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Abstract

Background: The increasing prevalence of gestational diabetes mellitus (GDM) is concerning as women with GDM are at high
risk of type 2 diabetes (T2D) later in life. The magnitude of this risk highlights the importance of early intervention to prevent
the progression of GDM to T2D. Rates of postpartum screening are suboptimal, often as low as 13% in Asian countries. The lack
of preventive care through structured postpartum screening in several health care systems and low public awareness are key
barriers to postpartum diabetes screening.

Objective: In this study, we developed a machine learning model for early prediction of postpartum T2D following routine
antenatal GDM screening. The early prediction of postpartum T2D during prenatal care would enable the implementation of
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effective strategies for diabetes prevention interventions. To our best knowledge, this is the first study that uses machine learning
for postpartum T2D risk assessment in antenatal populations of Asian origin.

Methods: Prospective multiethnic data (Chinese, Malay, and Indian ethnicities) from 561 pregnancies in Singapore’s most
deeply phenotyped mother-offspring cohort study—Growing Up in Singapore Towards healthy Outcomes—were used for
predictive modeling. The feature variables included were demographics, medical or obstetric history, physical measures, lifestyle
information, and GDM diagnosis. Shapley values were combined with CatBoost tree ensembles to perform feature selection. Our
game theoretical approach for predictive analytics enables population subtyping and pattern discovery for data-driven precision
care. The predictive models were trained using 4 machine learning algorithms: logistic regression, support vector machine,
CatBoost gradient boosting, and artificial neural network. We used 5-fold stratified cross-validation to preserve the same proportion
of T2D cases in each fold. Grid search pipelines were built to evaluate the best performing hyperparameters.

Results: A high performance prediction model for postpartum T2D comprising of 2 midgestation features—midpregnancy BMI
after gestational weight gain and diagnosis of GDM—was developed (BMI_GDM CatBoost model: AUC=0.86, 95% CI 0.72-0.99).
Prepregnancy BMI alone was inadequate in predicting postpartum T2D risk (ppBMI CatBoost model: AUC=0.62, 95% CI
0.39-0.86). A 2-hour postprandial glucose test (BMI_2hour CatBoost model: AUC=0.86, 95% CI 0.76-0.96) showed a stronger
postpartum T2D risk prediction effect compared to fasting glucose test (BMI_Fasting CatBoost model: AUC=0.76, 95% CI
0.61-0.91). The BMI_GDM model was also robust when using a modified 2-point International Association of the Diabetes and
Pregnancy Study Groups (IADPSG) 2018 criteria for GDM diagnosis (BMI_GDM2 CatBoost model: AUC=0.84, 95% CI
0.72-0.97). Total gestational weight gain was inversely associated with postpartum T2D outcome, independent of prepregnancy
BMI and diagnosis of GDM (P=.02; OR 0.88, 95% CI 0.79-0.98).

Conclusions: Midgestation weight gain effects, combined with the metabolic derangements underlying GDM during pregnancy,
signal future T2D risk in Singaporean women. Further studies will be required to examine the influence of metabolic adaptations
in pregnancy on postpartum maternal metabolic health outcomes. The state-of-the-art machine learning model can be leveraged
as a rapid risk stratification tool during prenatal care.

Trial Registration: ClinicalTrials.gov NCT01174875; https://clinicaltrials.gov/ct2/show/NCT01174875

(JMIR Diabetes 2022;7(3):e32366) doi: 10.2196/32366
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Introduction

The prevalence of gestational diabetes mellitus (GDM) is
increasing globally, with 1 in 6 pregnancies being affected [1].
GDM has long-term implications as women with a history of
GDM have a 10-fold higher risk of developing type 2 diabetes
(T2D) compared to those with a normoglycemic pregnancy [2].
In the Growing Up in Singapore Towards healthy Outcomes
(GUSTO) study, women with GDM had a 12-fold higher risk
of developing T2D 4-6 years after delivery compared with
women who did not have GDM [3]. From a public health
perspective, early intervention in women with GDM could
contribute to tackling the rising global health burden of T2D.
The T2D epidemic is of particular concern in Southeast Asia;
88 million adults are currently living with diabetes, but this is
expected to increase to 153 million by 2045 [1]. Moreover, 57%
of the population with diabetes in Southeast Asia are
undiagnosed, increasing the risk of complications such as heart
disease and stroke [1].

