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Abstract

Gram-negative bacteria pose a major threat to human health in an era fraught with multi-drug 

resistant bacterial infections. Despite extensive drug discovery campaigns over the past decades, 

no new antibiotic target class effective against gram-negative bacteria has become available 

to patients since the advent of the carbapenems in 1985. Antibiotic discovery efforts against 

gram-negative bacteria have been hampered by limited intracellular accumulation of xenobiotics, 

in large part due to the impermeable cell envelope comprising lipopolysaccharide (LPS) in the 

outer leaflet of the outer membrane, as well as a panoply of efflux pumps. The biosynthesis 

and transport of LPS are essential to the viability and virulence of most gram-negative bacteria. 

Thus, both LPS biosynthesis and transport are attractive pathways to target therapeutically. In this 

review, we summarize the LPS biosynthesis and transport pathways and discuss efforts to find 

small molecule inhibitors against targets within these pathways.
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1. Introduction

Gram-negative bacteria pose a major threat to patients with hospital-acquired infections, 

compromised immune systems, and chronic pulmonary infections due to limited treatment 

options and their high frequency antibiotic resistance [1–3]. Indeed, the dire need for new 

therapeutic options compelled the World Health Organization to generate a priority list of 

antibiotic-resistant bacteria, listing the gram-negative pathogens Pseudomonas aeruginosa, 

Acinetobacter baumannii, and Enterobacteriaceae species as the topmost priority [4].

The advent of automated sequencing ushered in the genomic era of antibiotic discovery, 

allowing for the systematic and comprehensive identification of essential target space as 

defined by conserved, essential genes across many bacterial species, strains, and clinical 

isolates [5]. Yet identifying new small molecules with activity against gram-negative 

bacteria remains challenging due to their impermeable cell envelope and large repertoire 

of efflux pumps that hinder intracellular accumulation of small molecules. Indeed, several 

potent in vitro inhibitors of essential, well-validated cytoplasmic targets lacked whole cell 

activity against gram-negative bacterial pathogens due to poor intracellular accumulation 

[5,6].

The cell envelope of gram-negative bacteria underpins their ability to withstand harsh 

environments and survive the immune response of human hosts. The cell envelope 

comprises an outer membrane, inner membrane, and intervening peptidoglycan layer 

spanning the periplasm (Fig. 1A). The outer membrane is somewhat unusual in biology 

because it is highly asymmetric due to the distribution of the glycolipid lipopolysaccharide 

(LPS) in its outer leaflet [7]. LPS is a diverse biomolecule with considerable species-to-

species chemical variation [8]. In general, it consists of three components: a phosphorylated 

glycolipid (known as lipid A), a core oligosaccharide, and an O-antigen sugar chain (Fig. 

1B). Lipid A is composed of a bisphosphorylated diglucosamine backbone with 4–7 acyl 

chains [9]. The core oligosaccharide, which consists of inner core and outer core, is 

attached directly to lipid A and usually comprises 10 sugars, typically conserved within 

a bacterial species. The inner core forms the base of the core oligosaccharide, and usually 

contains several Kdo (3-deoxy-α-D-manno-octulosonic acid) molecules. The outer core is 

covers the inner core, and usually contains additional heptose sugars, some of which are 

phosphorylated or modified by phosphoethanolamine or pyrophosphoethanolamine [10]. 

The O-antigen is covalently attached to the core oligosaccharide and comprises a highly 

diverse polymer of repeating sugars units. O-specific antigen (OSA) is the major O-antigen 

heteropolymer and highly variable among bacterial strains and species, consisting of three 

to five repeating sugar units that give rise to distinct bacterial serotypes. One of the high 

priority pathogens, P. aeruginosa, is unique in that it concurrently produces an additional 

form of O-antigen, called common polysaccharide antigen, formed by a homopolymer of 

D-rhamnose. The array of enzymes that carry out and regulate the synthesis of O-antigens 

have been extensively reviewed elsewhere [11–14].

The essentiality of LPS in most gram-negative bacteria was first attributed to its membrane 

barrier function. LPS forms a highly protective permeability barrier that shields gram-

negative bacteria from xenobiotics, bile salts and detergents found in harsh extracellular 
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environment [15]. When assembled on the outer membrane, the phosphate groups of 

adjacent LPS molecules coordinate divalent magnesium ions to create a tight electrostatic 

barrier that protects the cell from hydrophobic xenobiotics. In fact, the attractive forces 

between adjacent LPS molecules are so strong that LPS patches have been shown to 

persist for days when LPS molecules are introduced in phospholipid bilayers [16]. LPS 

also excludes small hydrophilic compounds due to its rigid lipid interior comprising up 

to seven fully saturated fatty acyl chains per LPS molecule [15]. Phosphorylation of core 

oligosaccharide is further linked to increased membrane barrier function and antibiotic 

resistance in P. aeruginosa and is required for efficient LPS transport to the outer membrane 

[17,18]. Disruptions in LPS biogenesis have been shown to cause membrane instability, 

antibiotic susceptibility, and in extreme cases, cell death [12,13].

