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Initially discovered as an impurity in insulin preparations, our understanding of the
hyperglycaemic hormone glucagon has evolved markedly over subsequent decades.
With description of the precursor proglucagon, we now appreciate that glucagon was just
the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive
members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and
GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP),
with these being produced via tissue-specific processing of proglucagon by the
prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique
physiological effects that influence metabolism and energy regulation, which has
witnessed several of them exploited in the form of long-acting, enzymatically resistant
analogues for treatment of various pathologies. As such, intramuscular glucagon is well
established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the
management of short bowel syndrome. Furthermore, since approval of the first GLP-1
mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1
therapeutics have become a mainstay of T2DM management due to multifaceted and
sustainable improvements in glycaemia, appetite control and weight loss. More recently,
longer-acting PGDP therapeutics have been developed, while newfound benefits on
cardioprotection, bone health, renal and liver function and cognition have been
uncovered. In the present article, we discuss the physiology of PGDP peptides and
their therapeutic applications, with a focus on successful design of analogues including
dual and triple PGDP receptor agonists currently in clinical development.
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INTRODUCTION

While the gut hormones secretin and gastrin were discovered almost two decades earlier (1, 2), it
was the extraction, isolation and purification of insulin from canine pancreatic extracts in Toronto
in 1921, that truly signifies the advent of peptide-based therapeutics (3). Indeed, the first clinical use
of animal-derived insulin began the following year. Continued innovation has led to the production
of longer-acting formulations (4), as well as biosynthetic, recombinant DNA human insulins in the
1980’s (5). In this respect, it is incredible to think that a century later, insulin remains a vital
mainstay in the management of Type 1 diabetes mellitus (T1DM).

Although insulin therapy is often indicated in poorly controlled Type 2 diabetes mellitus
(T2DM), this condition is more often managed with diet plus an array of medications that augment
n.org May 2021 | Volume 12 | Article 6896781
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remaining endogenous insulin production and function. Indeed,
peptide-based therapeutics have become important tools in the
management of T2DM, emulating the success of insulin in
T1DM. In particular, enzymatically stable analogues, based on
the endogenous incretin hormone glucagon-like peptide 1 (GLP-
1), are now widely prescribed second- and third-line agents for
T2DM (6). Furthermore, orally-available inhibitors of the
enzyme dipeptidyl peptidase-4 (DPP-4), which degrades
incretins including GLP-1, have been increasingly prescribed
since their approval in 2007 (7).
PROGLUCAGON – DISCOVERY AND
PROCESSING

As its name suggests, GLP-1 is related to the glucose-elevating
hormone, glucagon. Indeed, a family of glucagon-related
peptides exists, all of which are derived from differential
processing of a common prohormone, proglucagon (8). Whilst
glucagon and its hyperglycaemic actions were discovered in 1922
(9), its amino acid sequence was not elucidated until 1957 (10).
Furthermore, proglucagon went undiscovered until the early
1980’s, when its cDNA was initially identified in anglerfish (11,
12), with discovery of a proglucagon equivalent in rat (13, 14),
hamster (15), cow and human several years later (16). These
discoveries were made possible with the advent of lab-scale
cDNA cloning techniques, which made it feasible to accurately
predict amino acid sequences of proteins by decoding the
nucleotide sequences of cloned recombinant cDNA copies of
mRNAs. Such experiments highlighted that glucagon and several
peptides with a high degree of sequence homology were encoded
by this prohormone (11, 12).

Interestingly, anglerfish islets were demonstrated to express
two separate proglucagon peptides, meaning a hybrid approach
was taken to identify cDNA encoding the 29 amino acid (aa),
anglerfish glucagon (11, 12). From there, cDNA encoding for
previously sequenced proteins, glicentin and oxyntomodulin was
uncovered (17, 18), with glucagon located within the middle
portion of this sequence (11). However, the proposed
proglucagon sequence exhibited unexpected C-terminal
elongation, containing an additional 34-residue glucagon-
related carboxyl-terminal peptide, which exhibited structural
similarity with another previously sequenced hormone,
glucose-dependent insulinotropic polypeptide (GIP) (11, 19).
Further study of anglerfish proglucagon led to the
characterisation of a second proglucagon cDNA, derived from
a different mRNA and gene which encoded glucagon. This
shared significant homology with mammalian glucagons, but
also a second C-terminal glucagon-related peptide, again
comprised of 34 residues with significant sequence homology
to glucagon (12).

Whilst work in anglerfish provided an excellent starting
point, particularly in highlighting the presence of these carboxy
glucagon-related peptides (11, 12), it was the elucidation of the
structure of mammalian proglucagon which truly sparked
interest in proglucagon-derived peptides (PGDP’s). While
Frontiers in Endocrinology | www.frontiersin.org 2
sequence homology with anglerfish proglucagon was high,
isolation of the first mammalian proglucagon from hamster
unveiled organisational differences, with the 158 amino-acid
mammalian precursor containing three PGDP arranged in
tandem, namely glucagon and what the authors termed,
glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) (15). The
biological importance of these carboxy-peptides was initially
unclear . Through a combined approach employing
immunoassays, immunohistochemistry and chromatography of
tissue extracts, it was established that GLP-1 and GLP-2
coexisted with glucagon in pancreatic islet cells and with
oxyntomodulin in intestinal L-cells, where they are present at
vastly greater concentrations than islets (20).

We now understand that proglucagon is expressed in both
alpha-cells of the pancreatic islets (21, 22), as well as
neuroendocrine L-cells (23), primarily located in the distal
ileum and colon ( (24); Figure 1). However, the PGDP profile
is not identical in the pancreas and gut, due to differential post-
translational processing of proglucagon by tissue-specific
enzymes termed prohormone convertases (PC) ( (25); Figure
1). Broadly speaking, it is accepted that pancreatic alpha-cells
mainly possess PC2, which cleaves dibasic Lys-Arg sites within
proglucagon to generate glicentin-related pancreatic peptide
(GRPP), glucagon, intervening peptide-1 (IP-1) and major
proglucagon fragment (MPGF) ( (26, 27); Figure 1). In
contrast, in the L-cell, proglucagon is cleaved by PC1/3 at Arg-
Arg sites to yield glicentin, GRPP, oxyntomodulin (OXM), GLP-
1, intervening peptide-2 (IP-2) and GLP-2 ( (23, 26); Figure 1). It
is important to note that these distinctions are not totally
sacrosanct, with a degree of crossover existing. As such, recent
evidence has highlighted that the gut is a possible extrapancreatic
source of glucagon ( (28); Figure 2), while local intra-islet GLP-1
production has also been established in alpha cells, particularly in
times of beta-cell stress (29). Moreover, it is now understood that
proglucagon-containing neurons are located in the solitary
nucleus of the medulla oblongata (30), which utilises PC1/3 in
a similar fashion to the gut to generate PGDP’s in the central
nervous system (CNS) ( (31); Figure 1). These PGDP’s and their
therapeutic exploitation will be discussed in due course.
GLUCAGON

The 29 aa polypeptide hormone glucagon (Table 1) is the most
widely recognised PGDP (9, 10), produced by PC2-mediated
cleavage of proglucagon in pancreatic alpha cells ( (26, 27);
Figure 1).

Discovered shortly after insulin (9), glucagon and insulin are
intrinsically linked, with the major metabolic actions of glucagon
counteracting those of insulin (35). As such, insulin secretion
from pancreatic beta-cells is stimulated largely by elevated
glucose concentrations, reducing circulating glucose levels via
inhibition of glycogenolysis and gluconeogenesis, accompanied
by stimulation of glycogen synthesis in the liver (36).
Furthermore, insulin stimulates glucose uptake via GLUT-4
translocation in adipose and muscle (37), which in turn
May 2021 | Volume 12 | Article 689678
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promotes efficient metabolism of protein, lipids and carbohydrate
(favouring glycolysis) (38). Conversely, hypoglycaemia following
fasting, or exercise is the most potent stimulus for glucagon
secretion [(39, 40); Figure 2].

The hyperglycaemic action of glucagon is well-established,
being demonstrated as early as its discovery, with the hormone’s
name reflecting this; glucagon – “the glucose agonist” (9).
Hyperglycaemic actions of glucagon are mediated through
promotion of glycogenolysis and gluconeogenesis in liver,
whilst also inhibiting glycolysis and glycogenesis (41).
Furthermore, in times of limited carbohydrate availability,
glucagon promotes non-carbohydrate energy formation in the
generation of lipids and ketone bodies or through the breakdown
of fatty acids to acetyl-coenzyme A (42). Further research into
the actions of glucagon has demonstrated a role in satiety, with
acute administration in humans diminishing hunger and
reducing food intake (43), whilst also stimulating energy
expenditure and cardiac contractility (44, 45).

There is some debate over the receptor interactions at play
in some of these biological actions, for example: given that
circulating glucagon concentrations rise following a period of
fasting, its involvement in food reduction seems counter-
intuitive, suggesting cross-reactivity with the GLP-1 receptor
(GLP-1R) (42). In the context of this article, we will consider
glucagon actions mediated through agonism of its own specific
G protein-coupled receptor (GPCR) the glucagon receptor
(GCGR). This receptor is widely expressed, particularly in
the liver, but is also found in the adrenal glands, heart,
adipose tissue, GIT, and pancreas (46, 47). Binding with the
receptor activates adenylyl cyclase that leads to intracellular
Frontiers in Endocrinology | www.frontiersin.org 3
production of cyclic adenosine monophosphate (cAMP) and
subsequent activation of protein kinase A (PKA). PKA
stimulates the synthesis of transcription factors including
cAMP response element-binding protein (CREB) in the
nucleus, a promoter of gene expression. Simultaneously,
GCGR activation of phospholipase C (PLC) and subsequent
increase in inositol 1,4,5-triphosphate (IP3), facilitates release
of calcium ions from the endoplasmic reticulum to influence
CREB-regulated transcription co-activator (CRTC2), which
enhances CREB-dependent gene expression (42). Importantly,
glucagon is rapidly inactivated in the circulation by enzymes,
including DPP-4, to generate inactive glucagon (3–29) (48);
Figure 2).

While considered for many years as solely a consequence of
insulin deficiency, in the 1970’s the “bihormonal hypothesis”,
proposed by Roger Unger, highlighted the role of an imbalance
in the complex interplay between glucagon and insulin in
instigating diabetic hyperglycaemia (35). Indeed, the rationale
behind this longstanding hypothesis inspired research into the
development of dual pump systems, sometimes termed “dual-
hormone artificial pancreas”. Such pumps are regulated by a
glucose sensor to deliver insulin or glucagon, as necessary, from
independent pumps and are thought to be possibly more
efficacious than insulin-only pumps (49), although none have
successfully reached the clinic to date. We now understand that
T2DM is characterised by elevated fasting glucagon levels (50),
while glucose suppression following a glucose challenge is
stunted (51). Furthermore, it has been suggested that
postprandial hyperglucagonaemia and impaired glucagon
response to hypoglycaemia are features of T1DM (52).
A B

FIGURE 1 | A schematic overview of tissue-specific proglucagon processing in the gut/brain (A) and in the pancreas (B). The proglucagon gene, located on
chromosome 2 and comprised of 6 exons, is transcribed to generate proglucagon messenger RNA (mRNA). Proglucagon mRNA is subsequently translated to yield
the 158 residue, precursor protein, proglucagon. In enteroendocrine L-cells of the ileum and colon (A) proglucagon is processed by prohormone convertase 1/3
(PC1/3) to generate glicentin, oxyntomodulin, glucagon-like peptides-1 and -2 (GLP-1, GLP-2) and intervening peptide-2 (IP-2). Conversely, in pancreatic alpha-cells
(B), post-translational modification by prohormone convertase 2 (PC2) is responsible for the generation of the major proglucagon fragment (MPGF), glucagon,
glicentin-related pancreatic polypeptide (GRPP) and intervening peptide-1 (IP-1).
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Glucagon Therapeutics and
Hypoglycaemia
Given glucagon’s ability to rapidly mobilise glucose from tissue
stores, GCGR agonism has found valuable application in countering
severe hypoglycaemia in T1DM patients, an adverse consequence of
insulin therapy (53). Mild-to-moderate hypoglycaemia is defined as
an event that can be self-treated, irrespective of symptom severity, or
an asymptomatic blood glucose measurement of ≤3.9 mmol/L (54).
It is usually managed via ingestion of rapidly absorbed
carbohydrates, such as drinks or foods high in glucose, whereas
severe hypoglycaemia requires immediate, emergency intervention
(32). While intravenous (i.v.) infusion of dextrose is an option, it is
now more common for patients or carers to possess an injectable
glucagon preparation, which can be administered subcutaneously
(s.c.) or intramuscularly (i.m.) (55). Such intervention is reliable and
faster than the dextrose method, greatly reducing the risk of
Frontiers in Endocrinology | www.frontiersin.org 4
hypoglycaemic-induced coma and death. Rather than requiring a
potentially lengthy wait for arrival of a qualified healthcare
professional to perform an i.v. infusion, glucagon emergency kits
simply involve reconstitution of glucagon powder, which can be
injected into the patient’s leg or abdomen (32, 55). Moreover, a
ready-to use autoinjector preparation termed “Zegalogue®” has
recently gained FDA approval for management of hypoglycaemia
(33), further improving ease of use. I.v. dextrose may then be
required to prevent rebound hypoglycaemia (34), a potential
consequence of the rapid in vivo inactivation of administered
native glucagon (48).