The American Diabetes Association guidelines recommend that
women with GDM are tested 4-12 weeks postpartum using a
75 g oral glucose tolerance test (OGTT) [4]. Further testing is
recommended in those with normal postpartum OGTT every
1-3 years using fasting plasma glucose, hemoglobin A1c or
HbA1c, or an OGTT [4]. However, as GDM resolves post
pregnancy, postpartum surveillance of glycemia remains low

across health care systems globally. The rate of postpartum
diabetes screening can be as low as 13% in Asian countries [5].
Barriers to postpartum diabetes screening include lack of
structured postpartum preventive care in health care systems,
lack of patient awareness of future T2D risk, and time
restrictions due to maternal commitments [5,6].

Machine learning models enable predictive population risk
stratification. In a prospective metabolomics study by Allalou
et al [7], 21 metabolites were identified at 6-9 weeks post partum
to predict the transition from GDM to T2D in women. The
metabolite model using decision trees performed well with an
area under the receiver operating characteristic curve (AUC) of
0.77. In another GDM to T2D transition study by Joglekar et
al [8], the inclusion of circulating microRNA (miR-369-3p) at
12 weeks post partum enhanced the prediction of a clinical
model (age, BMI, pregnancy fasting glucose, postpartum fasting
glucose, cholesterol, and triacylglycerols) from an AUC of 0.83
to an AUC of 0.92 (logistic regression algorithm). In addition
to low compliance of postpartum testing in women with GDM,
the other barriers to the real-world implementation of these 2
machine learning models include the cost and access to
metabolomics assay and microRNA polymerase chain reaction
during routine clinical visits.

The early prediction of postpartum T2D during prenatal care
would enable the implementation of effective strategies for
diabetes prevention interventions. To date, there have been no
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studies on using machine learning for postpartum T2D risk
assessment in antenatal populations of Asian origin. In this
study from Singapore, we developed a machine learning model
for early prediction of postpartum T2D during routine antenatal
GDM screening. Our machine learning model was implemented
using the prospective GUSTO cohort study data
(NCT01174875).

Methods

Ethics Approval
This study has been reviewed by the National Healthcare Group
Domain Specific Review Board for ethics approval and
SingHealth Centralized Institutional Review Board
(CIRB/E/2019/2655).

Study Design
GUSTO is a prospective multiethnic (Chinese, Malay, and
Indian ethnicities) mother-offspring cohort study. Mothers were
recruited during early pregnancy from Singapore’s 2 major
public maternity hospitals, National University Hospital and
KK Women’s and Children’s Hospital, between June 2009 and
October 2010.

Participants of mixed ethnicity or with self-reported T2D at
recruitment were excluded from model training. A total of 561
mothers had complete data on demographics, medical or
obstetric history, physical measures, lifestyle information,
antenatal OGTT, and postpartum OGTT 4-8 years after delivery.
The World Health Organization (WHO) 1999 criteria [9] were
used to diagnose GDM, and the WHO 2006 criteria [10] were
used to diagnose postpartum impaired glucose tolerance (IGT),
impaired fasting glucose (IFG), and T2D. The abnormal glucose
metabolism (AGM) outcome comprises of IGT, IFG, and T2D
diagnoses.

Feature Variables
Information on demographics (maternal age, maternal ethnicity)
and medical or obstetric history (self-reported prepregnancy
weight, family history of diabetes mellitus, family history of
high blood pressure, family history of cardiovascular disease,
previous history of GDM, previous history of gestational
hypertension, and parity) were derived from first trimester
questionnaires. Systolic and diastolic blood pressure were
recorded at midgestation (median 26.7, IQR 26.1-27.6 weeks)
and obtained from hospital case notes. Mean arterial blood
pressure was derived by doubling the diastolic blood pressure
and adding to the systolic blood pressure, with the composite
sum divided by 3. Maternal anthropometry was measured at
midgestation (median 26.9, IQR 26.4-27.6 weeks). Maternal
midupper arm circumference was measured to the nearest 0.1
cm, midway between acromion process and olecranon process
(using Seca 212). Maternal height was measured to the nearest
0.1 cm (using Seca 213). Maternal weight at midpregnancy was
measured to the nearest 0.1 kg (using Seca 803), and BMI was

derived using weight divided by height squared (kg/m2). Total
gestational weight gain was derived by subtracting first antenatal
visit weight (median 9.0, IQR 7.3-11.0 weeks) from the last
antenatal visit weight (median 38.1, IQR 37.3-39.1 weeks).