Beyond its protective biophysical properties, LPS has long been known to trigger a robust 

immune response in humans with gram-negative bacterial infections. In fact, LPS was first 

discovered by Richard Pfieffer in 1892 as a heat-stable toxin produced by Vibrio cholerae, 

which he named endotoxin [19]. LPS induces the innate immune response by binding the 

TLR4-MD-2 signaling receptor complex, leading to the upregulation of proinflammatory 

cytokines [20]. The lipid A portion of LPS was later shown to drive the endotoxin effect 

[21], with two glucosamine residues, two phosphoryl groups, and six fatty acids – the Kdo2-

lipid A structure found in Escherichia coli and shown in Fig. 2 – constituting the minimal 

requirement for its immunostimulatory activity [22]. While trace amounts of endotoxin can 

be beneficial in human hosts, leading to immune protection against severe infection, high 

levels of LPS induce an overwhelming inflammatory response causing fevers, hypotension, 

and septic shock [23].

Interestingly, the essentiality of the LPS barrier function was questioned after the discovery 

that LPS is not essential in some gram-negative bacteria. Indeed, LPS-null strains of 

Neisseria meningitidis, Moraxella catarrhalis and A. baumannii have all been shown to 

survive in laboratory cultures [24–27]. N. meningitidis is perhaps the most prominent 

example of the dispensability of LPS, as laboratory strains are viable despite gene deletions 

disrupting either LPS biosynthesis or transport [27,28]. The importance of LPS in A. 
baumannii is more nuanced, as laboratory strains can survive without several early-step 

LPS biosynthesis genes [24]. Paradoxically, some downstream LPS biosynthesis genes, and 

all LPS transport genes, remain essential in A. baumannii, leading to the hypothesis and 

eventual observation that the toxic accumulation of mislocated LPS intermediates leads 

to cell death [29–32]. The loss of LPS has also been shown to impact the synthesis and 

assembly of outer membrane proteins and peptidoglycan [13,33]. It has been proposed that 

the variation in LPS essentiality across gram-negative species might relate to the relative 

importance of the cellular processes impacted by the loss of LPS [34].

Targeting LPS biosynthesis and transport machinery nevertheless remains an attractive 

therapeutic approach due to LPS’s essential barrier function in most gram-negative bacteria, 

raising the prospect for potential broad-spectrum agents with efficacy against multiple 

gram-negative bacteria. To maintain the LPS barrier, gram-negative bacteria synthesize 

nascent LPS molecules in the cytoplasm, and subsequently transport them across the 

inner membrane, periplasm, and outer membrane to their destination on the cell surface. 
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A cascade of enzymes and proteins are responsible for the biosynthesis and subsequent 

transport of LPS. Most of our knowledge of LPS biosynthesis and transport comes 

from studying E. coli and Salmonella enterica as the model gram-negative organisms, 

in which most LPS biosynthesis genes and all LPS transport genes are essential for 

survival. Extensive effort has been devoted to the discovery and development of small 

molecule inhibitors of LPS synthesis or transport, both by academic groups and major 

biopharmaceutic companies alike. LpxC inhibitors disrupt the committed step of LPS 

biosynthesis, and as a class have advanced the farthest in the development pipeline. LpxC 

inhibitors have yet to reach patients in clinical practice, however, collectively failing due to 

insolubility, narrow therapeutic windows, and toxicities. In this review, we will summarize 

what is known about LPS biosynthesis and transport in gram-negative bacteria, and in 

this context, highlight key LPS-directed inhibitors that have been described. Rather than 

providing a comprehensive overview of LPS biology, of which there is an abundance of 

excellent examples [8,33–38], we intend this review to serve as a reference of past small 

molecule discovery efforts aimed at LPS biosynthesis and transport.

2. Targeting LPS biosynthesis

LPS biosynthesis requires synthesis of lipid A, a core oligosaccharide and the O-antigen 

sugars. Fig. 2 summarizes the biosynthesis of lipid A in the cytoplasm via the Raetz 

pathway, named after the late biochemist Christian Raetz whose research contributed 

immensely to the current understanding of LPS biosynthesis. The Raetz pathway comprises 

of a series of reactions catalyzed by nine enzymes in the following order: LpxA, 

LpxC, LpxD, LpxH, LpxB, LpxK, KdtA, LpxL and LpxM. The first six enzymes 

are essential in most gram-negative bacteria, and together catalyze the diacylation of 

uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), subsequent condensation of two 

molecules, and phosphorylation yielding lipid IVA. Three functional orthologs carry out 

the pyrophosphate cleavage of uridine diphosphate 2,3-diacyl-glucosamine (UDP-DAGn) 

to form lipid X: LpxH in β-proteobacteria and γ-proteobacteria; LpxI in α-proteobacteria; 

and LpxG in Chlamydiae [39–41]. Among the orthologs, LpxH is conserved across the 

most clinically important species on the World Health Organization high-priority bacteria 

list [4]. The remaining three enzymes (KdtA, LpxL and LpxM) are responsible for the 

further glycosylation and acylation into Kdo2-lipid A, the final product to which core 

oligosaccharide and O-antigen are added. While KdtA, LpxL and LpxM and the downstream 

enzymes involved in O-antigen assembly are known to influence membrane permeability, 

virulence, and antibiotic resistance, they are non-essential and thus have not been the focus 

of past drug discovery programs.

