1, 1′ 4.90 d (5.2) 102.6 d 76.5, 74.1

Glc H2, 2′ 3.17 m 76.5 d 74.1

Glc H3, 3′ 3.17 m 74.1 d 76.5

Glc H4, 4′ 3.11 m 69.9 d 76.5

Glc H5, 5′ 3.02 m 77.2 d 69.9

Glc H6, 6′ 3.40 m 60.9 t 77.2

3.59 m
a 1H and 13C-NMR data measured in deuterated dimethyl sulfoxide (DMSO-d6) at 500 MHz and 125
MHz, respectively; b 1H and 13C-NMR data measured in deuterated chloroform (CDCl3) at 400 MHz and
100 MHz, respectively.
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Fifteen purified compounds were examined for their inhibition bioactivity of superoxide anion
generation and elastase release by human neutrophils in response to fMLP/CB (Table S2) [63,64].
However, most displayed weak inhibition percentages at the test concentration (10 µM). Among
these, 1, 16, and 17 displayed higher inhibitions of superoxide anion generation at 10 µM with
inhibition percentages ranged from 10.2 ± 7.1 to 20.2 ± 5.1%. In addition, compound 39 (10 µM) also
exhibited inhibitory effect on elastase release with inhibition percentage of 22.3 ± 10.0% (Table S2).
Columbin, an important furanoditerpenoid isolated from several Tinosporae Radix, exhibited significant
anti-inflammatory activities in a dose-dependent manner [65]. However, based on our research data
the related furanoid bisnorditerpenoid, malabarolide (36), was not the predominant component, maybe
due to the different parts of plant materials. The conventional use of T. sinensis in traditional Chinese
medicine is for relieving rigidity of muscles and activating collaterals, and the mechanism of action
may be related to anti-inflammatory bioactivity. The present experimental data not only suggest that
the extracts and purified compounds of the stems of T. sinensis have the potential to be developed
as novel anti-inflammatory lead drugs or health foods, but also merit further investigation of the
anti-inflammatory mechanism.

Table 2. NMR spectroscopic data of compounds 11–15.

Position
11 a 12 b 13 a 14 c 15 c

δH δC δH δC δH δH δH

2 121.6 s 133.5 s

3 7.01 d (3.9) 119.0 d 6.98 d (4.0) 126.5 d 6.87 d (4.0) 6.96 d (4.0) 6.97 d (4.0)

4 6.16 d (3.9) 110.8 d 6.26 d (4.0) 111.5 d 6.23 d (4.0) 6.27 d (4.0) 6.25 d (4.0)

5 136.9 s 144.6 s

6 162.2 s 9.42 s 180.9 d 9.50 s 9.45 s 9.40 s

7 4.43 s 65.8 t 4.63 s 56.4 t 4.45 s 4.52 s 4.65 s

1′ 4.37 br t (7.6) 44.7 t 4.38 dd (7.4, 6.0) 45.7 t 4.36 br t (7.6) 4.35 br t (7.6) 4.37 dd (7.5, 6.0)

2′ 2.04 m 26.5 t 2.01 m 27.5 t 2.01 m 1.96 m 1.98 m

3′ 2.36 t (7.3) 31.0 t 2.35 t (7.3) 31.6 t 2.36 t (7.2) 2.23 t (7.5) 2.27 t (7.5)

4′ 173.4 s 175.1 s

OCH3 3.67 s 57.7 q 3.66 s 52.2 q 3.68 s

CH2OCH3 3.34 s 51.6 q 3.36 s 3.36 s
1H and 13C-NMR data measured in a CDCl3 at 400 MHz and 100 MHz; b CD3OD at 400 MHz and 100 MHz;
c CD3OD at 500 MHz and 125 MHz, respectively.