Lifestyle information on self-reported smoking, environmental
tobacco smoke exposures, and alcohol consumption were
collected using questionnaires. GDM diagnosis was based on
antenatal OGTT assessment (median 26.9, IQR 26.4-27.7
weeks).

Machine Learning Methodology and Statistical
Analyses
Our methodological novelty lies in combining coalitional game
theory concepts with machine learning. SHapley Additive
exPlanations (SHAP) framework was combined with CatBoost
tree ensembles for feature selection and model explainability
[11,12]. The SHAP framework connects optimal credit
allocation with local explanations using the classic Shapley
values from cooperative game theory. Lundberg and Lee [11]
have proposed SHAP as the only additive feature attribution
method that satisfies 2 important properties of game
theory—additivity (local accuracy) and monotonicity
(consistency). In game theory, Shapley value is the average
expected marginal contribution of 1 player across all possible
permutation of players (ie, the average effects of team member
composition and team size). Shapley value helps determine a
payoff for all the game players when each player might have
contributed more or less than the others when working in
coalition. In machine learning, the game players are the features,
and the collective payout is the model prediction. SHAP
framework provides local explanations based on exact Shapley
values to understand the global model structure. For each
possible feature ordering, features are introduced one at a time
into a conditional expectation function of the model’s output,
and changes in expectation are attributed to the introduced
feature, averaged over all possible feature orderings in a fair
manner. SHAP values represent a change in log odds ratio. Our
game theoretical approach for predictive analytics enables
population subtyping and pattern discovery for data-driven
precision care.

The supervised machine learning models were built using
Anaconda distribution of Python programming language
(version 3.7.9) in JupyterLab computational environment. The
predictive models were trained using the following 4 machine
learning algorithms to address algorithm bias: logistic regression
(generalized linear model), support vector machine (linear
support vector classification), CatBoost gradient boosting
(tree-based), and artificial neural network (multilayer
perceptron). We used 5-fold stratified cross-validation to
preserve the same proportion of AGM/T2D cases in each fold.
Maximum absolute scaler was used as a preprocessor to scale
each feature without destroying the sparsity. A grid search
pipeline was built to evaluate the best performing
hyperparameters for each machine learning model. Model
performances were evaluated using the AUC with 95% CI.
Implementation details of the machine learning algorithms are
included in Multimedia Appendix 1.

The feature selection model using clinical features at
midgestation was trained on the AGM outcome, and top
predictors with SHAP value magnitudes more than zero were
included in the AGM/T2D prediction models. Sensitivity
analyses were performed to explore the prediction effects of
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diagnosing GDM using modified 2-point International
Association of the Diabetes and Pregnancy Study Groups
(IADPSG) 2018 criteria [9] rather than WHO 1999 criteria
(GUSTO study did not include a 1-hour glucose measurement),
and the prediction effects of continuous fasting or 2-hour glucose
measures and prepregnancy BMI. We also assessed the
associations between total gestational weight gain and
postpartum AGM and T2D outcomes. All association analyses
were performed using Stata/MP software (version 16.1;
StataCorp LP).

Results

The Features Significantly Associated With T2D
Aligned With the Top Features From the SHAP
Feature Selection Model
The relationship between all feature variables and postpartum
AGM and T2D outcomes is presented in a Pearson correlation

heatmap (Figures 1 and 2). Diagnosis of GDM, midupper arm
circumference, and BMI are the best features for postpartum
AGM/T2D machine learning model building.

Table 1 presents the univariate associations between
midpregnancy features and postpartum AGM and T2D
outcomes. Previous history of GDM, mean arterial blood
pressure, midupper arm circumference, BMI, and diagnosis of
GDM were associated with later risk of T2D. The top 4 features
impacting the SHAP model outputs were midupper arm
circumference, mean arterial blood pressure, BMI and diagnosis
of GDM (Figure 3). The negative SHAP value for height implies
that maternal height did not contribute to the prediction of AGM.