2.1. LpxA and LpxD inhibitors

LpxA is the first enzyme in the LPS biosynthetic pathway and is responsible for the 

acylation of UDP-GlcNAc. LpxA is a cytoplasmic protein that forms a mushroom-shaped 

homotrimer: the N-terminal “stem” comprises three prism-shaped left-handed parallel β-

helix domains, and the C-terminal “head” is formed by α-helix bundle domains [8,42–44]. 

The primary sequence of LpxA contains unusual hexapeptide repeats that make up the 

left-handed parallel β-helix of the N-terminus [42]. LpxA is highly selective for acyl chain 
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length, acting as a “molecular ruler” based on the size of its hydrophobic cleft within the C-

terminal β-helix domain. The size of this hydrophobic cleft varies in different gram-negative 

bacteria, resulting in species-specific selectivity in acyl chain length. In E. coli, for example, 

LpxA is highly selective for 14-carbon R-3-hydroxymyristoyl-ACP [45–47], whereas LpxAs 

in N. meningitidis and P. aeruginosa prefer to incorporate 12-cabon and 10-carbon acyl 

chains, respectively [46–49].

LpxD catalyzes the third step in the lipid A biosynthesis pathway by transferring a second 

fatty acyl chain to the 2′ amine of nascent uridine diphosphate glucosamine [8]. In keeping 

with its similar function of fatty acyl transfer, LpxD shares high structural similarity 

with LpxA despite low primary sequence similarity. Indeed, the similarity in LpxA and 

LpxD secondary structures was predicted nearly three decades ago based on their unusual 

hexapeptide repeats in primary structure [50]. Like LpxA, LpxD forms a mushroom-like 

homotrimer with hydrophobic pocket within the beta-helix domain to accommodate the fatty 

acyl chain [51–54].

Early LpxA inhibitors were antibacterial peptides discovered by phage display, leading 

to the discovery of the pentadecapeptide, Peptide 920, with nanomolar binding affinity 

for LpxA. The crystal structure of Peptide 920 in complex with LpxA confirmed that 

three Peptide 920 molecules bound the LpxA trimer in proximity of the three active sites 

[44]. Peptide 920 inhibits LpxA function through competitive inhibition of the acyl chain 

donor in E. coli, R-3-hydroxymyristoyl-ACP, but not of the substrate UDP-GlcNAc [44]. 

When tested for whole cell activity against intact wild-type bacteria however, Peptide 

920 and related antibacterial peptides lacked significant activity. They were toxic when 

cytoplasmically overexpressed in E. coli, suggesting that the lack of whole cell activity was 

due to suboptimal cellular uptake and efflux [44,55].

Like LpxA inhibitors, the first LpxD inhibitors were also antibacterial peptides discovered 

by phage display. The first series of LpxD inhibitors bound to LpxD with low micromolar 

affinity and displayed competitive inhibition of the acyl chain donor [56]. Antimicrobial 

activity of these peptides was also suggested by their toxicity when overexpressed in E. 
coli. Interestingly, the lead peptide also exhibited micromolar affinity for LpxA, raising 

the prospect for peptidomimetic small molecule inhibitors with dual activity against LpxD 

and LpxA. This work also led to the development of an LpxD fluorescent binding assay, 

and subsequent small molecular library screen that identified eleven LpxD inhibitors 

(thesis reference). Work at Novartis later reported genetic, biophysical, and structural 

characterization of these LpxD inhibitors [57]. Kroeck and colleagues later performed an 

in-silico screen for small molecule ligands within the acyl chain binding pocket, specifically 

in hopes that hits would exhibit dual-activity against both LpxA and LpxD. Two top-scored 

compounds, one of which is shown in Fig. 3, were synthesized, and indeed found to display 

micromolar binding to both LpxA and LpxD [58]. It remains to be seen how these hits, or 

similar small molecules in the LpxD drug class, will translate into clinically active drugs.

Novartis reported a series of LpxA inhibitors in 2020 from cell-based screening against an 

efflux-deficient strain of E. coli [59]. Subsequent structure-activity relationship studies led to 

the discovery of compound 13 (Fig. 3), exhibiting low micromolar in vitro activity against 
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wildtype E. coli. In 2021, the company X-Biotix reported a new series of pseudomonas-

specific LpxA inhibitors discovered by screening a DNA-encoded library, followed by 

considerable medicinal chemistry efforts assisted by x-ray crystallography in structure-

activity relationship studies. The lead compound 54 (Fig. 3) from the series displayed in 
vitro activity against wildtype and multi-drug resistant P. aeruginosa, although rapid plasma 

clearance precluded efficacy testing in mouse infection models [60]. While the compound 

series is a good starting point for lead optimization, further improvements in activity and 

pharmacokinetics are necessary to generate a clinical lead from the series.

2.2. LpxC inhibitors

The next enzyme in LPS biosynthesis is LpxC, an amidase that catalyzes the committed step 

of lipid A biosynthesis through the zinc-dependent deacetylation of the LpxA product. LpxC 

has been long viewed as an attractive antimicrobial target because it is (1) essential as the 

committed enzyme in the Raetz pathway; (2) conserved across multiple strains and species 

of gram-negative bacteria; and (3) lacks eukaryotic homologues. The first structures of 

LpxC, solved by both solution NMR and X-ray crystallography, revealed a tertiary structure 

of a β-α-α-β sandwich, in which two β-sheet domains on either terminus pack against two 

α-helix domains on the interior [61,62]. LpxC contains a hydrophobic tunnel on its interior 

that accommodates the fatty acyl chain of substrates, positioning the 2′ amide group in 

proximity of the divalent zinc for deacetylation.