Longer-acting, DPP-4 resistant analogues are in development
that may address the issue of rebound hypoglycaemia. Two such
analogues are the fatty-acid incorporating, NNC9204-0043
currently listed at Novo Nordisk ((34); Table 1), and
dasiglucagon, which employs several amino acid substitutions
A B

FIGURE 2 | An overview of PGDP actions and secretion from pancreatic alpha-cells (A) and enteroendocrine L-cells (B)). A fall in circulating glucose concentration
sees a reduction in intracellular adenosine triphosphate (ATP) levels and resultant closure of ATP-sensitive K+ channels to depolarise the plasma membrane and
trigger the influx of Ca2+ ions, the primary stimulus for glucagon release (A). Glucagon is subject to N-terminal dipeptide removal by dipeptidyl-peptidase 4 (DPP-4).
Glucagon(1-29) agonises glucagon receptors (GCGR) to evoke protein kinase A (PKA) activation and subsequent mobilisation of cyclic adenosine monophosphate
(cAMP). Enteroendocrine L-cells of the distal gut are an open-type cell, rich in chemoreceptors and respond to digestion products of dietary carbohydrate, free fatty
acids (FFA) and amino acids (AA’s) to release a number of PGDP’s into circulation (B). Glicentin(1-69) is an agonist for GCGR, GLP-1R and GLP-2R, although with
less affinity than their primary hormonal ligands. Additionally, glicentin may serve as a precursor to glucagon in the gut, facilitated enzymatic degradation by enzymes
such as carboxypeptidases-B and -E (CP-B, CP-E). Oxyntomodulin (OXM) is a dual agonist for GCGR and GLP-1R, but shows bias towards GLP-1R. It is cleaved
by DPP-4 to yield inactive OXM(3-37). Bioactive glucagon-like peptide 1 (GLP-1(7-36)) agonises target GLP-1R to evoke PKA-mediated rises in cAMP, while
activation of b-arrestin is also implicated in insulin secretion. DPP-4 cleaved GLP-1(9-36) is inactive. Glucagon-like peptide 2 (GLP-2) agonises target GLP-2R to
evoke rises in PKA/cAMP. It is inactivated by DPP-4 to generate GLP-2(3-23). Enzymes are indicated by yellow boxes/arrows. Receptor interactions are indicated by
dashed lines, with affinity indicated by increasing thickness of the arrow. Major tissues expressing receptors are also provided.
TABLE 1 | Glucagon and related analogues in the management of hypoglycaemia in T1DM.

Peptide Name Primary Sequence Development Stage Reference

Native glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT s.c. & i.n. formulations approved (32–33)
NNC9204-0043 HSQGTFTSDYSKYLDSKKAQEFVQ(2xOEG-gGlu-C18diacid)WLLNT Preclinical (Novo Nordisk) (33)
Dasiglucagon HSQGTFTSDYSKYLD-X-ARAEEFVKWLEST Approved 2021Phase III (Zealand Pharma) (34)
May 2021 | Volume 12 | Art
Amino acid sequences are provided in their single-letter abbreviation format. Modifications from native sequences are highlighted by red lettering. Current development stages are
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to infer improved stability [(56); Table 1]. The former has only
shown promise in in vitro settings (34), whereas dasiglucagon
has very recently gained FDA approval in T1DM (56). Indeed,
dasiglucagon is the active component of Zegalogue, and beyond
application in prefilled injector pens, is currently in phase 3 trials
as a subcutaneous infusion for treating congenital
hyperinsulinaemia, and in phase 2 trials as part of a
bihormonal artificial pancreas pump system alongside insulin
(57). Glucagon emergency kits have been further improved with
the development of intranasal (i.n.) glucagon. While not entirely
novel, having been in development since the 1990’s (34), the first
such product was only approved in 2019 (58). Termed Baqsimi®,
the ready-to-use i.n. formulation has been proposed to lead to
resolution of hypoglycaemia up to four times faster than
injectable glucagon kits (59). The single-use preparation simply
requires the user to administer one spray into either nostril,
which is reported to deliver a 3 mg dose of glucagon (57).
GLUCAGON-LIKE PEPTIDE-1

The next PC1/3-mediated (Figure 1), L-cell-derived PGDP to be
discussed has become a mainstay of T2DM management,
representing one of the principal modern success stories of
peptide therapeutic development. GLP-1 is a 29-residue
(Table 2), gut-derived incretin hormone (77). GLP-1 is
released post-prandially from L-cells [(77–79); Figure 2], with
Frontiers in Endocrinology | www.frontiersin.org 5
release influenced by the composition of each meal ingested; in
particular, meals that are rich in fat and carbohydrate are known
to be the primary physiological stimulus for GLP-1 secretion
(78–81). Additionally, GLP-1 secretion can be triggered, not only
by mixed nutrient load, but also via individual nutrients and bile
acids. For example, oral administration of glucose alone has been
shown to stimulate GLP-1 secretion in humans (82), as well as
amino acids such as glutamine (83). Sodium-glucose transporter
1 (SGLT1) plays a glucose-sensing role on the L-cell surface, and
although a contributor, is thought to play a lesser role than
glucose transporters (GLUT) in relation to GLP-1 release (84).
GLP-1 secretion is biphasic, with an early phase occurring 10-
15 min after ingestion of nutrients and a second, more prolonged
phase occurring 30-60 min after ingestion (81). Given the distal
location of L-cells in the gut, it is unlikely that direct nutrient
contact with these cells can be the sole mechanism initiating
GLP-1 secretion. Thus, the autonomic nervous system, in
particular the vagus nerve (which innervates a significant
portion of the gut), is thought to play a role in this early phase
of release, with nutrient content being more important for the
second phase (85).

The biologically active forms of GLP-1 are GLP-1 (7–36)-
amide and GLP-1 (7–37) which are equipotent in terms of their
incretin effects [(60); Table 2 and Figure 2]. However, they do
not circulate equally, with GLP-1 (7–36)-amide accounting for
~80% (20, 82). Both forms of circulating GLP-1 are subject to
rapid N-terminal degradation by DPP-4 (86, 87), cleaving after
TABLE 2 | GLP-1-based therapeutic peptides.

Peptide Name AA Sequence Development Stage Reference

GLP-1(1-37) HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG N/A (60)
GLP-1(1-36) HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGR N/A (60)
GLP-1(7-36) HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR N/A (60)
N-acetyl GLP-1(7-36) Ac-HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR Preclinical (61)
Exendin-4 (Exenatide) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS Daily - Approved 2005, Weekly-

Approved 2014 (d/c 2021), Phase
II-AD/PD (AstraZeneca)

(62–63)

Lixisenatide HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK Approved 2016-T2DM, Phase II-
AD/PD (Sanofi)

(64)

Liraglutide HAEGTFTSDVSSYLEGQAAK*(Glu-hexadecanoyl-Glu-OH)EFIAWLVRGRG Approved 2010-T2DM, Approved
2019-Obesity, Phase II-AD/PD,
CVD (Novo Nordisk)

(65, 66)

Albiglutide HGEGTFTSDVSSYLEGQAAKEFIAWLVKGR-{Human Albumin} Approved 2014 (d/c 2017)-T2DM,
Phase II-CVD (GlaxoSmithKline)

(67)

Dulaglutide HGEGTFTSDVSSYLEEQAAKEFIAWLVKGGGGGGGSGGGGSGGGG{Human IgG4-
Fc}

Approved 2014-T2DM, Phase II-
CVD, Phase II-AD/PD (Eli Lilly)

(68)

Semaglutide HXEGTFTSDVSSYLEGQAAK*(Glu-mPEG-17-carboxyheptadecanoyl-Glu-OH)
EFIAWLVRGRG

Approved 2017- T2DM, Filed
2021-Obesity, Phase II-CVD (Novo
Nordisk)

(69, 70)

Oral Semaglutide (Rybelsus) HXEGTFTSDVSSYLEGQAAK*(Glu-mPEG-17-carboxyheptadecanoyl-Glu-OH)
EFIAWLVRGRG/SNAC

Approved 2020-T2DM (Novo
Nordisk)

(71–72)

D-Ala8GLP-1(Lys37) -
pentasaccharide

H(DA)EGTFTSDVSSYLEGQAAKEFIAWLVKGRK*(Pentasaccharide) Preclinical (73, 74)

[Gln28]exenatide HGEGTFTSDLSKQMEEEAVRLFIEWLKQGGPSSGAPPPS Preclinical (75)
(Val8)GLP-1(GluPAL) HVEGTFTSDVSSYLEGQAAKEFIAWLVK*(-Glu-PAL)GR Preclinical (76)
May 2021 | Volume 12 | Art
Amino acid sequences are provided in their single-letter abbreviation format. Modifications from native sequences are highlighted by red lettering. Current development stages, associated
condition and holding companies (in brackets) are provided (where available) for each. FDA approval dates, and discontinuation date if applicable, are also provided where appropriate.
“SNAC” represents formulation with sodium N-[8-(2-hydroxybenzoyl) amino caprylate, an absorption aid. “Ac” represents an N-terminal acetylation, “hexadecanoyl-Glu” and
“carboxyheptadecanoyl-Glu” represent fatty acid attachments. “mPEG” indicates mini-polyethylene glycol addition. “PAL” indicates the addition of a palmitic acid chain. A “D” prefix
before a residue indicates inclusion of the enantiomer for the naturally-occurring L form of the residue.
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Ala2 to generate GLP-1(9-36) or (9-37) metabolites (86, 87).
While GLP-1(9-36) is considered a weak antagonist of beta-cell
GLP-1R (88), there is evidence suggesting that this metabolite
may reduce inflammation in cardiac tissue following myocardial
infarction (89). GLP-1(9-36) has also been demonstrated to
promote cardiac glucose uptake similar to GLP-1(7-36)-amide
(90), so the descriptor “inactive” may not be entirely accurate.
Additionally, a recent study suggests that GLP-1(9-36)-amide
may indirectly influence glycaemia through antagonism of
GCGR on alpha-cells to influence the glucagonostatic effects of
GLP-1 (91). However, the implications of any GLP-1(9-36)
effec ts on glycaemia are thought to be re lat ive ly
inconsequential in comparison to GLP-1(7-36)-amide (92).

The GLP-1R is a family B, or secretin-like G-protein coupled
receptor (GPCR) (93). A structurally identical GLP-1R has been
identified in various tissues, for example: pancreatic tissue
(alpha-, beta-, delta-cells), stomach, and intestine, as well as
CNS regions including the hypothalamus and brainstem ( (81,
93); Figure 2). Binding of GLP-1 to its target-receptor on the
beta-cell surface leads to activation of several intracellular
transduction pathways (Figure 2). The hormone augments
insulin secretion, mainly via stimulation of intracellular
cAMP-mediated events and promotes glucose-induced
biosynthesis of insulin, resulting in replenishment of insulin
stores within beta-cells and reducing cell exhaustion (81, 94–
96). Conversely, GLP-1 is known to suppress glucagon
secretion from alpha-cells ( (97); Figure 3). The mechanisms
behind this have been hotly debated, with it claimed to be an
indirect effect mediated through increased insulin or
somatostatin secretion (98, 99), while some have indicated
the effect is more direct (100), especially given the presence,
albeit at low expression (~10%), of GLP-1R on alpha-cells
(101). Beyond this, activation of pancreas duodenum
homeobox 1 (Pdx-1), a transcription factor essential for
pancreatic development and beta-cell function (activated
downstream from GLP-1R via cAMP activation), is thought
to be a shared influence in these three processes (102).
Prevention of beta-cell exhaustion may indirectly prevent cell
death, but GLP-1 also directly influences proliferation by a
number of proposed pathways including phosphatidylinositol
3-kinase (PI3-K) mediated rises in extracellular signal-related
kinase (ERK) 1/2 and p38 mitogen-activated protein kinase
(MAPK), as well as Pdx-1 (103). In keeping with this, exendin-4
has been shown to have no effect on proliferation or inhibition
of apoptosis in beta-cell specific, Pdx-1 knockout (KO)
mice (104).