Figure 1. Pearson Correlation heatmap for abnormal glucose metabolism (AGM). GDM: gestational diabetes mellitus.
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Figure 2. Pearson Correlation heatmap for type 2 diabetes (T2D). GDM: gestational diabetes mellitus.
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Table 1. Associations between midpregnancy characteristics and postpartum abnormal glucose metabolism (AGM) or type 2 diabetes (T2D) outcomes
(4-8 years after delivery).

T2D (n=32)AGM (n=139)Characteristics

P valueOR (95% CI)P valueORa (95% CI)

.101.06 (0.99-1.14).02b1.05 (1.01-1.09)Maternal age (years)

.340.71 (0.34-1.44).280.81 (0.55-1.19)Chinese vs Malay and Indian ethnicity

.191.64 (0.78-3.43).401.20 (0.79-1.83)Malay vs Chinese and Indian ethnicity

.780.87 (0.33-2.31).661.12 (0.68-1.84)Indian vs Chinese and Malay ethnicity

.241.55 (0.75-3.21).008b1.72 (1.15-2.56)Family history of diabetes mellitus

.370.70 (0.33-1.51).550.88 (0.60-1.32)Family history of high blood pressure

.370.51 (0.12-2.19).901.04 (0.57-1.90)Family history of cardiovascular disease

<.001b7.98 (2.62-24.27).001b5.96 (2.16-16.43)Previous history of gestational diabetes mellitus

.252.45 (0.53-11.29).241.86 (0.66-5.21)Previous history of gestational hypertension

.391.38 (0.66-2.89).931.02 (0.69-1.50)Parity

<.001b1.07 (1.03-1.11)<.001b1.05 (1.03-1.07)Mean arterial blood pressure (mm Hg)

<.001b1.23 (1.13-1.33)<.001b1.18 (1.12-1.25)Midupper arm circumference (cm)

.100.96 (0.90-1.02).01b0.96 (0.92-0.99)Maternal height (cm)

<.001b1.16 (1.09-1.24)<.001b1.14 (1.09-1.18)BMI (kg/m2)

N/AN/Ac.851.14 (0.30-4.36)Smoking during pregnancy

.960.98 (0.46-2.08).731.07 (0.72-1.60)Environmental tobacco smoke exposure at home

.571.37 (0.46-4.06).430.76 (0.38-1.51)Environmental tobacco smoke exposure at workplace

.631.67 (0.21-13.50).851.14 (0.30-4.36)Alcohol consumption during pregnancy

<.001b9.57 (4.45-20.55)<.001b5.49 (3.51-8.58)Diagnosis of GDMd (WHOe 1999 criteria)

aOR: odds ratio.
bIndicates statistically significant values.
cN/A: not applicable; fixed-effect regression estimates were not obtained as the variable did not contribute to the likelihood estimation.
dGDM: gestational diabetes mellitus.
eWHO: World Health Organization.
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Figure 3. SHapley Additive exPlanations (SHAP) summery plot of feature selection model. WHO: World Health Organization.

Maternal Adiposity During Pregnancy and Metabolic
Derangements Underlying GDM Signaling Future T2D
Risk
Although the detailed training parameters and results for all
machine learning models are shown in Tables S1-S6
(Multimedia Appendix 2), we focus on describing the results
of CatBoost machine learning models as this algorithm had the
best overall performance. The results for each data set of the
5-fold stratified cross-validation and the average of the
cross-validation are also provided in Tables S1-S6 in Multimedia
Appendix 2. Midupper arm circumference at midgestation
(AUC=0.78, 95% CI 0.71-0.86) and BMI at midgestation
(AUC=0.74, 95% CI 0.53-0.96) had stronger predictive
performances than GDM diagnosis (AUC=0.73, 95% CI
0.51-0.95; Table S2 in Multimedia Appendix 2). The addition
of GDM diagnosis improved the performance of baseline models
(MUAC_GDM model: AUC=0.88, 95% CI 0.79-0.96 and
BMI_GDM model: AUC=0.86, 95% CI 0.72-0.99; Table S4 in
Multimedia Appendix 2). Prepregnancy BMI alone was
inadequate in predicting postpartum T2D risk (AUC=0.62, 95%
CI 0.39-0.86; Table S6 in Multimedia Appendix 2).