LpxC inhibitors are the first and only inhibitors of LPS biosynthesis to enter clinical 

development. A whole-cell, pathway-directed screen and subsequent structure-activity 

relationship studies by Merck led to the discovery of the first LpxC inhibitor, L-161,240 

(Fig. 3), which showed potent anti-microbial activity against E. coli both in vitro and in 

murine infection models [63]. Since that time, multiple other biopharmaceutic companies 

have run programs focused on the discovery and optimization of LpxC inhibitors [64,65]. 

Across programs with publicly available leads, the most promising LpxC inhibitors all 

contained a hydroxamic acid moiety as the metal binding site, and hydrophobic tail to bind 

the hydrophobic tunnel of LpxC.

Representative small molecule inhibitors of LpxC are summarized in Fig. 3. The first 

LpxC inhibitors were limited in antibacterial spectrum. In particular, they lacked activity 

against P. aeruginosa. The subsequent discovery of several key hydroxamic acid derivatives 

significantly expanded the spectrum of activity of LpxC inhibitors. Sulfonamide derivatives 

of hydroxamic acid were first reported by British Biotech Pharmaceuticals, culminating 

in BB-78485 that exhibited bactericidal activity against Enterobacteriaceae, Haemophilus 
influenzae, Serratia marcescens, and Burkholderia cepacia [66]. Around the same time, 

the Chiron Corporation, later acquired by Novartis, discovered hydroxamic acid derivatives 

linked to aromatic moieties, with lead candidate CH-090 showing low micromolar growth 

inhibition of P. aeruginosa [67,68]. Pfizer later disclosed a series of methylsulfone 

hydroxamate LpxC inhibitors with potent anti-pseudomonal activity [69]. Achaogen’s 

compound ACHN-975 was the first LpxC inhibitor ever to be advanced into phase I clinical 

trials, although the trial was halted prematurely due to hypotension-related cardiovascular 

toxicity and injection site reactions [70–72].
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Unfortunately, LpxC inhibitors have yet to reach the market despite extensive medicinal 

chemistry efforts by multiple biopharmaceutical groups, in part due to suboptimal drug-

like properties exemplified by Novartis, whose lead candidates failed to achieve sufficient 

solubility, metabolic stability, or bioavailability to facilitate effective therapeutic dosing in 

humans [73]. Nevertheless, efforts to improve the drug-like properties of LpxC inhibitors 

have continued. In part, the incorporation of hydrophobic tails in most LpxC inhibitors 

tended to limit the solubility of most clinical leads. Previous efforts aimed to improve 

solubility by replacing the hydrophobic tail with benzoic acid [74]. Pfizer later developed 

a pyridine series, including PF-5081090, lacking the hydrophobic tails found in most other 

LpxC inhibitors [69]. Idorsia Pharmaceuticals also recently reported novel lead compounds 

in the methylsulfone hydroxamate family of LpxC inhibitors with more favorable solubility 

[65,75]. Lead candidates displayed low micromolar MICs against a wide range of gram-

negative bacteria, including P. aeruginosa and Klebsiella pneumoniae, but efficacy in a mice 

infection model remained limited.

The metal-binding properties of the hydroxamate moieties also raised concerns for 

off-target toxicity. In particular, hydroxamate moieties in histone deacetylase inhibitors 

have been linked to DNA damage and mutagenicity [76]. In addition, more than 50 

hydroxamate-containing inhibitors of matrix metalloprotease, an attractive cancer target, 

have failed clinical trials in part due to considerable toxicity from off-target effects [77]. 

Indeed, the development of the LpxC inhibitor ACHN-975 was halted by Achaogen 

for hypotension-related cardiovascular toxicity attributed to off-target effects of the 

hydroxamate group [70]. To avoid the ill-effects of hydroxamates, more recent approaches 

have focused on incorporating non-hydroxamate moieties as the metal-binding group 

[71,78]. A recent fragment-based discovery platform was developed and led to the discovery 

a non-hydroxamate LpxC inhibitor with potent anti-pseudomonal activity in vitro [79]. 

Given the propensity of cardiovascular toxicity, Achaogen, Entasis Therapeutics, and other 

biopharmaceutical companies have integrated rat hemodynamic testing into their pipelines, 

which has helped predict the hypotensive effect of hopeful LpxC inhibitors earlier in the 

drug development process [70,71]. Though LpxC inhibitors have yet to reach patients 

despite extensive efforts by pharmaceutical companies, there is hope still that LpxC 

inhibitors might help combat drug resistant infections in clinical practice in the future.