3. Materials and Methods

3.1. General Information

Optical rotations and UV spectra were measured using a Atago AP-300 digital polarimeter (Atago,
Tokyo, Japan) and a GBC Cintra 101 spectrophotometer (GBC Scientific Equipment Ltd., Dandenong,
Australia), respectively. IR spectra were obtained with a Shimadzu FT-IR Prestige-21 spectrophotometer
(Shimadzu, Kyoto, Japan). 1H and 13C-NMR spectra were recorded on Bruker AV 700, AV 500, and Avance
III 400 NMR spectrometers (Bruker, Billerica, MA, USA). Chemical shifts are shown in δ values (ppm)
with tetramethylsilane as an internal standard. GC–MS were analyzed using a Shimadzu GC-2010 gas
chromatograph/mass spectrometer equipped with a quadrupole mass analyzer (Shimadzu, Kyoto, Japan).
The HR-ESI-MS were taken on a Bruker Daltonics micrOTOF orthogonal ESI-TOF mass spectrometer
(Bruker, Billerica, MA, USA). Column chromatography (CC) was performed on silica (70–230 mesh and
230–400 mesh, Merck, Darmstadt, Germany) and Diaion HP-20 (Mitsubishi, Tokyo, Japan) gels, and
preparative thin-layer chromatography (TLC) was conducted on Merck precoated silica gel 60 F254 plates
(Merck, Darmstadt, Germany), using UV light to visualize the spots. Methanol, chloroform (GR grade),
n-hexane, ethyl acetate, benzene, and acetone (ACS grade) were purchased from Merck (Darmstadt,
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Germany) and Mallinckrodt (St. Louis, MO, USA), respectively. DMSO-d6, CD3OD, and CDCl3 were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Materials

The stems of T. sinensis were collected from Vietnam in August 2009, and the plant material
was identified and authenticated by Assoc. Prof. Dr. Vu Xuan Phuong, Institute of Ecology
and Biological Resources, Vietnamese Academy of Science and Technology. A voucher specimen
(Viet-TSWu-2009-1801-001) was deposited in the herbarium of the Institute of Ecology and Biological
Resources, Vietnamese Academy of Science and Technology, Hanoi, Vietnam.

3.3. Extraction and Isolation

The dried stems of T. sinensis (10 kg) was refluxed with methanol (30 L × 8 × 8 h) and then
filtered and concentrated under reduced pressure to obtain the methanol extract (400 g). The extract
was suspended in distilled water and successively partitioned with chloroform to yield a chloroform
layer (60 g) and water soluble (340 g). The chloroform layer was chromatographed directly on silica
gel and eluted with a gradient of n-hexane and acetone to afford 10 fractions (CF 1-10). Fractions CF 1,
2, and 4 did not show any significant spots under TLC check and therefore were not purified further.
Fraction CF 3 was isolated by CC on silica gel with a step gradient with benzene and acetone mixtures
and the subfraction CF 3-6 was further purified by TLC using n-hexane-ethyl acetate (50:1) to yield
cycloabyssinone (40, 3 mg). Fraction CF 5 was purified using silica gel CC eluted with gradient mixtures
of n-hexane and acetone to afford thirteen subfractions (CF 5-1 to 5-13). CF 5-2 was fractionated by
silica gel CC eluted with benzene ethyl acetate and then lupeol (37, 8 mg), cycloeucalenol (39, 15 mg),
and a mixture of β-sitosterol (43) and stigmasterol (44) (364 mg), respectively, was purified from
the minor fractions by TLC using n-hexane-ethyl acetate (50:1). CF 5-5 was performed on silica
gel CC with gradient mixtures of hexane and acetone to produce ten minor fractions. One minor
fraction CF 5-5-7 was purified by silica gel CC with mixture of benzene and acetone and further
purification by TLC using chlorofrom-acetone (9:1) yielded a mixture of 7α-hydroxysitosterol (45)
and 7α-hydroxystigmasterol (46) (6 mg). CF 5-7 was subjected to silica gel CC eluted with a gradient
mixture of benzene ethyl acetate to afford ten minor fractions. CF 5-7-4 was further isolated by silica
gel CC, eluted with hexane ethyl acetate and subsequent TLC using hexane ethyl acetate (6:1) to afford
3-O-acetyloleanolic acid (38, 4 mg).