Since entry into the clinic, research on GLP-1 has continued,
unveiling new mechanisms behind the various benefits of GLP-
1R agonists, as well as possible new applications in other
conditions. With regards to diabetes, it is now well established
that chronic administration of GLP-1R mimetics not only
enhances insulin secretion but also positively influences overall
islet function, restoring normal morphology in even severe
models of diabetes (105). Additionally, the ability of exogenous
GLP-1R mimetics to maintain and promote beta-cell mass
through reductions in apoptosis and increases in proliferation
Frontiers in Endocrinology | www.frontiersin.org 6
are well established (105–108). Culture of DPP-4 resistant, N-
acetyl-GLP-1 (Table 2) with pancreatic ductal-cells has also been
shown to induce expression of genes indicative of a transition to
a beta-cell like phenotype (61, 109), but translation to humans
requires further study. Advances in cell-lineage tracing
technology have seen the development of transgenic animal
models that employ fluorescently tagged alpha- or beta-cells to
identify such islet cell transitioning events in the in vivo setting
(110, 111). Recent studies have shown that administration of
liraglutide to such mice with diabetes can prevent beta- to alpha-
cell transdifferentiation (112), whilst also actively driving alpha-
to beta-cell conversion to help restore beta-cell mass (113–115).

GLP-1 also inhibits glucagon secretion and exerts additional
extra-pancreatic actions of therapeutic value including inhibition
of gastric acid secretion and gastric emptying (Figure 3), which
help reduce post-prandial spiking of blood glucose by slowing
transit of nutrients from the stomach to the small intestine (81).
In addition to locally produced GLP-1 (116), GLP-1 crosses the
blood-brain barrier to agonise GLP-1R within hypothalamic
CNS centres, where ingestive behaviour and satiety is dictated
[(117); Figure 3]. Increased satiety reduces food intake, with
resultant weight loss being an important benefit in overweight or
obese-T2DM patients. Moreover, the widespread tissue presence
of GLP-1R has witnessed new physiological roles for GLP-1
beyond glycaemia and satiety such as cardioprotection ( (118,
119); Figure 3), enhancing bone mass and strength in preclinical
models of T2DM (120), and is thought to play an important role
in enhancing cognition ( (121); Figure 3). Additionally, a
possible role for GLP-1 in resolution of hepatic steatosis (122–
124) through reduction in fatty acid accumulation by activation
of both macroautophagy and chaperone-mediated autophagy
(125), has attracted much interest.

GLP-1 Therapeutics and Diabetes
GLP-1 was not the first incretin hormone to be discovered, with
GIP being identified almost two decades previously in 1969
(126). However, with a proposed role for GIP in development
of obesity coupled with a loss of insulinotropic effect in T2DM
(127), therapeutic application did not follow such a
straightforward path. Thus, when a preservation of the
insulinotropic effects of GLP-1 in obesity was established (128),
excitement surrounding the possible therapeutic application of
this newly discovered incretin hormone began to grow.
Furthermore, direct comparisons of analogues of these two
incretins often resulted in more favourable outcomes for GLP-
1 compared to GIP (129). Nonetheless, current evidence
regarding GIP-based therapy looks more promising in T2DM
once glycaemic control has been re-established (130). This is
perhaps evident with new compounds being developed that
operate through combined activation of GLP-1R and GIPR
(130), as discussed in more detail below.

Initial therapeutic investigations into GLP-1 were promising,
highlighting that delivery of exogenous, native peptide had the
ability to improve overall glycaemia, insulin sensitivity, beta-cell
function and reduce both appetite and food intake when
administered by continuous s.c. infusion over a 6 week period
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in patients with diabetes (131). Moreover, tachyphylaxis was not
reported and the side-effect profile was favourable (131).
However, due to rapid inactivation by DPP-4 (132),
continuous infusion was required, making it unsuitable for
regular use in a “real world” setting.

With the discovery of exendin-4, an unexpected GLP-1R
mimetic isolated from the saliva of the Gila monster lizard
(Heloderma suspectum) (62), the tide began to turn. The first
30 residues of this 39 aa peptide demonstrated 53% sequence
identity with human GLP-1 (Table 2), but despite such variance,
Frontiers in Endocrinology | www.frontiersin.org 7
the peptide was proven to be a potent agonist for mammalian
GLP-1R (62), effectively bringing about GLP-1R-mediated
benefits on glycaemia, body weight and appetite (133).
Importantly, the substitution of Ala2 with Gly2 in exendin-4
conferred resistance to DPP-4, while further sequence variations
rendered the peptide less susceptible to ectopeptidases like
neprilysin (NEP) (134). Studies in anaesthetised pigs has
shown that GLP-1 clearance involves multiple organs including
hepatic, peripheral and renal extraction, whereas exendin-4 is
subject solely to glomerular filtration, which also appears to be
FIGURE 3 | An overview of the biological consequences for agonism of target receptors of major PGDP’s, namely glucagon receptor (GCGR) and glucagon-like
peptide-1 and -2 receptors (GLP-1R, GLP-2R). Organ-specific actions are provided with arrows indicating up or downregulation of specific effects to highlight the
therapeutic potential for multiagonism in relation to PGDP’s. As indicated by the key, the colour of arrow indicates the receptor interactions responsible. “GFR”
indicates glomerular filtration rate.
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up to two-fold slower than native GLP-1 (134). This results in an
in vivo action of ~5 hours (63), allowing for twice daily
administration as opposed to continuous infusion. Synthetic
exendin-4 reached full approval for therapeutic use in humans
in 2005 (Byetta™), being prescribed under the generic trade
name “exenatide” and has become a highly influential and widely
prescribed second- and third-line agent in T2DM, generally
following failure of metformin or metformin/sulphonylurea
combination (135). Indeed, oral DPP-4 inhibitors, such as
sitagliptin, were approved as second-line agents in 2007 (7),
while a plethora of additional GLP-1 mimetics have since gained
regulatory approval for diabetes in addition to exenatide, namely
the longer-acting mimetics: liraglutide, semaglutide, albiglutide
and dulaglutide (Table 2). In contrast, attempts to discover
suitable bioactive small molecule agonists of GLP-1R have
failed, despite considerable efforts, due to poor potency and
allosteric alteration of receptor conformation (136, 137).
Other Potential Applications for
GLP-1 Therapeutics
Obesity
Beyond glucose homeostasis, exciting research has highlighted
extra-pancreatic benefits and new applications for established
GLP-1 mimetics, many of which are exciting prospects. For
example, despite the enormous upsurge in the incidence of
obesity and associated complications including T2DM (138),
existing drug therapies for obesity are grossly insufficient, with
bariatric surgery being far more effective (139). Against this
background, in 2019 liraglutide became the first GLP-1 analogue
approved by the FDA, EMA and MHRA as a treatment option
for obesity (65). Importantly, while glycaemic improvements
undoubtedly influence weight loss, pharmacokinetic
investigation in human participants suggested the effects of
liraglutide on weight loss are primarily mediated through
increased energy expenditure (66). Prior to regulatory
approval, the “SCALE”, phase III trials demonstrated a
sustained 2-year weight loss with liraglutide treatment as an
adjunct to diet and exercise in non-diabetic participants (140,
141), strengthening the argument that effects are largely
independent of glycaemic modulation. Additionally, 3-year
follow-up demonstrated that liraglutide delayed diabetes
development in patients with pre-diabetes, taking almost 3
times longer in patients receiving liraglutide (142).

Given the successful application of liraglutide in this regard
and the scale of the obesity problem, other GLP-1R mimetics are
beginning to be touted as treatment options for obesity. Indeed, a
phase III clinical programme assessing efficacy and safety of
once-weekly semaglutide (SUSTAIN) in T2DM was completed
recently for s.c. semaglutide, manifesting a substantial average
weight loss of 14.9% (-15.3 kg) following 68 weeks treatment
(69). Additionally, a direct comparison between liraglutide and
semaglutide indicated superior weight loss was attained with the
latter (143). FDA approval has now been sought for semaglutide
use in obesity, meaning we may be on the verge of witnessing a
new treatment option available for obesity that rivals
bariatric surgery.
Frontiers in Endocrinology | www.frontiersin.org 8
There is also increasing interest in the therapeutic potential of
combining currently available GLP-1R mimetics (Table 2) with
other currently prescribed antidiabetic drugs. The combination
of exenatide with the sodium–glucose co-transporter 2 (SGLT2)
inhibitor, dapagliflozin, was investigated in the DURATION-8,
phase III clinical trial which demonstrated a degree of synergy
between the two agents, with improvements in short- and long-
term glycaemia and weight loss exceeding either agent alone
(144). Moreover, a 2-year follow-up demonstrated long-term
efficacy of this combination (145). An additional phase II trial,
ENERGIZE, has sought to identify the mechanism behind the
apparent synergy (146), the findings of which may influence
whether such a combination is advanced further.

Cardiovascular and Renal Benefits
The growing strength of the cardiovascular and renal benefits of
established GLP-1 mimetics add another string to their bow in
the management of T2DM, with cardiovascular disease (CVD)
being the number one cause of death in patients with T2DM
(147). As demonstrated by long-term prospective cardiovascular
outcomes trials (CVOTs), which have reported over the last four
years, liraglutide (LEADER), semaglutide (SUSTAIN-6),
albiglutide (HARMONY OUTCOMES) and dulaglutide
(REWIND) have all shown significant reductions in composite
cardiovascular outcomes [(64, 119, 148); Table 2], indicating
they may be the agents of choice when macrovascular
complication risk is high in T2DM patients. These longer-
acting GLP-1R mimetics elicit more favourable cardiovascular
outcomes than shorter-acting agents like exenatide or its
analogue lixisenatide (EXSCEL and ELIXA), which
demonstrated non-inferiority, but no obvious cardiovascular
benefit [(64, 119, 148); Table 2]. Additionally, proposed renal
benefits of SGLT2 inhibitors have seen trials such as “DECLARE-
TIMI 58” report reduced rates of hospitalisation due to heart
failure in dapagliflozin-treated groups of T2DM patients (148).
Thus, given the exploration of exenatide and dapagliflozin in the
DURATION-8 and ENERGIZE trials (144–147), it may stand to
reason that such a combination may be studied in relation to
CVD, perhaps with a more favourable GLP-1R mimetic than
exenatide. Indeed, the phase III FLOW trial is currently
recruiting patients to assess the renoprotective actions of
semaglutide. Thus, we await the results of this trial to
determine whether semaglutide may be the GLP-1R mimetic of
choice in this regard (149).

Cognition, Alzheimer’s, and Parkinson’s Disease
Vascular deterioration in T2DM can also be linked to cognitive
impairment, with growing evidence highlighting cross-sectional
and prospective associations between T2DM and cognitive
impairment and diminished memory and executive function
(150). Clinical studies have concluded that T2DM is a
significant risk factor that can double the likelihood of
developing dementia (151). It appears that a loss of insulin
sensitivity in the brain (152), coupled with impaired insulin
function (153), results in impaired growth factor secondary
messenger cascades that are vital for cell growth, repair and
synaptic function (154). GLP-1 receptor mimetics such as
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exendin-4 or liraglutide can reverse insulin desensitisation in the
brain (155, 156). Key biomarkers for cognitive impairment such
as phosphorylation of protein kinase B (AKT) and glycogen
synthase kinase-3beta (GSK-3B), were reduced by liraglutide
administration in diabetic rats in a time-dependent manner
(153). In more practical terms, exendin-4 administration in a
diet-induced obese (DIO) model reversed impaired memory
formation in mice (157) and liraglutide normalised object
recognition memory impairment in a similar model (158).
Similar findings have been observed with DPP-4 inhibitors
(159), although it is important to note that other gut
hormones, particularly GIP (157), are also implicated here.
Additionally, similar to CVD (145, 146), it appears that the
combination of GLP-1 mimetic with SGLT-2 inhibitor may
too be beneficial with regards to cognition, with DIO/STZ-
mice receiving liraglutide/SGLT-2 combination therapy
presenting with improved recognition and hippocampal
morphology (160).