2.3. LpxH inhibitors

LpxH is a calcineurin-like phosphatase that catalyzes the hydrolysis of UDP-DAGn to 

form lipid X [39]. A series of sulfonyl piperazine analogs were discovered in a high-

throughput whole-cell screen leveraging an AmpC reporter system to identify inhibitors 

of cell wall synthesis [80]. The screen was designed to find small molecules that disrupt 

cell envelope biosynthesis, as the beta-lactamase AmpC is strongly upregulated in response 

to peptidoglycan interference and cell wall stress. Fifteen resistant mutants were isolated 

under selective pressure of a lead compound in the series, and all harbored mutations in 

LpxH. Two representative compounds from the series are depicted in Fig. 3. The most 

potent analog in the series exhibited only moderate in vitro activity (MICs in the 8–32 g/mL 

range) against E. coli and H. influenzae strains and remained inactive against P. aeruginosa 
and K. pneumoniae. Subsequent crystallization studies revealed inhibitor binding within the 
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acyl chain binding pocket of LpxH, which guided further chemical optimization aimed at 

building activity against K. pneumoniae [81,82]. Others have employed NMR studies of 

LpxH and LpxC inhibitors to better define their dynamic interactions with the binding sites, 

which have guided the pharmacophore-based design of LpxH and LpxC inhibitors with 

enhanced potency in vitro and in animal models of bacterial infection [83]. Efforts toward 

chemical optimization and hit-to-lead development remain a work-in-progress.

3. Targeting LPS transport

As lipid A is synthesized in the cytoplasm, subsequent addition of the core oligosaccharide, 

which usually comprises ten sugar moieties, is added to Kdo2-lipid A along the inner 

leaflet of the inner membrane [14]. The product lipooligosaccharide (LOS) is thus formed 

in the cytoplasmic compartment but must ultimately be transported to the outer surface of 

the cell. LOS is first flipped across the inner membrane by the ABC transporter MsbA 

[84]. Once anchored to the outer leaflet of the inner membrane, the biosynthesis of LPS is 

completed by the addition of O-antigen polysaccharides to LOS [14]. After the conversion 

of LOS to LPS in the periplasmic compartment, LPS traverses the periplasm by seven 

proteins that form the LptABCDEFG transport system (Fig. 4). Unlike the LPS biosynthetic 

pathway, which consists of cytoplasmic proteins amenable to enzymatic characterization, 

advancements in our current understanding LPS transport relied heavily on the recognition 

of LPS-deficient phenotypes and localization of aberrantly transported LPS [33,34]. The 

current LPS transport model uses the analogy comparing the LPS transport machinery 

to a PEZ candy dispenser, in which the Lpt machinery connects the inner and outer 

membranes by forming a continuous protein bridge across the periplasm [38,85]. To form 

the periplasmic bridge, domains from LptF, LptC, LptA and LptD link together in a head-to-

tail conformation to span the periplasm. LptB2FGC forms an ABC transporter in the inner 

membrane, and the hydrolysis of one ATP molecule by LptB2 drives the energetically costly 

extraction of one LPS molecule from the inner membrane into the Lpt bridge [86–91]. 

Processive rounds of ATP hydrolysis insert more LPS molecules into the periplasmic bridge, 

effectively pushing sequential LPS molecules toward the outer membrane like the spring of 

the PEZ dispenser [92]. Once near the outer membrane, LPS molecules finally cross the 

outer membrane through the LptDE protein complex, a transmembrane heterodimer of LptD 

and LptE proteins [93,94]. Targeting the LPS transport machinery may be advantageous 

due to the localization of most protein components along the outer membrane or within the 

periplasm, potentially minimizing the need for high intracellular drug accumulation.

3.1. MsbA inhibitors

MsbA is a homodimeric ABC transporter located in the inner membrane, comprising two 

transmembrane domains connected via linkers to its nucleotide binding domains [35]. Two 

classes of MsbA small molecule inhibitors were reported around the same time in 2018 

(Fig. 5). Genentech first disclosed a 3-million compound library screen yielding a series 

of quinoline inhibitors with potent activity against MsbA in E. coli [95]. Subsequent co-

crystallization of MsbA with lead compound G907 revealed a novel mechanism of action 

in which MsbA was trapped in an inward-facing, LOS-bound conformation, causing the 

secondary uncoupling of the nucleotide binding domains [96]. In two resistant mutants, 
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point mutations within the binding pocket result in steric clashes with G907. Subsequent 

medicinal chemistry optimization of hits yielded compounds with low micromolar in vitro 
activity against E. coli, K. pneumoniae, and E. cloacae [97]. Separately, a second series 

of MsbA inhibitors was discovered by leveraging LPS non-essentiality in A. baumannii 
to enable creation of an LPS-null strain [98]. LPS-deficient A. baumannii mutants are 

resistant to inhibitors of LPS biosynthesis or transport. Strains harboring LPS, however, 

remain susceptible to many LPS-directed inhibitors due to the toxic accumulation of 

LPS intermediates. Leveraging this phenotype, a 150-thousand compound library screen 

was performed against an A. baumannii strain with intact LPS biosynthesis. Active 

compounds were counter-screened against the LPS-null strain because on-pathway hits 

would lose activity in the absence of LPS. Structure-activity relationship studies yielded 

tetrahy-drobenzothiophene analogs with wildtype activity, and MsbA was subsequently 

confirmed as the target through downstream genetics and cellular assays. While both screens 

demonstrate proof-of-concept for MsbA as a tractable target, the translation of MsbA 

inhibitors into clinically active leads remains to be seen.