Fraction CF 6 was isolated by silica gel CC by gradient elution with mixture of n-hexane and
ethyl acetate to result in eleven subfractions (CF 6-1 to 6-11). CF 6-4 was further purified by silica gel
CC eluted with n-hexane-acetone to produce eight minor fractions (CF 6-4-1 to 6-4-8). Lichexanthone
(56, 4 mg) was purified by TLC using chloroform-ethyl acetate (100:1) from CF 6-4-3. CF 6-4-4
was subjected to silica gel CC eluted by benzene-acetone gradient mixtures and further purified
by TLC using chloroform:acetone (10:1) to afford 2-methyl-4,5-dimethoxybenzoic acid (20, 4 mg).
CF 6-5 was subjected to silica gel CC with chloroform and methanol gradient mixtures to afford
five minor fractions. CF 6-5-2 was isolated by silica gel CC eluted by chloroform:ethyl acetate
gradient mixtures and subsequent TLC using hexane-ethyl acetate (10:1) to produce tinosporin A
(11, 1 mg), 3(17)-phytene 1,2-diol (35, 3 mg), cycloart-22-ene-3β,25-diol (42, 4 mg), 5,6-dimethoxy-
N-methyl-phthalimide (51, 8 mg), respectively. CF 6-6 was isolated by silica gel CC with chloroform
and methanol gradient mixtures and further purified by TLC using hexane:acetone (10:1) to yield
methyl 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoate (13, 2 mg).

Fraction CF 7 was chromatographed on silica gel column eluted with gradient mixtures of
chloroform and ethyl acetate to afford seven subfractions (CF 7-1 to 7-7). CF 7-2 was purified by silica
gel CC successively eluted with hexane:acetone, hexane ethyl acetate, and chloroform ethyl acetate and
one minor fraction (CF 7-2-5-3) to afford methyl ferulate (18, 5 mg). Another minor fraction CF 7-2-5-4
was further isolated by silica gel CC with gradient elution of benzene and acetone, and subsequent
purification by TLC using hexane ethyl acetate (5:1) to give rhodiolate (16, 2 mg) and tinosporin B
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(17, 2 mg). CF 7-3 was also performed silica gel CC eluted with hexane ethyl acetate to afford ten
minor fractions, and CF 7-3-7 was further isolated by silica gel CC eluted with hexane-ethyl acetate
and subsequent TLC using benzene ethyl acetate (30:1) to afford (+)-pinoresinol monomethyl ether
(6, 3 mg). CF 7-4 was isolated by silica gel CC eluted with hexane ethyl acetate to yield ten minor
fractions. Of these, CF 7-4-5 was further purified by silica gel CC (hexane-acetone mixing eluents)
and subsequent TLC using chloroform:acetone (20:1) to afford cycloartane-3β,25-diol (41, 16 mg).
CF 7-4-6 was also subjected into silica gel CC (hexane:acetone mixing eluents) to give seven minor
fractions. Further purification of CF 7-4-6-4, CF 7-4-6-5, and CF 7-4-6-6 by silica gel CC eluted with
chloroform:acetone (9:1) to yield loliolide (33, 5 mg), a mixture of 6β-hydroxystigmast-4-en-3-one
(47) and 6β-hydroxystigmasta-4,22-dien-3-one (48) (2 mg), and a mixture of 7-ketositosterol (49) and
3β-hydroxystigmasta-5,22-dien-7-one (50) (6 mg), respectively.