Importantly, evidence suggests that the beneficial effects of
GLP-1 in relation to cognition may be independent from
glycaemic improvement, with a study comparing metformin
and the GLP-1 analogue (Val8)GLP-1(GluPAL) demonstrating
that only the latter reversed memory impairment in DIO mice
(76). This hypothesis is supported by the finding that GLP-1R
agonists have also shown neuroprotective effects in non-diabetic
patients with Alzheimer’s (AD) or Parkinson’s disease (PD) (161,
162). Long-term potentiation (LTP) of synaptic activity, the
cellular correlate of memory (163), is impaired in diabetes.
Liraglutide administration reversed diabetes-related LTP
blockade and actively promoted LTP formation in DIO mice
(157, 158), while rescuing hippocampal LTP loss in an ob/ob
murine model of obesity-diabetes (164).

While the close relation between GLP-1 and insulin signalling
is undoubtedly important in cognition, it is crucial to highlight
that beyond this mechanism, GLP-1R mimetics upregulated
several neuroprotective growth factors such as: insulin-like
growth factor 1 (IGF-1) (165), brain-derived neurotrophic
factor (BDNF) (166), glia-derived neurotrophic factor (GDNF)
(164), as well as vascular endothelial growth factor (VEGF)
(157, 158).

Indeed, preclinical work in rodents has illuminated both the
associations between cognitive decline in AD/PD and T2DM,
whilst implicating the potential of GLP-1R activation in curbing
such decline (167). As such, exenatide was employed in small-
scale, proof of concept, human trials in PD patients, with these
trials of <100 participants indicating exenatide treatment elicited
improved scores in tests of cognitive function over the course of
12 months treatment (168, 169). Moreover, a further 12 months
after study conclusion, those patients receiving exenatide still
achieved significantly improved cognition scores than those
receiving placebo (170). With such promising results, it is
unsurprising that larger scale trials were conducted, such as the
phase II, ELAD trial (171), which employed liraglutide in
patients with moderate AD and associated dementia.
Outcomes were disappointing, with it announced in late 2020
that no difference in cerebral glucose metabolic rate or
Frontiers in Endocrinology | www.frontiersin.org 9
improvement in daily activity was apparent between treatment
or placebo (171), although some scores of cognitive function
were improved by liraglutide. Despite such disappointment,
interest in GLP-1R mimetics in relation to cognitive function
has not been perturbed, with a number of phase II trials
recruiting in 2020 to study currently available GLP-1R
mimetics in AD and PD (172). Notably, a common theme of
these trials is an adjustment of treatment demographic towards
patients with relatively recently diagnosed AD/PD (172).

Bone Fragility
Increased bone fragility is a further complication associated with
diabetes, with the aetiology suspected to be due to an increase in
porosity of bone, impacting on bone quality (173). Bone fragility
also appears to be a feature in both T1DM and T2DM (174–176).
Like cardiovascular complications, effects on bone have the
potential to limit physical activity in T2DM patients.
Furthermore, a role for endogenous GLP-1 in the development
of diabetes-associated bone fragility has been identified, with
GLP-1R KO mice presenting with reduced bone mass through
increased osteoclast activity (177, 178). Given the implication of
GLP-1R involvement in the aetiology of bone fragility in
diabetes, research has explored the possibility of GLP-1R
agonist or DPP-4 inhibitor use in the management of the
condition with favourable outcomes (175, 179). Exenatide has
been shown to enhance bone strength by increasing trabecular
bone mass, bone formation and trabecular microarchitecture,
whilst also improving collagen maturity in rodent models of
diabetes (180, 181). Similarly, liraglutide significantly prevented
deterioration of the quality of the bone matrix in a
streptozotocin-induced, rodent model of T1DM (175).
Importantly, GLP-1 is not the only incretin involved in the
pathogenesis of bone fragility in diabetes, with single GIP
receptor (GIPR) KO and dual GLP-1R/GIPR KO mice
presenting with enhanced bone fragility (182, 183). Indeed, the
unimolecular GIPR/GLP-1R/GCGR agonist, [D-Ala2]GIP–Oxm
(Table 4), significantly improved bone strength and mass at both
organ and tissue levels in leptin receptor-deficient, ob/ob obese
diabetic mice (184). Possible translation of these findings from
animals to humans is still required.

Polycystic Ovary Syndrome
There is increasing evidence in support of incretin-analogue use
in polycystic ovary syndrome (PCOS) (185), an endocrine
disorder which greatly impacts fertility in women, with over
10% of women of reproductive age affected by the condition
(186). PCOS is a metabolic disorder that has overlap with T2DM,
with patients often being overweight, and presenting with
symptoms such as severe insulin resistance, hyperinsulinaemia
and dyslipidaemia (187). The interrelation between PCOS and
T2DM is further highlighted by the ability of bariatric surgery,
specifically Roux-en-Y bariatric surgery (RYGB), to totally
ameliorate both T2DM and PCOS (188, 189). Moreover,
incretin function has been shown to be impaired in PCOS
(187), thus application of GLP-1 mimetics in this condition is
a hypothesis built on firm physiological reasoning. Although in
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relative infancy compared to application in T2DM, the study of
applicat ion of GLP-1 mimetics in PCOS has been
overwhelmingly positive (190). Liraglutide was shown to
normalise irregular menstrual bleeding in PCOS patients (191),
whilst improving conception rates when used at low dosage in
combination with metformin (192). Indeed, it has been suggested
that in obese PCOS patients with concurrent insulin resistance,
GLP-1 analogues may be a better treatment option than
metformin (193). Possible application of PGDPs in female
fertility is worthy of further exploration.

Innovations in Formulation and Delivery of
GLP-1 Therapeutics
Since the approval of exendin-4 for T2DM, increasingly longer
acting formulations of GLP-1 analogues have been developed.
The first, liraglutide, a mammalian GLP-1 analogue employing
conjugation to a palmitic acid chain via a linker coupled to the
Lys26 residue was approved in 2010 [(194); Table 2]. This
modification increased half-life to ~12 h, through promoting
non-covalent binding to albumin and reduced renal clearance,
permitting once daily administration (195). Indeed, further
longer-acting analogues were developed employing several
strategies. The conjugation of the native GLP-1 analogue, D-
Ala8GLP-1(Lys37), to an antithrombin III (ATIII)-binding
pentasaccharide, known as CarboCarrier®, produced a peptide
with potential for once-weekly dosing [(73, 74); Table 2], while a
once-weekly exenatide preparation (Bydureon™) which employs
microspheres to form a slowly released, peptide-depot gained
regulatory approval in 2014 [(196); Table 2]. Additionally, the
once weekly preparations albiglutide and dulaglutide employ
covalent interactions to attach the peptide to human albumin or
a tail fragment of an IgG 4 antibody respectively, which impedes
clearance (67, 68), while semaglutide achieves the same
pharmacokinetic profile with non-covalent interaction with
albumin (70). Such advancement has continued with a once-
monthly, hydrogel preparation utilising the analogue [Gln28]
exenatide currently undergoing development (75), while a novel
osmotic minipump, termed Itca 650, is currently in phase III
clinical trials (FREEDOM-1) (197). This pump administers a
constant infusion of exenatide following subcutaneous
implantation, reported to last for up to 12 months before
requiring replacement (197).

In addition to this novel delivery method, there is growing
interest in development of oral GLP-1 therapies, with
preclinical data now describing bioactivity of orally delivered
exendin-4 (198, 199), albeit requiring a considerably larger
dose than intraperitoneal injection in mice. Most notable is a
novel formulation of semaglutide that makes use of an
absorption enhancer, sodium N-(8-[2-hydroxylbenzoyl]
amino) caprylate (SNAC), designed to protect peptides from
proteolytic degradation and promote absorption across the
gastric mucosa [(71); Table 2]. Phase II trials comparing oral
to s.c. semaglutide in diabetes management revealed
comparable improvements in glycaemia when compared to
placebo, but notably oral treatment attained slightly greater
weight loss over the 26 week study (-6.9 kg/-7.6%, compared to
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-6.4 kg/-7.2%) (71). This therapeutic has recently gained FDA
approval following successful phase III trials (PIONEER-7) in
T2DM patients and provides significantly better improvements in
glycated haemoglobin (HbA1c) than sitagliptin in T2DM (200).
Like previously available oral antidiabetics (7), oral semaglutide is
taken once-daily as a tablet formulation, being prescribed under
the brand name Rybelsus® (201). Moreover, as part of the
PIONEER trial program, oral semaglutide was studied in patients
with renal impairment and demonstrated favourable outcomes
(202), possibly indicating that like s.c. semaglutide there was
cardiovascular benefit (118). However, when outcomes were
assessed upon completion of PIONEER-6 non-inferiority
compared to placebo was evident (72), but there was no obvious
cardiovascular benefit. These new findings are highly relevant and
should lead to greater patient acceptability and compliance in
treatment of T2DM and other disorders, as compared to
traditional injection route for peptide therapies.
GLUCAGON-LIKE PEPTIDE-2

The discovery of GLP-1 and GLP-2 occurred simultaneously
following the cloning of cDNAs and genes encoding mammalian
proglucagon in the early 1980s, with experiments unveiling the
sequences of two novel glucagon-like peptides (15, 16). At that
time, the biological functions had not been described for either
hormone, with the insulinotropic actions of GLP-1 reported in
1987 (96). This delay was due to the lack of bioactivity of GLP-1
(1–37) (203), which hampered progress until the truncated
peptide GLP-1 (7–36)-amide was uncovered (204). Perhaps, as
a result of subsequent research focusing on the exciting prospect
of exploiting GLP-1 as a potential antidiabetic agent, GLP-2
based research may be considered somewhat less intense, with
the biological action as a growth promoter in gut not being
uncovered until almost a decade after actions of GLP-1 (205).

The development of the first GLP-1/GLP-2 secreting GLUTag
cell-line represents a starting point in the elucidation of the
biological function of GLP-2. This cell line was produced via the
creation of a transgenic mouse model with GLP-1/2 secreting
tumours in the colon, from which L-cells could be extracted and
immortalised (206). An observation was made that these animals
all exhibited marked enlargement of the small bowel following
tumour-induction, inspiring the hypothesis that a PGDP
secreted by these tumours must have been responsible for the
intestinotrophic activity (205). Interestingly, Bloom had reported
the first enteroglucagonoma patient with small intestinal villous
hypertrophy, malabsorption, as well as colonic and jejunal stasis
some 20 years earlier (207). However, the question remained as
to which hormone, or hormones, were responsible. Initially, the
intermediary peptide, glicentin, was identified to elicit
intestinotrophic action (208). However, subsequent
administration of synthetic GLP-2 into mice indicated that
GLP-2-mediated increases in small bowel weight surpassed
those seen with glicentin (209), making it the more
likely instigator.
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As their name suggests, both GLP hormones are closely
related with both being synthesised by the action of PC1/3 and
secreted from intestinal L-cells of the distal gut (Figure 1) (25,
210). Following liberation from proglucagon, the 33 residue
GLP-2 is secreted post-prandially in a biphasic fashion from
nutrient-sensing L-cells (Figure 2), particularly in response to
carbohydrates and lipids contained within luminal contents
[(211); Figure 2]. Notably, the distal location of these cells
indicates a neural pathway must be involved, given plasma
GLP-2 levels (along with other L-cell-derived hormones) are
shown to rise rapidly following ingestion (212).

GLP-2 exerts its actions through agonism of its own target
receptor, a GPCR termed the GLP-2 receptor (GLP-2R) [(25);
Figure 2]. The receptor is widely expressed throughout the
entirety of the gut and is highly specific for GLP-2, with other
PGDPs demonstrating relatively low affinity (213). Similar to
GLP-1, agonism of the GLP-2R evokes a rise in intracellular
cAMP and subsequent PKA activation, however, intracellular
calcium remains unchanged [(214); Figure 2]. Activation of the
receptor directly reduces enterocyte apoptosis and increases
crypt cell proliferation, which operates in tandem to increase
microvilli height [(215); Figure 3]. The hormone has also been
demonstrated to improve intestinal blood flow, decrease gut
motility and inhibit gastric acid secretion [(216); Figure 3].
There is some evidence that GLP-2 is produced in small
functional amounts within pancreatic islets, but the alternative
processing of proglucagon by PC1/3 in alpha-cells to give GLP-1
under conditions of cellular stress is likely much more
significant (217).