Although there is a high correlation between midupper arm
circumference and BMI (r=0.91), BMI is more reliably and
commonly assessed in clinical settings, and therefore, a

BMI-based pregnancy model is our proposed solution (Figure
4). Table 2 summarizes the detailed training parameters of
logistic regression, support vector machine, artificial neural
network, and CatBoost gradient boosting algorithms, as well
as the results of the proposed postpartum T2D predictive model
(comprising of midpregnancy BMI after gestational weight gain
and diagnosis of GDM features). Total gestational weight gain
was inversely associated with postpartum AGM and T2D
outcomes, independent of prepregnancy BMI and diagnosis of
GDM (Table 3).

Figures 5-7 present the validation curves obtained during the
training of BMI_GDM CatBoost model. The hyperparameter
candidates for CatBoost model were as follows:

• Learning rate: [‘0’ - 0.00001, ‘1’- 0.0001, ‘2’ - 0.001, ‘3’
- 0.01, ‘4’ - 0.03, ‘5’ - 0.05, ‘6’ - 0.1, ‘7’ - 0.2, ‘8’ - 0.3]

• L2 leaf regularization: [‘0’ - 1.0, ‘1’ - 2.0, ‘2’ - 3.0, ‘3’ -
4.0, ‘4’ - 5.0, ‘5’ - 6.0]

• Random strength: [‘0’ - 1.0, ‘1’ - 2.0, ‘2’ - 3.0, ‘3’ - 4.0,
‘4’ - 5.0, ‘5’ - 6.0]

The CatBoost model was specified with 1000 iterations,
maximum depth of 6 trees, and symmetric tree growing policy.
The hyperparameters tuned using grid search were learning rate
of 0.0001, L2 leaf regularization of 5.0, and random strength
of 5.0. The BMI_GDM CatBoost classifier is performing well
under this optimal configuration.
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Figure 4. SHapley Additive exPlanations (SHAP) summary plot of BMI_GDM model. WHO: World Health Organization.

Table 2. Proposed postpartum type 2 diabetes predictive model comprising of midpregnancy BMI after gestational weight gain and diagnosis of
gestational diabetes mellitus (GDM) features (based on the World Health Organization 1999 criteria).

Average AUCa (95% CI)Hyperparameters tuned using grid searchModel specifications (BMI_GDM)

0.85 (0.72-0.98)Logistic regression (L2 regularization penalty, stochastic average gradient
descent solver)

• Inverse of regularization strength=1.0

0.85 (0.72-0.98)Support vector machine (linear kernel, L2 regularization penalty) • L2 regularization penalty=1.0
• Loss function=‘squared hinge’

0.85 (0.73-0.97)Neural network (3 hidden layers with 10 neurons each, ReLU activation
function, Adam solver, 200 iterations)

• L2 regularization penalty=0.01
• Initial learning rate=0.1

0.86 (0.72-0.99)bCatBoostb (1000 iterations, maximum depth of 6 trees, symmetric tree
growing policy)

• L2 leaf regularization=5.0
• Learning rate=0.0001
• Random Strength=5.0

aAUC: area under the receiver operating characteristic curve.
bIndicates the main predictive model developed in this study.

Table 3. Association between total gestational weight gain and postpartum abnormal glucose metabolism (AGM) or type 2 diabetes (T2D) outcomes
(4-8 years after delivery).

T2D (n=31)AGM (n=128)Analysis

P valueOR (95% CI)P valueORa (95% CI)

Unadjusted analysis

<.001b0.79 (0.72-0.87)<.001b0.87 (0.82-0.91)Total gestational weight gain (kg)

Adjusted analysisc

.02b0.88 (0.79-0.98).01b0.93 (0.87-0.98)Total gestational weight gain (kg)

aOR: odds ratio.
bIndicates statistically significant values.
cAdjusted based on maternal ethnicity, age, parity, family history of diabetes mellitus, prepregnancy BMI, and diagnosis of gestational diabetes mellitus.
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Figure 5. Validation curve with CatBoost algorithm–Varying learning rate. AUC: area under the receiver operating characteristic curve.