Fraction CF 8 was isolated by silica gel CC eluted with gradient mixtures of hexane and acetone
to afford six subfractions (CF 8-1 to 8-6). CF 8-4 was performed silica gel CC eluted with hexane ethyl
acetate and further purified by TLC using benzene:acetone (20:1) to give N-trans-feruloyldopamine
(52, 6 mg). Ten subfractions (CF 9-1 to 9-10) were obtained from CF 9 by silica gel CC eluted
with gradient mixture of chloroform and acetone. CF 9-3 was further isolated by silica gel CC,
eluted with benzene:ethyl acetate and, following TLC purification of minor fraction CF 9-3-6
using chloroform:acetone (30:1) to afford (+)-pinoresinol (2, 10 mg) and scopoletin (55, 3 mg),
CF 9-3-7 was further purified by TLC using chloroform:acetone (10:1) to afford medioresinol
(4, 4 mg), (+)-epi-syringaresinol (5, 3 mg), (+)-glaberide I (7, 3 mg), and 2,6-dimethoxy-p-quinone
(57, 5 mg), respectively. CF 9-3-8 was isolated by silica gel CC eluted with gradient mixtures
of chloroform-methanol and then purified by TLC using chloroform:methanol (300:1) to yield
syringaresinol (3, 12 mg). CF 9-4 was divided to eight minor fractions by silica gel CC eluted with
benzene:acetone solvent mixture. Of these, CF 9-4-5 was further fractionated by silica gel CC eluted
with chloroform:acetone (30:1) to give β-hydroxypropiovanillone (19, 3 mg). CF 9-7 was isolated by
silica gel CC (chloroform:acetone gradient mixture) to yield six minor fractions and one of these CF
9-7-4 was afforded N-trans-feruloyltyramine (53, 8 mg) and N-cis-feruloyltyramine (54, 5 mg) by further
silica gel CC eluted with chloroform:acetone (30:1) and subsequent TLC using chloroform:methanol
(50:1). The last fraction (CF 10) of the chloroform layer was also purified by silica gel CC eluted with
gradient mixture of chloroform and acetone. The resulting subfraction CF 10-5 was divided to several
minor fractions by silica gel CC eluted with chloroform:methanol (50:1) solvent mixture and further
purified by TLC using chloroform:acetone (10:1) to give abscisic acid (34, 1 mg).

The water soluble fraction was subjected directly to Diaion HP-20 column chromatography, eluted
by water and gradient with methanol, to afford seventeen fractions (WF 1-17). Fractions WF 1-5, 9,
11, and 14-16 did not show any significant spots under TLC check and therefore were not purified
further. WF 6, 7, and 8 were purified by silica gel CC eluted with gradient mixture of chloroform
and methanol and afforded tachioside (23, 10 mg); vanillic acid (21, 5 mg), p-hydroxyl phenethanol
(22, 3 mg), icariside D2 (24, 10 mg); and salidroside (25, 10 mg), respectively.

Fraction WF 10 was chromatographed on silica gel column eluted with gradient mixtures of
chloroform and methanol to afford six subfractions (WF 10-1 to 10-6). WF 10-2 was purified by
silica gel CC eluted with chloroform and methanol and one minor fraction (WF 10-2-3) affording
4-(2-hydroxyethyl)benzoic acid (29, 2 mg). WF 10-3 was also performed silica gel CC eluted with
chloroform and methanol solvent mixture to afford ten minor fractions, and WF 10-3-4 was further
isolated by silica gel CC eluted with chloroform and acetone (10:1) to afford p-hydroxybenzoic acid
(28, 5 mg). WF 10-4 was isolated by silica gel CC eluted with chloroform and methanol solvent
mixture to yield ten minor fractions. Of these, WF 10-4-5 was further purified by silica gel CC
(chloroform:acetone mixing eluents) and subsequent TLC using chloroform:acetone (10:1) to afford
5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (10, 1 mg). Recrystallization of WF 10-4-7 and 10-4-9
by chloroform:acetone produced syringin (26, 25 mg) and cordifolioside A (27, 30 mg), respectively.
WF 10-6 was isolated by silica gel CC eluted with chloroform and methanol solvent mixture to yield
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five minor fractions. Of these, WF 10-6-3 was further purified by silica gel CC eluted by chloroform
and acetone (9:1) to afford syringic acid-4-O-α-L-rhamnoside (30, 8 mg).