3.2. LptA-LptC inhibitors

The continuous hydrophobic groove formed by the head-to-tail assembly of the β-jellyroll 

domains of LptF, LptC, LptA and LptD form the bridge through which LPS molecules 

traverse the periplasm. A small molecule IMB-881, shown in Fig. 5, was recently discovered 

from a yeast two hybrid screen to have antimicrobial activity against E. coli and other 

Enterobacterial species, likely by binding LptA to block interactions with LptC [99]. Using 

a bacterial adenylate cyclase two-hybrid system, an insect defense peptide called thanatin 

was also found to exhibit antimicrobial activity against E. coli by disrupting LptA-LptC 

and LptA-LptA interactions, causing increased degradation of LptA [100,101]. Thanatin 

was also shown to disrupt the outer membrane of highly drug resistant bacteria producing 

New Delhi metallo-β-lactamase-1 (NDM-1) by displacing divalent cations coordinating 

lipopolysaccharides, and also exhibited direct inhibition of NDM-1 by displacing zinc ions 

from its active site [102]. Though far from reaching patients, the multi-modal activity of 

thanatin highlight its potential to combat drug-resistant gram-negative bacteria, including 

NDM-1-producing isolates.

3.3. LptB2 binders

LptB2 forms the cytoplasmic-exposed nucleotide binding domains of the ABC transporter 

LptB2FGC, responsible for the ATP-dependent extraction of LPS from the inner membrane 

[92,103]. LptFG forms the transmembrane domains that interact with LPS to extract it 

from the inner membrane. Both LptF and LptG also contain β-jellyroll domains facing 

the periplasm. While there is evidence that the β-jellyroll domain from LptF assembles in 

the periplasmic bridge, it remains unclear what role, if any, the LptG β-jellyroll domain 

plays in LPS transport. LptC contains a single transmembrane helix wedged between the 

transmembrane domains of LptFG, as well as a periplasm-exposed β-jellyroll domain that 

links up within the periplasmic bridge [104]. According to the current model, LPS binds to 

the hydrophobic cavity formed by LptFGC, which collapses and opens in coordination with 

the cycle of ATP hydrolysis by LptB2, thereby driving the processive extraction of LPS from 

the inner membrane and expulsive into the periplasmic bridge [104].
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While no small molecule inhibitors of the LptB2FGC transporter have been reported, 

the DNA gyrase inhibitor novobiocin was previously shown to bind to LptB2, thereby 

stimulating ATP hydrolysis and LPS transport to the outer membrane [105]. A series 

of novobiocin derivatives, represented in Fig. 5, were subsequently synthesized that 

separated DNA gyrase activity from LptB2 ATPase stimulation [106]. Interestingly, although 

novobiocin analogs with optimized LptB2 stimulatory activity were not active against 

A. baumannii, they strongly potentiated the activity of polymyxins, which gain entry in 

gram-negative bacteria through interactions with LPS along the outer membrane. Thus, the 

increased LPS on the outer membrane of cells treated with novobiocin derivatives resulted 

in increased vulnerability to polymyxins. The tractability of anti-microbial agents targeting 

the LptB2FGC transporter remains to be seen, either through direct chemical inhibition or 

synergy by ATPase stimulation.

3.4. LptDE inhibitors

LptDE forms the heterodimer responsible for inserting LPS in the outer leaflet of the outer 

membrane. LptD consists of an N-terminal β-jellyroll domain, the terminal member of the 

LPS periplasmic bridge, as well as a C-terminal β-barrel domain forming the transmembrane 

channel. LptE is a membrane-anchored lipoprotein that forms a plug within the barrel 

of LptD [93]. The crystal structure of LptE from E. coli revealed structural homology 

to eukaryotic LPS-binding proteins, informing subsequent biophysical supporting its role 

to disaggregate LPS and facilitate its insertion into the outer membrane [107]. LptD and 

LptE are essential in almost all gram-negative bacteria except N. meningitidis, which was 

previously shown to tolerate deletions in LptD or LptE [28,108]. Moreover, while several 

studies initially reported lptE transposon insertion mutants of P. aeruginosa, suggesting the 

possibility that LptE may also be non-essential for pseudomonal growth [109,110], more 

recent efforts have implicated LptE as a critical factor in the maturation and stability of 

LptD, as lower LptD levels were detected in a conditional lptE strain under restrictive 

expression conditions [111]. Moreover, point mutations in LptD and LptE were identified 

in an evolution experiment, in which a non-pathogenic E. coli strain gained pathogenicity 

in a silkworm infection model. Pathogenic strains were associated with increased secretion 

of LPS-laden outer membrane vesicles, directly implicating LptD and LptE in bacterial 

virulence [112]. As the functional characterization of the LptDE expands, its exact role and 

importance in LPS transport, outer membrane structure, and virulence remain an active area 

of inquiry.

The first series of LptD inhibitors were discovered serendipitously in a library of 

peptidomimetic antibiotics based on the chemical scaffold of the antimicrobial peptide 

protegrin-1, in which a D-proline-L-proline β-hairpin was introduced to cyclize the peptides 

[113,114]. Interestingly, though protegrin-1 and related antimicrobial peptides exhibit broad 

spectrum gram-negative activity, several lead peptides showed increased potency in the 

nanomolar range with narrowed spectrum of activity exclusively against P. aeruginosa. 