GLP-2 Therapeutics and Short
Bowel Syndrome
The intestinotrophic properties of GLP-2 were an attractive
prospect in development of therapeutics for conditions such as
short-bowel syndrome (SBS), usually a consequence of surgical
removal of a section of the bowel in Crohn’s disease (218). This
condition is characterised by malabsorption as a result of chronic
diarrhoea with further dehydration and weight loss, and
depending on severity, the overall quality of life can be greatly
impaired. The condition can be managed by parenteral nutrition
(PN) and hydration, however, in the long-term this increases the
likelihood of infection and potentially sepsis (219). Additionally,
patients have a strict reliance on PN which can impede mobility,
further impacting on quality of life. Hence, a medication with the
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ability to manage the condition and reduce the need for PN was
highly sought after.

In support of GLP-2 use in SBS, endogenous levels have been
shown to rise following excision of bowel (220), while preclinical
data showed promising improvements in bowel mass in rats
receiving GLP-2 infusion following 75% removal of the mid
jejuno-ileum (221). Moreover, infusion of GLP-2 in patients in
whom the terminal ileum and colon had been resected, improved
intestinal absorption and nutritional status (222). Thus, GLP-2R
has clear application in treatment of the condition. As is the case
with GLP-1(7–36), GLP-2 is rendered inactive by enzymatic N-
terminal dipeptide (His1-Ala2) removal by DPP-4, producing the
major fragment GLP-2 (3–33) (205). Thus, in order to be
therapeutically viable, the native hormone must be modified to
facilitate exogenous administration.

Substitution of the penultimate Ala2 for Gly2 (as found in
exendin-4) enabled the development of [Gly2]GLP-2 (Table 3), a
DPP-4 resistant, long-acting GLP-2 mimetic (214). The peptide
employed single amino acid substitution and presented a more
specific approach than blanket DPP-4 inhibition (222). The
analogue was later named “teduglutide” and demonstrated
early promise in a dose-range pilot study in human SBS
patients (227). Subsequent phase III clinical trials confirmed
beneficial effects in several cohorts of SBS patients, manifesting
in improved intestinal morphology, renal function as well as a
favourable side-effect profile (223, 228). Furthermore, treatment
reduced reliance on PN in many patients (223), while a portion
of previously dependent patients was able to completely
discontinue PN (229). Teduglutide was subsequently approved
by the FDA in 2012 and is prescribed under the trade names
Gattex® in the USA and Revestive® in Europe (Table 3).

Following the success of teduglutide, further GLP-2 analogues
are currently in development, with research aimed to improve
the ~5 h circulating half-life of teduglutide (230). Apraglutide
([Gly2, Nle10, D-Phe11, Leu16]-GLP-2) employed further
substitutions (Table 3), identified through structure-activity
relationship studies of lipophilic amino acid substitutions in
positions 11 and 16 of teduglutide, and has been shown to
prolong in vivo bioactivity through reduced renal clearance in
rodents (224). Similar findings were observed in monkey and
mini-pig (225), whilst exhibiting excellent specificity and
potency for the GLP-2R. The peptide was more efficacious
than both teduglutide and another GLP-2 analogue in
development, glepaglutide [(226); Table 3], and has started
TABLE 3 | GLP-2-based therapeutic peptides.

Peptide Name AA Sequence Development Stage Reference

Native GLP-2(1-33) HADGSFSDEMNTILDNLAARDFINWLIQTKITD N/A (205)
[Gly2]GLP-2 HGDGSFSDEMNTILDNLAARDFINWLIQTKITD Preclinical (209, 214)
Teduglutide HGDGSFSDEMNTILDNLAARDFINWLIQTKITD Approved 2012-SBS (Shire-NPS Pharmaceuticals) (222–223)
Apraglutide HGDGSFSDE-Nle-(DF)TILDLLAARDFINWLIQTKITD Phase III-SBS (VectivBio) (224, 225)
Glepaglutide HGEGTFSSELATILDALAARDFIAWLIATKITDKKKKKK Phase III-SBS (Zealand Pharma) (226)
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recruiting for phase III clinical trials in SBS patients (231). That
said, glepaglutide has a reported half-life of 50 h and has also
entered phase III clinical trials (226). It employs nine amino acid
substitutions and a C-terminal tail of six Lys residues (Table 3).
The analogue forms a subcutaneous depot at the injection site,
from which glepaglutide and its active metabolites are gradually
released into the circulation. Phase II trials indicated the
analogue was well absorbed, effective and tolerated (226).
Thus, apraglutide and glepaglutide may represent an exciting
new step in development of GLP-2 analogues, emulating the
success of long-acting GLP-1 analogues, which can be
administered at less frequent intervals than currently available
once-daily preparation, teduglutide.

GLP-2 Therapeutics and Osteoporosis
An additional similarity to GLP-1 research is the pursuit of new
therapeutic applications. With the widespread expression of
GLP-2R (213), it was postulated that GLP-2 may have
application in the management of osteoporosis. Osteoporosis is
a condition characterised by bone mass reduction and
microarchitecture impairment caused by an imbalance in bone
formation and resorption, increasing the risk of fractures (232).
Moreover, the prevalence of osteoporosis continues to surge in
accordance with an increasingly ageing population (233). A
number of the widely-prescribed, anti-resorptive drugs,
particularly bisphosphonates, are believed to possess
unfavourable side-effect profiles (234), thus alternative
treatment options are being sought. Indeed, the involvement of
gut hormones in bone mass and formation has been widely
researched, with the roles of GLP-1, as well as GIP (175),
discussed above.

However, unlike these related gut hormones, the role and
indeed application of GLP-2 with respect to bone mass is more
divisive. In initial studies of GLP-2 in SBS, an additional
observation was made that, following 5 weeks treatment,
patients presented with significantly increased spinal areal
bone mineral density (222). Subsequently, it was demonstrated
that s.c. GLP-2 administration reduced bone resorption in post-
menopausal women while not affecting bone formation (235).
However, the findings in SBS patients were refuted, with a later
study reporting that an intact bowel is required for exogenous
GLP-2 administration to have such an effect (236). Additionally,
unlike GIPR, an equivalent GLP-2R has not been identified on
human osteoclasts (237), indicating that its actions are indirect,
with inhibition of parathyroid hormone (PTH), mediated by
activation of GLP-2R on PTH gland, suggested to be the
mediator of its effects on bone resorption (236). Moreover, a
small-scale trial in healthy males employed GIPR antagonists to
confirm the antiresorptive effects of GLP-2 are independent of
this receptor (238). The mechanisms behind the bone actions of
GLP-2 require further investigation to firmly establish a link.

Despite this, several studies support the involvement and
potential use of GLP-2 in bone formation in some capacity. In a
study of postmenopausal women with concurrent T2DM, it was
revealed that ingestion of a mixed nutrient meal saw a reduction in
biomarkers for bone fragility, coupled with a rise in GLP-2 levels
(239), indicating the importance of the gut. However, this study
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did not ascertain the involvement of other gut hormones. These
findings are supported by more recent work in ovariectomised
rats, an animal model replicating postmenopausal osteoporosis. It
was established that 4 weeks s.c. administration of GLP-2 resulted
in improvements of bone architecture and mass through both
promotion of bone formation and a reduction in resorption (240).
Interestingly, studies of GLP-2 effects on bone have all employed
human GLP-2, as opposed to longer-acting analogues.
Furthermore, i.v. administration of a high dose of GLP-2 was
outperformed by lower doses of s.c. GLP-2 in terms of reducing
bone resorption (241). Thus, given longer acting, s.c. teduglutide is
currently available, as well as other enzyme resistant analogues in
development, their potential use for therapy of osteoporosis is
exciting. Moreover, given the involvement of several gut hormones
in this gut-bone axis (242), coupled with the success of
unimolecular multiagonists with relation to bone improvements
(184), it stands to reason that incorporation of a GLP-2R agonising
component may improve the efficacy of such agents in promoting
bone density.
OTHER POTENTIAL PROGLUCAGON-
DERIVED THERAPEUTICS

Oxyntomodulin
Oxyntomodulin (OXM) was discovered as a fragment of
glicentin (243, 244), sharing substantial sequence homology
and essentially the entire 29 amino acid glucagon molecule
with an additional C-terminal octapeptide, IP-1, resulting in 37
residue OXM ( (245, 246); Figure 1 and Table 4).

Like other gut-based PGDPs, OXM is released post-
prandially from L-cells (254). OXM increases energy
expenditure and physical activity, promotes weight loss and
improves glycaemia in humans (254, 255). No specific OXM
receptor is known to exist; rather, the peptide acts as a dual
agonist for GCGR and GLP-1R (Figure 2), although it binds to
both with lower affinity than either of their primary ligands (256,
257). In the current thinking, OXM-mediated weight loss is
believed to be elicited through activation of the GCGR, bringing
about anorectic actions and increased energy expenditure [(258);
Figure 3]. In contrast, GLP-1R agonism accounts for improved
glucose homeostasis through augmented insulin secretion,
overcoming the hyperglycaemic actions of GCGR activation
[(259); Figure 3]. Mechanistic studies reveal that OXM
behaves as a differential agonist depending on the receptor,
acting as a full agonist in recruiting b-arrestin 2 to the GCGR,
but partial agonist in recruiting b-arrestin 1 and 2 and GPCR
kinase 2 to the GLP-1R (260). Furthermore, some data suggests
that OXM is a GLP-1R-biased agonist relative to GCGR (260).
Oxyntomodulin Therapeutics
and Obesity/Diabetes
As alluded to above, the ability of OXM to effectively activate
both GCGR and GLP-1R, thereby improving blood glucose and
body weight, is attractive for the development of peptide
May 2021 | Volume 12 | Article 689678
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therapeutics for obesity/T2DM, provided an appropriate
receptor balance is struck. Like all other PGDPs, OXM is
subject to rapid inactivation by DPP-4 which targets cleavage
after the N-terminal Ser2 residue (261). This rapid inactivation
precludes use of the unmodified hormone as a therapeutic. Thus,
while initial studies demonstrated that native OXM decreases
food intake and enhances energy expenditure in both healthy
and obese human volunteers, these employed undesirably
frequent dosing of three- or four-times daily (262, 263).

As with GLP-1, DPP-4 resistant forms of OXM are required
therapeutically and given the sequence similarities between the
two peptides, successful approaches taken with GLP-1 can be
applied to OXM (261, 262). One example, (D-Ser2)Oxm[mPEG-
PAL] (Table 4), employed substitution of the naturally occurring
L-Ser2 with the enantiomer D-Ser2 to promote DPP-4 resistance,
while further utilising C-16 palmitic acid conjugation via a mini-
PEG linker at the C-terminus to reduce renal clearance and
improve circulating half-life (247). The resulting peptide was
fully resistant to DPP-4, whilst clearly retaining bioactivity:
increasing cAMP in both GLP-1R and GCGR transfected cell
lines, as well as enhancing insulin release from clonal pancreatic
beta-cells (247). Additionally, daily administration of (D-Ser2)
Oxm[mPEG-PAL] to ob/obmice decreased food intake and body
weight, whilst increasing plasma and pancreatic insulin and
improving glucose tolerance (247). Several biomarkers of
obesity were also improved, including increased adiponectin
with reductions in both visfatin and triglyceride concentrations
(247). The OXM analogue also exerted beneficial effects on blood
glucose control in STZ-diabetic mice, including elevations in
total islet and beta-cell areas associated with an increase in the
number of smaller-sized islets and enhanced islet proliferation
(264). A follow-up study with (D-Ser2)Oxm[mPEG-PAL] in
transgenic mice with fluorescently tagged alpha cells also
demonstrated highly favourable effects on islet cell
transdifferentiation (265). Interestingly, another study
employed dogfish and ratfish oxyntomodulin peptides (Table
4), which despite numerous sequence variations from human
OXM, remained effective at mammalian GCGR and GLP-1R
(248). This suggests a possible early advantage of such dual
receptor actions in evolutionary terms.
Frontiers in Endocrinology | www.frontiersin.org 13
The therapeutic applicability of enzymatically stable OXM
analogues is clear and a number of analogues are in various
stages of development for potential use in T2DM therapy (Table
4). However, it has been demonstrated that a balance in GCGR/
GLP-1R agonism must be reached when designing OXM
analogues, with a number of examples demonstrated to induce
hyperphagia (266). OXM analogues with Glu3 substitution
favour GLP-1R activation and do not exhibit an orexigenic
effect (266), hence, it is assumed that such an effect must be
mediated via GCGR agonism (266, 267). However, with the
development of OX-SR, a sustained-release oxyntomodulin
analogue which employs 5 central, depot-forming, amino acid
substitutions between residues 16-27 of the human peptide
(exact sequence not disclosed by authors), an OXM analogue
capable of bringing about GCGR-mediated increases in energy
expenditure was developed, and despite having an orexigenic
effect actually elicited 2% weight loss following 3 days
administration in rats (249). In this respect, while OX-SR was
proven to agonise both receptors in vitro, the analogue showed
greater affinity for GCGR than GLP-1R (249). More prolonged
studies, including those in models of diabetes are required to
investigate the long-term consequences of such prolonged
exposure to GCGR and GLP-1R activation by OX-SR, but the
peptide does represent a potential once-weekly OXM
formulation (249). Excitingly, regulatory approval of the first
OXM analogue may be on the horizon, with the long acting,
fatty-acid derivatised analogue LY3305677 (sometimes termed
IBI362) currently in separate phase II clinical trials investigating
management of T2DM and obesity (250, 251).