Figure 6. Validation curve with CatBoost algorithm–Varying L2 leaf regularization. AUC: area under the receiver operating characteristic curve.

Figure 7. Validation curve with CatBoost algorithm–Varying random strength. AUC: area under the receiver operating characteristic curve.
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Two-Hour Postprandial Glucose as a Stronger
Predictor of Postpartum T2D Risk Compared With
Fasting Glucose
When modeling antenatal glucose measures as continuous
features, a 2-hour postprandial glucose (AUC=0.86, 95% CI
0.76-0.96) showed a stronger postpartum T2D risk prediction
effect compared to fasting glucose (AUC=0.76, 95% CI
0.61-0.91; Table S6 in Multimedia Appendix 2). In the
sensitivity analysis, predictive performance of BMI_GDM
model was also robust when using the modified 2-point IADPSG
2018 criteria (AUC=0.84, 95% CI 0.72-0.97; Table S6 in
Multimedia Appendix 2).

Discussion

Principal Results
We have built an effective postpartum T2D predictive model
by combining game theory–based feature selection with machine
learning. SHAP values recovered predictive modeling features
for optimal performance, aligning model interpretability with
human intuition. Our BMI_GDM model achieved an excellent
AUC of 0.86 with 2 midgestation features (BMI at midgestation
and diagnosis of GDM by the WHO 1999 criteria) for an early
prediction of postpartum T2D risk in a Singapore population.
The model was also robust when using a modified 2-point
IADPSG 2018 criteria for GDM diagnosis (AUC=0.84). The
BMI_GDM machine learning model can be leveraged as a risk
stratification tool during routine GDM screening to identify
Asian women at high risk of developing T2D, enabling early
intervention. The BMI_2hour model (AUC=0.86) can be an
alternative design during clinical implementation if GDM
diagnosis feature is unavailable for the patient. The trained
classifier can be deployed using a web application that can allow
clinicians to identify women at T2D risk and develop a
postpartum management plan.

The 2-feature midpregnancy BMI model (AUC=0.86) performed
better in postpartum T2D prediction than a preconception BMI
model (AUC=0.62), implying that midgestational weight gain
effects combined with the metabolic derangements underlying
GDM and fetoplacental unit signal future T2D risk. As
pregnancy has a diabetogenic effect on metabolism [13], further
studies will be required to examine the metabolic adaptations
in pregnancy and postpartum maternal metabolic health
outcomes.

In our BMI_GDM model sensitivity analysis, we observed that
the 2-hour antenatal OGTT glucose peak was associated with
a stronger prediction of postpartum T2D (AUC=0.86) compared
with the fasting glucose (AUC=0.76) in Singaporean women.
Future studies with greater statistical power will be needed to
confirm whether the postpartum T2D risk is heterogenous across
different thresholds of glucose tolerance for GDM diagnostic
criteria.

Limitations
This study has some limitations due to the scarcity of
longitudinal data. Postpartum OGTT at 4-12 weeks, and further
testing in those with normal postpartum OGTT every 1-3 years
were not administered in the GUSTO study, possibly
underestimating the development of postdelivery dysglycemia
to a certain extent and inducing bias. However, the mothers
participating in GUSTO self-reported T2D status 2 years after
delivery, and there were no self-reported T2D cases. Our
prediction models were trained on a limited cohort of 561
pregnancies and require further validation using larger cohorts
such as Electronic Health Record databases. A subcohort
analyses by individual ethnic groups can be trained with larger
data sets.

Comparison With Prior Work
Our early implementation of T2D risk prediction algorithm
during prenatal care enables early engagement of patients and
remote monitoring, compared to existing molecular
biomarker-based T2D risk prediction algorithms [7,8] developed
for postpartum care. The 2 midgestation clinical features
(midpregnancy BMI after gestational weight gain and diagnosis
of GDM) discovered from our machine learning workflow are
of low cost and easily accessible during routine antenatal GDM
screening. The digital biomarkers identified from our work will
guide antenatal research in preventing the progression of GDM
to T2D.

Conclusions
The key strength of our study lies in applying machine
learning–based predictive analytics during prenatal care in the
early prediction of postpartum T2D. This machine learning
model can be leveraged as a risk stratification tool for preventive
intervention.
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