Shown in Fig. 5, POL7080 was the first-in-class LPS transport inhibitor discovered from 

further chemical optimization of these analogs [115]. Direct binding studies and resistance 

selection implicated POL7080 as an LPS transport inhibitor by directly binding LptD, 

validating LptDE as a viable drug target [116,117]. Interestingly, the N-terminal domain of 
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LptD from P. aeruginosa is distinct from those of other gram-negative bacteria, potentially 

explaining the species-specific activity of POL7080. POL7080 entered stage III clinical 

trials in 2018 to investigate its safety and efficacy in patients with ventilator-associated 

pneumonia [93]. The trial was terminated in 2019, although an inhaled formulation of 

POL7080 remains in clinical development for the treatment of cystic fibrosis.

3.5. General LPS binders

For the sake of completeness, the polymyxins warrant mention as antimicrobial peptides that 

bind to LPS. The polymyxins, including polymyxin B and colistin, are antibiotics currently 

used in clinical practice that exhibit broad gram-negative activity. Polymyxins are positively 

charged antimicrobial peptides that cross the outer membrane through a process of self-

promoted uptake, which depends on electrostatic interactions with LPS, and subsequently 

cause cell lysis through LPS accumulating along the inner membrane [118–121]. The use 

of polymyxins in clinical practice, however, is often limited by dose-limiting nephrotoxicity 

that severely narrows its therapeutic window.

There are active efforts to improve the safety profile of polymyxin-derived molecules. Qpex 

Biopharma advanced the synthetic lipopeptide F365 (QX9003) into Phase 1 clinical trials, 

which was discovered after extensive chemical optimization of non-conserved positions 

in the polymyxin scaffold. F365 (QX9003) demonstrated impressive in vivo efficacy and 

an improved safety profile in a murine pneumonia model across multiple priority-list 

gram-negative bacteria [122]. Spero therapeutics also recently completed first-in-human 

phase 1 clinical trials of the novel polymyxin analog SPR206, which showed no renal 

toxicity throughout a dosing regimen likely exceeding requirements for clinical efficacy 

[123]. Lastly, a series of polymyxin-derived chimeric peptidomimetics, containing the 

defining β-hairpin peptide macrocycle of polymyxins, were shown to target outer membrane 

biogenesis through binding both LPS and the BamA, an essential component of the β-barrel 

folding complex tasked with folding and inserting β-barrel proteins into the outer membrane 

[124]. The optimized derivatives demonstrated potent activity across multidrug-resistant 

gram-negative bacteria, and the lead candidate advanced into preclinical toxicology studies 

with hopes for first-in-human trials soon.

4. Barriers to the development of LPS-directed antibiotics

Despite the attractiveness of LPS biosynthesis or transport as targets, considerable barriers 

currently stand in the way of bringing their corresponding inhibitors to patients. LPS-

directed library screens are designed to uncover small molecules that interact with the same 

protein machinery that binds to LPS directly or its intermediates. Thus LPS-directed screens 

tend to discover hydrophobic compounds with similar chemical properties as LPS or its acyl 

donors. The most promising LpxC inhibitors, for example, all share a common hydroxamate 

metal-binding group and hydrophobic tail that has substantially limited their solubility, 

metabolic stability, and bioavailability. Likewise, small molecule inhibitors of LpxA, MsbA 

and LptA all contain hydrophobic groups that might limit solubility and increase serum 

protein binding.
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An important additional challenge is the potential for high frequency resistance which 

remains a concern should LPS-directed inhibitors become available to patients in the future. 

Except for the dual activity potential of LpxA and LpxD inhibitors, which remain far 

from clinical translation, most LPS-directed inhibitors are single-target agents and thus 

might demonstrate higher potential for resistance development [125,126]. In addition, the 

non-essentiality of LPS in several gram-negative species clouds the conventional assertion 

that the LPS barrier function is broadly essential and thus a good target in gram-negative 

bacteria. It remains plausible that LPS-null mutants could be generated that are resistant to 

LPS-directed inhibitors, and in fact, a naturally occurring LPS-deficient clinical isolate was 

previously reported from a patient with invasive meningococcal disease [127]. The prospect 

for frequent, clinically meaningful resistance certainly remains an area of concern for future 

LPS-directed antibiotics.

With regards to targeting LPS directly, a major challenge is that it is highly structurally 

adaptable, capable of changing its acyl chain composition or capping exposed phosphate 

groups with 4-aminoarabinose or phosphoethanolamine in order to evade binding of small 

molecules such as colistin. The chemical structure of LPS can also readily change in 

response to environmental stimuli, such as low magnesium, anti-microbial peptide exposure, 

or changes in pH, mediated by the two-component regulatory system PhoPQ [128]. 

Polymyxin antibiotics gain entry to the periplasm through direct electrostatic interactions 

with LPS and thus their efficacy can be affected by variations in LPS structure. In response 

to polymyxin exposure, the PmrAB two-component regulatory system is activated to drive 

a transcriptional program, somewhat overlapping with PhoPQ, that leads to the chemical 

modification of LPS [129]. The PmrAB response has thus been linked to polymyxin 

resistance by upregulating the lipid A deacylase pagL and the arnBCADTEF-ugd operon, 

resulting in LPS modifications that reduce polymyxin binding to the cell surface [130–

141]. A similar phenomenon has now been observed in response to treatment with the 

LPS transport inhibitor POL7080, which is also thought to interact directly with LPS on 

the outer membrane. PmrAB also results in LPS modifications that mitigate POL7080 

binding at the cell surface [142]. Thus a small molecule lead that directly binds to LPS, or 

competitively inhibits its transport, will need to retain activity under all conditions causing 

LPS modifications, O-antigen composition or acylation state.