Glicentin and Glicentin-Related
Pancreatic Peptide
Glicentin is a product of PC1/3 proglucagon processing, while
GRPP glicentin-related pancreatic peptide (GRPP) is a product
of PC2 processing in the pancreas [(22, 25); Figure 1].
Radioimmunoassay of gut extracts revealed substances with
glucagon-like immunoreactivity that cross-reacted with
antibodies directed towards the N-terminus of glucagon (268),
with further investigation identifying two related proteins, one
appearing to be a fragment of the other. Firstly, the 69 residue, N-
TABLE 4 | Oxyntomodulin-based therapeutic peptides.

Peptide Name AA Sequence Development Stage Reference

Native OXM HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA N/A (245)
(D-Ser2)Oxm[mPEG-PAL] H(DS)QGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA-[mPEG-PAL] Preclinical (247)
Dogfish OXM HSEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG Preclinical (248)
Ratfish OXM HTDGIFSSDYSKYLDNRRTKDFVQWLLSTKRNGANT Preclinical (248)
[D-Ala2]GIP–Oxm YDAEGTFISDYSKYLDSRRAQDFVQWLMNTKRNRNNIA Preclinical (184)
OX-SR Structure N/A Preclinical (249)
LY3305677 Structure N/A Phase II-T2DM/Obesity (Eli Lilly) (250, 251)
DualAG HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA-Chol Preclinical (252)
GLPAG HSEGTFTSDYSKYLDSRRAQDFVQWLMNTKRNKNNIA-Chol Preclinical (253)
May 2021 | Volume 12 | Art
Amino acid sequences are provided in their single-letter abbreviation format. Modifications from native sequences are highlighted by red lettering. Current development stages, associated
condition and holding companies (in brackets, where available) are provided for each. A “D” prefix before a residue indicates inclusion of the enantiomer for the naturally-occurring L form of
the residue. “mPEG” indicates mini-polyethylene glycol addition. “PAL” indicates the addition of a palmitic fatty acid chain. “Chol” represents attachment of a human cholesterol fragment.
“Structure N/A” represents a molecule for which the amino acid sequence has not been disclosed by authors.
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terminal proglucagon fragment glicentin (243), which contained
the entire glucagon sequence attached to an N-terminal portion
later identified as GRPP (269, 270). The smaller fragment was
essentially glucagon attached to a C-terminal octapeptide called
intervening peptide-1 (IP-1) (271), later this C-terminally
extended glucagon was denominated as oxyntomodulin.

We now know glicentin is released post-prandially from L-
cells of the distal ileum and colon, particularly in response to
glucose, lipids and amino acids, especially arginine, entering the
duodenum [(272–274); Figure 2]. The hormone elicits a number
of physiological effects such as a paracrine role in promoting
intestinal growth and regulating motility (275), as well as playing
a role in glucose homeostasis through augmenting insulin
secretion and inhibiting glucagon secretion (276). However, no
glicentin receptor has yet been identified, but the hormone has
been shown to agonise and elicit cAMP production following
binding to glucagon, GLP-1 and GLP-2 receptors [(277, 278);
Figure 2]. Additionally, earlier work with glicentin suggested
that its actions were largely dependent upon the degradation of
the hormone into smaller molecular fragments (279), possibly
including carboxylase-mediated generation of glucagon (Figure
2). This may, in part, explain why there has been relatively little
research exploring development of glicentin-based therapeutics.
Furthermore, it is likely that a lack of commercialised detection
methods for glicentin have hindered its overall investigation and
therapeutic application (280). However, with increasing
availability and affordability of capable assays and given the
increasing interest in peptide therapeutics, we may see renewed
interest in this PGDP (281). Moreover, it has recently been put
forward that post-surgery rises in glicentin, along with OXM, are
the best predictors of decreased in intake of energy-dense foods
and weight loss following RYGB, more so than even GLP-1
(282). Whether this translates to functional involvement remains
unclear, and instead it is postulated that increased glicentin levels
are a useful indicator of improved overall L-cell function (282).

As discussed above, GRPP is one of the products of PC2
processing of proglucagon in pancreatic alpha-cells (25, 26). A 30
residue, N-terminal fragment of proglucagon (Figure 1), GRPP
was discovered after glicentin using glicentin-specific antibodies
in pancreatic extracts (269). Structural elucidation highlighted
that the peptide was identical to the N-terminus of gut-derived
glicentin, hence the name glicentin-related pancreatic peptide
(269). Despite its discovery almost four decades ago, research on
this PGDP is sparse, but earlier experiments in dogs suggest the
peptide may influence glucose homeostasis through increasing
plasma insulin and decreasing plasma glucagon (283). A more
recent study utilised isolated-perfused pancreas and liver from rats
to pursue a detailed investigation of the physiology of this peptide
(284). In contradiction of initial findings, this study demonstrated
that while glucose output from the liver remained unaffected, GRPP
brought about potent inhibition of glucose‐stimulated insulin
secretion in perfused pancreas, with cAMP assay indicating that
these actions were not mediated through either GLP-1R or GCGR,
meaning an unidentified receptormay be at play (284). Given the lack
of physiological data surrounding GRPP, it is unsurprising that no
therapeutic exploration has been made on this PGDP.
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MULTIAGONISTS

Unimolecular multiagonists represent an exciting future in the
therapeutic application of PGDPs, with increasingly complex
and experimental molecules being developed. As briefly
mentioned above, RYGB surgery induces rapid remission of
T2DM in 70-80% patients (285). Importantly, secretion and
action of a number of gut hormones, including the PGDPs
GLP-1, GLP-2, OXM and glicentin, together with PYY, GIP,
cholecystokinin (CCK), neurotensin (NT) and secretin, are
positively modulated in concert following RYGB (286). These
are thought to be major determinants in the improvements of
appetite, body weight, glucose tolerance and insulin sensitivity
demonstrated post-surgery (286). Thus, given high costs, limited
availability and potential risks associated with surgical
procedures, there is a current focus on designing multiagonist
molecules with the ability to emulate the post-surgical, hormonal
mechanisms of RYGB, which have the potential to be more
widely available to patients than surgery. Additionally, they have
the potential to evoke an array of positive actions within various
organs (Figure 3), and such molecules could surpass advantages
observed with individual peptides.

Earlier research employing combinations of single gut
hormones or analogues provided a sound basis for the
application of multi-agonism in T2DM (287). Indeed, with the
combination of liraglutide plus an acylated GIP analogue (288),
synergy was demonstrated leading to improved glucose-lowering
and insulinotropic actions in obese-diabetic mice compared to
either of the individual incretin analogues alone. Furthermore,
recent combination studies have further strengthened the idea
that combined exogenous peptide administration can effectively
emulate the benefits of RYGB. As such, infusion of a multi-
peptide preparation of GLP-1, OXM and PYY (3–31, 35–39)
termed “GOP”, can replicate the postprandial levels of these
hormones observed after RYGB, and can safely bring about 32%
reduction in food intake in a standardised meal test (289).
Moreover, continuous GOP infusion, delivered by pump over a
4-week period in obese patients with prediabetes or diabetes,
resulted in improvements in glucose tolerance which surpassed
those of RYGB (290).

To date, a number of unimolecular double- and triple-
agonists have been developed with several being actively
pursued for clinical application (Table 5). The majority of
these typically employing a GLP-1R agonist component
combined with another gut hormone, often an incretin or
other PGDP.

Dual Agonism With GLP-1 and Glucagon
As previously discussed, the notion of GCGR agonism in pursuit
of a therapeutic for T2DM, or its related conditions, seems
counterintuitive. However, given the surprising beneficial
effects of OXM agonists in T2DM, the benefits of targeting
these two receptors in tandem was clearly demonstrated
(Figure 3). Additionally, the structural similarity between the
two PGDPs was clearly demonstrated (Table 4). As such, this
combination pioneered unimolecular PGDP-based research,
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with the cholesterol-conjugated OXM analogue DualAG and the
glucagon, GLP-1 chimeric peptide “Aib2 C24 chimera 2 lactam
40K” both showing preclinical promise in murine, DIO models
of obesity-diabetes [(252, 311); Table 4].

While a number of GLP-1/glucagon based peptides have
been generated (Table 5), many have witnessed therapeutic
pursuit abandoned. Currently, a molecule of particular
promise is cotadutide (formerly MEDI0382). Cotadutide is a
linear, chimeric peptide employing important residues from
both glucagon and GLP-1 into its sequence (Table 5), with a
palmitoyl FA attachment on Lys10 to prolong circulating half-
life (253). The peptide is reported to be a balanced dual-
agonist for GLP-1 and GCGR, which brought about
significant weight loss through improved glycaemia in DIO
mice and non-human primates, being more effective than
liraglutide alone (253). The concept of balance in respect to
such molecules is crucial, as it is important to maximise
weight loss whilst minimising the potential to cause
hyperglycaemia, with as little as 10% relative GLP-1
Frontiers in Endocrinology | www.frontiersin.org 15
sequence contribution minimising hyperglycaemia whilst
retaining weight loss (312). The effects on glycaemia were
supported by acute administration studies in humans,
however a slower dose titration was deemed necessary to
avoid adverse effects on gastric emptying (291).

When assessed in phase II trials in T2DM patients, slower
titration of cotadutide was employed to reflect such findings
(313). This study revealed that daily administration in patients
with controlled T2DM improved overall glycaemic control, as
measured by HbA1c, which was associated with sustained weight
loss following 41 days daily administration (313). Subsequently,
it was revealed that these positive effects on glycaemia were likely
the result of improved gastric emptying and postprandial insulin
response (292). Additionally, patients presented with significant
improvements in liver fat, with levels falling by 39% (313), which
was notable given an equivalent fall in levels with liraglutide
takes around 6 months (314). These findings on liver fat have
seen a refocus of research toward application in non-alcoholic
fatty liver disease (NAFLD) and steatohepatitis (NASH) (293),
TABLE 5 | Multiagonists based on proglucagon-derived peptides in development.