Fractions WF 12, 13, and 17 were all chromatographed on silica gel column eluted with gradient
mixtures of chloroform and methanol to produce several subfractions. WF 12-2 was purified by silica gel
CC eluted with chloroform ethyl acetate to afford methyl 4-[formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]
butanoate (12, 10 mg). Similarly, 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid
(15, 5 mg) and 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid (14, 7 mg) resulted from
the chromatographic elution of WF 12-5 and 12-12, respectively. WF 13-1 was isolated by silica gel CC
eluted with chloroform and methanol solvent mixture to yield ten minor fractions. Of these, WF 13-1-7
was further purified by silica gel CC (chloroform-acetone mixing eluents) and subsequent TLC using
chloroform:acetone (10:1) to syringic acid (32, 3 mg). Another subfraction WF 13-3 was further isolated
by silica gel CC with gradient elution of chloroform and methanol, and subsequent purification by TLC
using chloroform and methanol (9:1) to give isovanillic acid (31, 2 mg). Recrystallization of WF 13-4 and
13-13 by chloroform:acetone produced tinosporide A (1, 15 mg) and malabarolide (36, 10 mg), respectively.
WF 17-2 was isolated by silica gel CC eluted with chloroform and methanol (9:1) and further purified by
TLC using chloroform:acetone (20:1) to afford sesamin (8, 5 mg) and sesamolin (9, 2 mg).

Tinosporide A (1): colorless powder; UV (MeOH) λ max (log ε) 272 (2.87) nm; IR (neat) νmax 3258, 2862,
2358, 1592, 1457, 1418, 1235, 1131, 1045 cm−1; 1H-NMR (500 MHz, DMSO-d6) and 13C-NMR (125 MHz,
DMSO-d6), see Table 1; HR-ESI-MS m/z 741.2612 ([M−H−H2O]−, calcd for C34H45O18, 741.2611).

Tinosporin A (11): Pale yellow syrup; UV (EtOH) λmax: 319, 293, 220 nm; 1H-NMR (700 MHz, CDCl3)
and 13C-NMR (175 MHz, CDCl3), see Table 2; GC–MS m/z 255 ([M]+), 237, 210, 180, 136, 101, 59.

Tinosporin B (17): Colorless syrup; UV (MeOH) λmax (log ε): 323 (3.32), 299 (3.18, sh), 235(3.13),
218(3.20) nm; IR (neat) νmax: 3410, 2926, 2853, 1729, 1709, 1632, 1595, 1515, 1464, 1432, 1376, 1270, 1162,
1126, 1033 cm−1; 1H-NMR (400 MHz, CDCl3) see Table 1; HR-ESI-MS m/z 345.1311 ([M + Na]+, calcd
for C17H22O6Na, 345.1309).

3.4. Anti-inflammatory Bioactivity Examination

3.4.1. Preparation of Human Neutrophils

The use of human neutrophils was approved by the Institutional Review Board at Chang Gung
Memorial Hospital, Taoyuan, Taiwan, and the study was conducted according to the Declaration of
Helsinki (2013). Written informed consent was obtained from each healthy donor before blood was drawn.
The details of the preparation of human neutrophils are provided in the Supplementary Materials.

3.4.2. Measurement of Superoxide Anion Generation and Elastase Release

The assay of the generation of superoxide anion was based on the superoxide dismutase
(SOD)-inhibitable reduction of ferricytochrome c. Degranulation of azurophilic granules was determined
by elastase release as described previously [63,64]. The details of measurement of superoxide anion
generation and elastase release were provided in the Supplementary Materials.

Supplementary Materials: The following are available online. S1: Anti-inflammatory bioactivity experimental
procedures; Tables S1 and S2: Inhibitory effects of extracts and compounds from T. sinensis; Figures S1–S16: NMR
spectra of compounds 1, 11, 12, 16, and 17.
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