5. Conclusion

The abundance of LPS in the outer membrane of most gram-negative bacteria is central to 

its structural integrity and protection against xenobiotics, detergents and bile acids found 

in harsh environments. Thus, LPS biosynthesis and transport machinery are attractive 

therapeutic targets in most gram-negative bacteria. Inhibitors of LPS transport may not 

require high intracellular accumulation given the peripheral location of target proteins at the 

outer membrane or in the periplasm. Moreover, inhibitors of LPS biosynthesis or transport 

are expected to synergize with other antibiotics by reducing the barrier function of the 

outer membrane. Indeed, the first lpxC and lptD mutants were discovered by phenotypes 

associated with reduced outer membrane permeability, including increased sensitivity to 

detergents, antibiotics, and dyes [143,144]. Inhibition of LpxC in A. baumannii was shown 

to increase cell permeability and potentiate the activities of azithromycin, vancomycin, and 
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rifampin [145]. LPS transport inhibition by POL7080 was also shown to synergize with 

colistin, presumably due to colistin binding to LPS accumulating along the inner membrane 

after POL7080 inhibition of LptD [119]. LpxC inhibitors also hold promise for synergy with 

host defense systems, as LpxC inhibition in A. baumannii, despite the absence of growth 

inhibition, resulted in enhanced bacterial clearance in mice [146]. If the drug-like properties 

of LPS-directed inhibitors improve, combination therapy with other antibiotics might prove 

to be a tractable option in future drug development programs.

Meanwhile, gram-negative bacteria continue to pose a major threat to human health in a time 

when antibiotic resistance pervades our healthcare setting. Despite a pressing need for new 

antibiotics targeting gram-negative bacteria, however, antibiotic discovery in gram-negative 

bacteria is especially challenging due to its impermeable cell envelope and vast repertoire 

of efflux pumps. Although no antibiotics that target LPS biosynthesis or transport have 

yet reached clinical use to date, significant efforts have clearly been invested in trying to 

discover and develop such antibiotics, using a broad range of discovery strategies. Target-

based approaches, such as DNA-encoded library screening, have resulted, for example, 

in the discovery of LpxA inhibitors with potent in vitro activity or high affinity, but 

with limited antimicrobial activity due to poor intracellular accumulation or high efflux. 

Cell-based strategies have met with relatively more success, such as discovery of the first 

LpxC inhibitor; however, these too have failed to progress to clinical candidates due to 

suboptimal chemical properties and limited therapeutic dosing windows. Going forward, 

screening strategies that incorporate target-focused approaches in whole cells, in parallel 

with chemical approaches to improve uptake, stability, and drug-like properties might 

more effectively tip the balance in favor of identifying tractable candidates targeting LPS 

biosynthesis or transport with whole cell activity [147–149].
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Fig. 1. 
(A) The cell envelope of gram-negative bacteria is depicted, including the LPS-laden 

outer leaflet of the outer membrane, inner membrane, and intervening periplasm 

containing peptidoglycan. (B) LPS is represented with its three components: lipid A, core 

oligosaccharide, and o-antigen.
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Fig. 2. 
The Raetz pathway of lipid A biosynthesis in E. coli K12. The first six enzymes – 

LpxA, LpxC, LpxD, LpxH/G/I, LpxB and LpxK – are essential and together catalyze 

the diacylation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), subsequent 

condensation of two molecules, and phosphorylation yielding lipid IV A. Three functional 

orthologs carry out the pyrophosphate cleavage of UDP-DAGn to form Lipid X: LpxH in 

β-proteobacteria and γ-proteobacteria; LpxI in α-proteobacteria; and LpxG in Chlamydiae. 

The remaining three enzymes – KdtA, LpxL and LpxM – are non-essential and responsible 
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for the further glycosylation and acylation into Kdo2-lipid A, the final product to which core 

oligosaccharide and O-antigen are added.
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Fig. 3. 
Summary of small molecule inhibitors of LPS biosynthesis. Representative chemical 

structures of inhibitors from each compound class are shown.
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Fig. 4. 
The PEZ model for LPS transport. Kdo2-lipid A is synthesized and modified by the addition 

of core oligosaccharide to yield lipooligosaccharide (LOS), which is subsequently flipped 

across the inner membrane by the ABC transporter MsbA. Once anchored to the outer 

leaflet of the inner membrane, the biosynthesis of LPS is completed by the addition of 

O-antigen polysaccharides to LOS. After the conversion of LOS to LPS in the periplasmic 

compartment, LPS molecules are extracted from the outer leaflet of the inner membrane by 

the LptABCDEFG transporter and loaded into the periplasmic bridge formed by the head-to-

tail assembly of the β-jellyroll domains of LptF, LptC, LptA and LptD. As processive rounds 

Romano and Hung Page 27

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of ATP hydrolysis insert more LPS molecules into the periplasmic bridge, LPS molecules 

are pushed sequentially toward the outer membrane like candy in a PEZ dispenser. Once 

near the outer membrane, LPS molecules finally cross the outer membrane through the 

LptDE protein complex, a transmembrane heterodimer of LptD and LptE proteins.
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Fig. 5. 
Summary of small molecule and peptidomimetic inhibitors of LPS transport. Representative 

chemical structures of inhibitors from each compound class are shown.
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