Peptide Name AA Sequence Target
Receptors

Development Stage Reference

Dual Agonists
Cotadutide HSQGTFTSDK-(Palmitoyl-E)SEYLDSERARDFVAWLEAGG GLP-1R/

GCGR
Phase II-T2DM, NASH/
NAFLD (AstraZeneca)

(291–292,
293)

Efinopegdutide Structure N/A GLP-1R/
GCGR

Phase II-NASH/NAFLD
(Merck & Co)

(294–295)

Tirzepatide Y-Aib-EGTFTSDYSI-Aib-LDKIAQK*(C20 diacid g-E)
AFVQWLIAGGPSSGAPPPS

GLP-1R/GIPR Phase III-T2DM, Phase II-
NASH (Eli Lilly)

(296–297)

NN9389 Structure N/A (GIP/Semaglutide Preparation) GLP-1R/GIPR Phase I-T2DM (Novo Nordisk) (298)
CT-868 Structure N/A GLP-1R/GIPR Phase I-T2DM (Carmot

Therapeutics)
(298)

TAK-094 Structure N/A GLP-1R/GIPR Phase I-T2DM (Takeda
Pharmaceuticals)

(298)

(pGlu-Gln)-CCK-8/exendin-4 pEQDY-(SO3H)-MGWMDF-(AEEAc-AEEAc)-
HGEGTFTSDLSKQMEEEAVRLFIEWLKN

GLP-1R/
CCK1R

Preclinical (299)

C2816 HGEGTFTSDLSKQMEEEAVRLFIEWLKN-[PEG4]-Nle-GWK(Tac)D-NmeF GLP-1R/
CCK1R

Preclinical (MedImmune/
Astrazeneca)

(300)

GUB06-046 HXEGTFTSDLSRLLEGAALQRFIQWLV GLP-1R/SCTR Preclinical (Gubra) (301)
EP45 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSRHYLNLVTRQRY GLP-1R/

NPY2R
Preclinical (302)

Exendin‐4/xenin‐8‐Gln HGEGTFTSDLSKQMEEEAVRLFIEWLKN‐(AEEAc‐AEEAc)‐HPQQPWIL GLP-1/NTSR1 Preclinical (303)
Triple Agonists
YAG-glucagon Y[DA]QGTFTSDYSIYLDSNVAQDFVQWLIGG GLP-1/GIPR/

GCGR
Preclinical (304)

Exendin‐4/gastrin/xenin‐8‐Gln HGEGTFTSDLSKQMEEEAVRLFIEWLKN‐(AEEAc‐AEEAc)‐YGWLDF ‐

(AEEAc‐AEEAc)‐HPQQPWIL
GLP-1/
CCK2R/
NTSR1

Preclinical (305)

Exendin‐4(Lys27g‐Glu‐PAL)/
gastrin/xenin‐8‐Gln

HGEGTFTSDLSKQMEEEAVRLFIEWLK(g‐E‐PAL)N‐(AEEAc‐AEEAc)‐
YGWLDF ‐(AEEAc‐AEEAc)‐HPQQPWIL

GLP-1/
CCK2R/
NTSR1

Preclinical (306)

LY3437943 Structure N/A GLP-1/GIPR/
GCGR

Phase I (Eli Lilly) (269)

HM15211 Structure N/A GLP-1/GIPR/
GCGR

Phase II (Hanmi
Pharmaceuticals)

(307–308)

TA HXQGTFTSDK*(gE-C16)SKYLDERAAQDFVQWLLDGGPSSGAPPPS GLP-1/GIPR/
GCGR

Preclinical (309, 310)
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Amino acid sequences are provided in their single-letter abbreviation format. The receptor targets for each molecule, as well as current stage of development and holding companies (in
brackets, where available) are provided for each. A “D” prefix before a residue indicates inclusion of the enantiomer for the naturally-occurring L form of the residue. “PAL” indicates the
addition of a palmitic fatty acid chain, “PEG” indicates a polyethylene glycol linker. “Aib”, “Nle” and “NmeF” indicate the addition of an unnatural 2-aminoisobutyric acid, norleucine or N-
methyl phenylalanine residues. “pE” indicates pyroglutamine. “K(Tac)” indicates inclusion of a side-chain substituted (o-tolyamino)carbonyl lysine residue. “(AEEAc‐AEEAc)” indicates a
commonly employed linker molecule between peptide regions. “gE-PAL” represents a fatty acid attachment.
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both common consequences of uncontrolled T2DM (315). The
study revealed that cotadutide’s actions on the liver to reduce
lipid content, drive glycogen flux and improve mitochondrial
turnover and function are directly mediated through modulation
of hepatic GCGRs, while metabolic improvements mediated via
agonism of extrahepatic GLP-1Rs further enhanced
improvement (293). A similar story is unfolding for the GLP-
1/GCGR agonist efinopegdutide (formerly HM12525A), a longer
acting agonist which employs modified exendin-4 conjugated to
human IgG, facilitating once-weekly administration ( (294);
Table 5). The peptide appealed as a treatment for T2DM due
to promising preclinical results which demonstrated lipolytic and
insulinotropic effects in diabetic mice (316). However, potent
lowering effects on cholesterol and liver fat have seen this
analogue also repurposed as a potential NAFLD/NASH
medication (295).

Dual Agonism With GLP-1 and GIP
With synergy demonstrated by administration of liraglutide plus
an acylated, enzyme resistant GIP analogue (288), the value of
developing molecules targeting these two incretin receptors was
evident. As such, a number of unimolecular GLP-1/GIP agonists
have been developed and are at various stages of clinical testing
(Table 5).

One particular success story involves a molecule termed
tirzepatide (formerly LY3298176) (296). The peptide is a
linear, 39 aa peptide containing two unnatural residues and a
C20 diacid fatty acid attached via a linker to Lys20 (Table 5), all
of which contribute to a circulating half-life of ~5 days, which
permits once weekly dosing (296). Tirzepatide may be
considered a GIP-based analogue, sharing greater sequence
homology with GIP than GLP-1 (particularly at the N-
terminus) (Table 5), with GLP-1R agonism induced via aa
substitution (296, 317). The peptide was shown to effectively
lower blood glucose via insulinotropic actions at both receptors
in preclinical studies in mice, while phase I trials revealed
effective weight loss in T2DM patients and good tolerability
(296). Interestingly, in vitro mechanistic studies suggest the
peptide is biased towards the GIPR, activating with
equipotency to native GIP whilst having 5-fold weaker affinity
than native GLP-1 at GLP-1R, with a preference to initiate cAMP
mobilisation to enhance insulin secretion (317), which may be of
particular benefit in obesity-diabetes. These results were
supported in phase II trials in T2DM patients with HbA1c

reductions of 2%, highly impressive body weight reductions of
5-10% (max 11.3 kg) and significant reductions in waist-
circumference demonstrated following 12 weeks treatment
(297). Moreover, comparison to the established GLP-1R
mimetic, dulaglutide, proved tirzepatide to elicit more
significant reductions in body weight (-4.52 kg/6.4% compared
to -1.3 kg/1.8% for dulaglutide after 4 weeks), with the authors
concluding inclusion of GIPR agonism builds upon sole GLP-1R
activation to enhance weight loss via modulating appetite and
gastric emptying, with the antiemetic effect of GIPR also
improving tolerability (296). It is likely further mechanistic
investigation will be pursued to fully elucidate the biological
processes at play, especially as no single effect could be entirely
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attributed to GIPR/GLP-1R agonism (318). Thus, while
important synergy is likely to be occurring, confirmation
is required.

Tirzepatide has now progressed to phase III clinical trials in
T2DM, and we await data from these studies with great
anticipation. In similar fashion to the GLP-1/glucagon
analogues discussed, tirzepatide has also found application in
the treatment of NASH, with a follow-on study in T2DM
patients revealing that several biomarkers of liver inflammation
were reduced in patients receiving higher doses of the analogue
(319). Indeed, a number of other analogues such as NN9389
(GIP and semaglutide combination), CT-868 and TAK-094 are
all currently in phase I clinical trials as potential T2DM
treatments (298), but any detailed literature on these analogues
remains elusive at the time of writing.

Dual Agonism With GLP-1 and Other
Gut Peptides
A literature search for dual agonists also reveals some slightly
left-field combinations with GLP-1, although importantly these
involve other gut hormones shown to be upregulated by bariatric
surgery (286). The combinations explored so far in preclinical
studies all have the potential to elicit a range of additional effects
on various systems in the body (Figure 3). For example, a long-
acting GLP-1/CCK hybrid peptide has been developed which
employs the key regions of (pGlu-Gln)-CCK-8, a stabilised form
of CCK (320), and exendin-4 attached to one another via a linker
molecule (Table 5). Through simultaneous activation of both
GLP-1 and CCK-2 receptors, this co-agonist outperformed
exendin-4 in terms of satiety and body weight reductions in
obese-diabetic mice (299). A similar molecule, essentially
reversing the configuration of GLP-1 and CCK components
[(300); Table 5], also highlights the potential of dual receptor
activation in this regard, outperforming (pGlu-Gln)-CCK-8 in
terms of body weight reduction following 10 weeks treatment in
DIO mice (300).

A GLP-1/secretin chimeric peptide, based on the sequence of
secretin with GLP-1R activity induced via substitution of
important GLP-1 residues (Table 5), has been developed. This
peptide decreased food intake and body weight more effectively
than liraglutide alone (301). Moreover, this analogue improved
short-term glycaemic control (39% fall in fasting blood glucose),
HbA1c (-1.6%) and promoted a 78% rise in beta cell mass
following twice daily s.c. administration over an 8 week period
in diabetic, db/db mice (301).

Another successful, but seemingly counterintuitive pairing is
the combination of GLP-1 and PYY. PYY is insulinostatic but
holds therapeutic potential due to induction of beta cell rest,
promotion of beta-cell mass, satiety and weight loss (321).
Moreover, a synergistic effect between PYY and GLP-1 has
been established (322), supporting their incorporation in a co-
agonist. One such peptide, termed EP45, has been developed as a
chimeric peptide employing PYY (25–36) incorporated with
exendin-4(1–33); Table 5). Indeed, the peptide was
demonstrated to effectively activate both GLP-1R and NPY2R
in transfected cell lines (302), but in vivo application is yet to
be published.
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Finally, an enzyme resistant GLP-1/xenin dual-agonist,
Exendin-4/xenin-8-Gln (303), has been developed with xenin,
which is a regulatory peptide co-secreted postprandially with
GIP from intestinal K-cells [(323); Table 5]. Xenin is known to
potentiate the actions of GIP (324), and in addition to positive
glycaemic outcomes, through reduced appetite and augmented
insulin secretion, the peptide also restored GIP sensitivity (303)
that is dampened in obesity (325). Consistent with these actions,
Exendin-4/xenin-8-Gln induced substantial benefits in DIO
diabetic mice (303).

Conjugation of GLP-1 and
Nuclear Hormones
Beyond the incorporation of GLP-1 with other gut hormones,
there is also growing interest concerning the conjugation of GLP-
1 with nuclear hormones like oestrogen, thyroid hormone (T3)
and dexamethasone (326). In particular, the conjugation of GLP-
1-estrogen allows selective targeting of oestrogen receptors (ER)
in GLP-1R expressing cells. This reduces obesity and improves
dyslipidaemia and hyperglycaemia more so than sole activation
of either GLP-1R or ER (327). In relation to the metabolic effects
of these conjugates, preclinical studies in rodents have
demonstrated that these conjugates act on reward centres
within the supramammillary nucleus to induce an anorectic
effect (328), which positively influences glycaemia. Moreover,
such conjugates were demonstrated to improve beta-cell
function and survival (329), which in a study employing a
combination of GLP-1-estrogen and insulin in a DIO model of
diabetes, allowed for a 60% reduction in the insulin dose
compared to a control group of animals receiving insulin
monotherapy (330). While conjugation to GLP-1 proves an
effective method to prevent the oncogenic and gynaecological
actions of oestrogen (331), distinct differences in the hormonal
aetiologies of obesity in males and females have demonstrated
that administration of such agents in different sexes of mice elicit
subtle differences in obesity-related inflammation pathways (332,
333). Thus, the impact of gender in relation to the applicability of
these agents needs to be further explored.

Triple Agonism With GLP-1
Given the successful development of GLP-1/GIP and GLP-1/
glucagon dual-agonists (293, 296), the next obvious step was to
develop triple-agonists based on these three gut hormones
[(318); Table 5]. One such molecule, termed YAG-glucagon
(Table 5), is an analogue based on human glucagon with a
number of amino acid substitutions to impart GIPR and GLP-1R
agonism (304). The DPP-4 resistant analogue was demonstrated
to be an effective tri-agonist in vitro, while twice-daily
administration in DIO mice manifested in improved blood
glucose, circulating insulin and enhanced insulin sensitivity
(304). While this molecule has not surpassed preclinical stage,
a couple of examples appear to be progressing well at present.
LY3437943, a reported tri-agonist is currently undergoing phase
I trials in management of obesity-diabetes (307). More data is
available for HM15211, a tri-agonist employing a GLP-1/GIP/
glucagon peptide (sequence not available) attached to a human
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aglycosylate Fc fragment which prolongs half-life to permit once
weekly administration [(334); Table 5]. HM15211was more
effective than daily administration of liraglutide in increasing
energy expenditure, with improvements in weight loss and
hepatic inflammation markers in rodent models (334), and is
currently recruiting for phase II trials as a treatment for
NASH (308).

Similar to single GLP-1 agonists, a tri-agonist termed TA is
also finding application with regards to neuroprotection [(309);
Table 5]. This hybridised GLP-1/GIP/glucagon activator was
initially developed for management of obesity-diabetes and
showed promising preclinical results in rodent models of
diabetes-obesity (310). However, the more recent repurposing
of this molecule towards management of AD is particularly
exciting, with daily administration of the analogue in a murine
model of AD over a 2 month period reversing memory deficit,
reducing pro-mitochondrial apoptosis markers and upregulating
growth factors involved in synaptic function (309). The
preclinical study has not been followed-up to date, but
represents a potentially fruitful new avenue for the application
of PGDP-based multiagonists.

Interestingly, the aforementioned GLP-1/xenin combination
has been exploited further with the development of the triple-
agonist exendin‐4/gastrin/xenin‐8‐Gln (335), a direct
descendent of the previously discussed dual-agonist (303). This
incorporates the hexapeptide gastrin into its sequence (Table 5),
evoking the ability to agonise GLP-1R, CCK2R and NTSR1 in
tandem (335). Preclinical studies with this peptide were
promising, eliciting improved glycaemic control when
administered twice daily in DIO diabetic mice over 21 days,
through elevation in circulating insulin levels, improved insulin
and GIP sensitivity, with encouraging reductions in fat mass,
triglycerides and cholesterol levels (335). Moreover, this
analogue has been further modified via the covalent
attachment of a hexadecanoyl fatty acid to improve circulating
half-life and duration of effect (Table 5), with twice daily
administration in obese-diabetic ob/ob mice recapitulating the
metabolic benefits attained with the non-acylated form (305).
OTHER POSSIBLE GLUCAGON
THERAPEUTICS

The recognised role of hyperglucagonaemia in the
pathophysiology of diabetes, and the effectiveness of
concomitant activation of GCGR, alongside GLP-1R by
oxyntomodulin, raises an apparently conflicting question: can
glucagon antagonists or glucagon agonists be utilised as a
diabetes or obesity therapy? A similar question exists for
therapeutic GIP analogues (306). In fact, both aspects are being
explored although neither is, as yet, fully understood, or nearing
final stages of development.

Glucagon Antagonists
The therapeutic potential for glucagon suppression is clear,
especially given that a synthetic analogue of the glucagon
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suppressing hormone amylin, termed “Pramlinitide”, is currently
prescribed in the USA as an adjunct to insulin therapy (336).
However, pramlintide is not a specific inhibitor of glucagon
secretion, as it also is well known to slow the rate of gastric
emptying and induce satiety. Thus, direct glucagon receptor
antagonism may represent a more specific alternative in this
regard. While it is true that many small-molecule glucagon
antagonists exist (337–339), these have been discounted due to
undesirable pharmacokinetic properties which led to rapid renal
clearance and diminished effects (337, 340). Moreover, off-target
safety concerns were present, including activation of peroxisome
proliferator-activated receptor-delta (PPAR-d) (337), a
transcription factor which plays roles in inflammation and
certain cancers (341). That said, a few small molecules such as
Eli Lilly and Co’s GRA LY2409021 have made it as far as phase II
trials (342). These demonstrated promising reductions in HbA1c

but were ultimately let down by undesirable side-effect profiles,
often eliciting potentially dangerous elevations in liver enzymes
(343). Hence, a view was taken that development of glucagon
peptide-based antagonists could herald better tolerated
compounds with improved pharmacokinetic and safety profiles.

Logical design of such compounds took the sequence of native
glucagon (Table 6), modifying the structure, paying particular
attention to previously identified important residues for GCGR
agonism, namely N-terminal His1, Gly4 and Asp9 residues (349–
353), whilst also ensuring that they are resistant to the actions of
DPP-4 [(349); Figure 2]. Two such analogues termed
desHis1Pro4Glu9(Lys12PAL)-glucagon and desHis1Pro4Glu9

(Lys30PAL)-glucagon [(346); Table 6], employed simple amino
acid substitutions at residues 4 and 9, while His1 was deleted to
produce compounds with the potential to effectively block the
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receptor and palmitic acid (PAL) was attached via linker
molecules to substituted Lys residues at differing positions (346),
a means of prolonging circulating half-life (351). Indeed, both
molecules, as well as their non-acylated counterparts, were shown
to be resistant to DPP-4 (346, 353). The compounds possessed
strong antagonist properties, dose-dependently reducing
glucagon-mediated cAMP production and insulin secretion
together with counteracting glucagon-mediated hyperglycaemia
in vivo (346).

Further related analogue development resulted in synthesis
and characterisation of desHis1Glu9(Lys30PAL)-glucagon and
desHis1Glu9-glucagon-[mPEG] [(299, 354); Table 6]. These
peptides were resistant to DPP-4 degradation (344, 348, 355)
and lacked adverse metabolic or islet morphological effects when
administered twice daily to lean mice (347). Preclinical testing of
desHis1Glu9-glucagon and desHis1Glu9(Lys30PAL)-glucagon in
HFF obese mice reversed obesity-driven hyperinsulinaemia and
insulin resistance together with improvements in lipid profile,
glucose tolerance and increased pancreatic insulin stores (345).

These studies are typical of others that have led to
development of peptidergic glucagon receptor antagonists for
T2DM, in particular the first reported antagonistic, glucagon
analogue [l-N alphatrinitrophenylhistidine, 12-homoarginine]-
glucagon, which elicited decreases in circulating glucose of up to
65% with continuous infusion in anaesthetised rats (356).
However, despite this preclinical promise peptide-based agents
were largely abandoned at this point possibly due to short half-
life in pursuit of small-molecule antagonists (357).

To date, no glucagon antagonist has reached regulatory
approval, with previous safety concerns raised over
hypoglycaemia (358), unfavourable alterations in serum lipid
TABLE 6 | Glucagon antagonist peptides for T2DM.

Peptide Name AA Sequence Development Stage Reference

Native glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT N/A (10)
desHis1Glu9-glucagon SQGTFTSEYSKYLDSRRAQDFVQWLMNT Preclinical (344, 345)
desHis1Pro4Glu9(Lys12PAL)-glucagon SQPTFTSEYSK(*PAL)YLDSRRAQDFVQWLMNT Preclinical (346, 347)
desHis1Pro4Glu9(Lys30PAL)-glucagon SQPTFTSEYSKYLDSRRAQDFVQWLMNTK(*PAL) Preclinical (345, 346, 348)
desHis1Glu9-glucagon-[mPEG] SQGTFTSEYSKYLDSRRAQDFVQWLMNT-[mPEG] Preclinical (346)
May 2021 | Volume 12
Amino acid sequences are provided in their single-letter abbreviation format. Modifications from native sequences are highlighted by red lettering. Current development stages are
provided for each. “mPEG” indicates mini-polyethylene glycol addition. “PAL” indicates the addition of a palmitic fatty acid chain.
TABLE 7 | Glucagon and related peptide analogues at preclinical stage for T2DM.

Peptide Name AA Sequence Target Receptor Reference

Native glucagon HSQGTFTSDYSKYLDSRRAQDFVQWLMNT CGCR (10)
N-Acetyl-glucagon Ac-HSQGTFTSDYSKYLDSRRAQDFVQWLMNT GCGR (365)
(D-Ser2)glucagon HDSQGTFTSDYSKYLDSRRAQDFVQWLMNT GCGR/GLP-1R (365)
(D-Ser2)glucagon-exe HDSQGTFTSDYSKYLDSRRAQDFVQWLMNTPSSGAPPPS GCGR/GLP-1R (365)
Dogfish Glucagon HSEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG GCGR/GLP-1R (366, 367)
(D-Ala2)dogfish glucagon HDAEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNG GCGR/GLP-1R (366, 367)
(D-Ala2)dogfish glucagon-exendin-4(31-39) HDAEGTFTSDYSKYMDNRRAKDFVQWLMSTKRNGPSSGAPPPS GCGR/GLP-1R (366, 367)
(D-Ala2)dogfish glucagon-Lys30-g-glutamyl-PAL HDAEGTFTSDYSKYMDNRRAKDFVQWLMSTK(*PAL)RNG GCGR/GLP-1R (366, 367)
Paddlefish glucagon HSQGMFTNDYSKYLEEKRAKEFVEWLKNGKS GCGR/GLP-1R (248)
| Art
Amino acid sequences are provided in their single-letter abbreviation format. Modifications from native sequences are highlighted by red lettering. The receptor targets for each molecule
are provided. A “D” prefix before a residue indicates inclusion of the enantiomer for the naturally-occurring L form of the residue. “Ac” represents an N-terminal acetylation. “mPEG” indicates
mini-polyethylene glycol addition. “PAL” indicates the addition of a palmitic fatty acid chain.
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levels and liver enzymes (359, 360), as well as the potential for
malignant hyperplasia of alpha-cells (361). Intriguingly, a similar
tale is true for GLP-1R agonists, with a number of small molecule
examples dotted through the literature (362), however none have
managed to recapitulate the success of peptidergic agents.
Preclinical data with peptide-based antagonists indicate more
favourable side-effect profiles than small-molecules (345, 347).
Thus, while work continues on small-molecule antagonists, such
as RVT-1502, which has recently progressed through phase II
trials, demonstrating reductions in HbA1c of up to 1% over 12
weeks treatment, concerns over liver function still remain, and
the compound has not ascended to phase III trials (363). Such
concerns may lead to an upsurge in interest for peptide-based
glucagon antagonists.

Glucagon Agonists
Given the use of glucagon to rescue severe insulin-induced
hypoglycaemia T1DM (53) and its ascribed role in the
hyperglycaemia of diabetes (35, 51), the concept of using
glucagon agonists therapeutically initially seems illogical.
However, the surprising effectiveness of dual or triple agonism
indicates that weight loss and increased energy expenditure
associated with GCGR agonism can be exploited when the
hyperglycaemic actions of the hormone are counteracted by the
incretins GLP-1 and/or GIP (357, 364).

Several approaches have been explored to generate such,
potentially useful, enzyme-resistant GCGR agonists including (D-
Ser2)glucagon, where a D-amino acid substitution has been
employed to impart DPP-4 resistance more effectively than N-
acetyl-glucagon [(365); Table 7]. Insulin-releasing activity was
maintained, but when further modified to generate (D-Ser2)
glucagon-exe, an analogue with the nine C-terminal amino acid
residues of exendin(1–39) (Table 7), clear antidiabetic benefits were
induced (365). Importantly, inclusion of the C-terminal
nonapeptide from exendin(1–39) in this molecule imparts the
ability to agonise GLP-1R as well as GCGR, as demonstrated by
reduced effectiveness in GLP-1R KO mice (365). Thus, twice daily
administration of (D-Ser2)glucagon-exe in HFF mice improved
glucose tolerance, insulin sensitivity and islet morphology, while
improvements in energy expenditure, O2 consumption and physical
activity together with reduced food-intake led to decreased body
weight and influenced glycaemic improvement (365).

A number of naturally occurring, piscine-derived, glucagon
peptides such as dogfish glucagon (and its analogues) and
paddlefish glucagon have also been shown to possess potent
antidiabetic/anti-obesity potential in cellular and animal models
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of diabetes [(248, 366, 367); Table 7]. Furthermore, studies using
GLP1-R KOmice and cell lines indicated that benefits on glucose
tolerance, beta-cell function, insulin sensitivity and circulating
triglycerides were mediated via dual GCGR and GLP-1R
agonism (248, 366). Thus, in relation to management of
T2DM, inclusion of GCGR agonist in multiagonist molecules
appears to be where the future novelty lies for such agents.
CONCLUDING REMARKS

The application of proglucagon-derived peptides (PGDPs) in the
management of conditions such as T2DM represents the
pinnacle of a remarkable story in peptide discovery and
rational drug design. It was shear perseverance which led to
the elucidation of proglucagon almost six decades after that of
glucagon (9, 11–16). Rapid discoveries followed of GLP-1 and
GLP-2 (15, 16), both of which have been successfully exploited
by peptide chemistry approaches to generate fully approved
medications. While innovation has witnessed the production of
increasingly long-acting agents, multi-action unimolecular
agonists and novel delivery methods (67, 68, 70, 73–75, 195–
197), there is still a growing need for ever more effective agents to
counter obesity, diabetes and a host of other degenerative
diseases. Better understanding of the physiology of PGDPs and
their various roles in the likes of cognition, bone turnover,
cardiovascular function, fertility and liver function (157, 174,
185, 334, 368, 369), may herald important future uses for
proglucagon-derived therapeutics.
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