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Major depressive disorder (MDD) is a highly prevalent psychiatric disorder worldwide.
Several lines of evidence suggest that the dysfunction of somatostatin (SOM) neurons
is associated with the pathophysiology of MDD. Importantly, most SOM neurons
are γ-aminobutyric acid (GABA) interneurons. However, whether the dysfunction of
GABAergic neurotransmission from SOM neurons contributes to the pathophysiology of
MDD remains elusive. To address this issue, we investigated the emotional behaviors and
relevant molecular mechanism in mice lacking glutamate decarboxylase 67 (GAD67), an
isoform of GABA-synthesizing enzyme, specifically in SOM neurons (SOM-GAD67 mice).
The SOM-GAD67 mice exhibited anxiety-like behavior in the open-field test without an
effect on locomotor activity. The SOM-GAD67 mice showed depression-like behavior
in neither the forced swimming test nor the sucrose preference test. In addition,
the ability to form contextual fear memory was normal in the SOM-GAD67 mice.
Furthermore, the plasma corticosterone level was normal in the SOM-GAD67 mice
both under baseline and stress conditions. The expression ratios of p-AktSer473/Akt and
p-GSK3βSer9/GSK3β were decreased in the frontal cortex of SOM-GAD67 mice. Taken
together, these data suggest that the loss of GAD67 from SOM neurons may lead to the
development of anxiety-like but not depression-like states mediated by modification of
Akt/GSK3β activities.
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INTRODUCTION

Major depressive disorder (MDD) affects approximately 10% of the population at some
point in their life and is the leading cause of physical impairment, medical comorbidity, and
mortality across the world (Penninx et al., 2013; Sato and Yeh, 2013). However, the current
treatments are only partially effective, and patients fail to respond to trials with existing
antidepressant agents targeting the monoaminergic systems (Fekadu et al., 2009; Kupfer et al.,
2012). Clarifying the molecular biology of MDD is desired for developing innovative therapeutics.
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Several lines of evidence indicate that the dysfunction
of somatostatin (SOM)-expressing cells is likely associated
with the pathophysiology of MDD (Fee et al., 2017). In
the postmortem brain of patients with MDD, the expression
levels of SOM were decreased in the dorsolateral prefrontal
cortex (Sibille et al., 2011), the subgenual anterior cingulate
cortex (Tripp et al., 2011) and the amygdala (Guilloux
et al., 2012). In animal studies, mice subjected to chronic
mild stress, an animal model of depression, demonstrated a
decrease in the mRNA level of SOM in the prefrontal cortex
(Banasr et al., 2017). On the other hand, mice with increased
excitability in SOM neurons by deletion of the γ2-subunit
of γ-aminobutyric acidA (GABAA) receptors demonstrated
anti-anxiety and anti-depressive behaviors (Fuchs et al., 2017).
SOM knockout (KO) mice displayed a higher response to stress
in plasma corticosterone levels (Zeyda et al., 2001; Lin and
Sibille, 2015; Viollet et al., 2017). SOM KO mice displayed
no change in emotional behaviors (Zeyda et al., 2001; Viollet
et al., 2017) or mild anxiety-like behavior (Lin and Sibille,
2015). Lin and Sibille reported the anxiety-like/depression-like
behaviors were pronounced after exposure to chronic mild
stress (Lin and Sibille, 2015).

Importantly, most SOM-expressing cells in the central
nervous system are GABA interneurons (Kosaka et al., 1988;
Kubota et al., 1994; Esclapez and Houser, 1995; Gonchar and
Burkhalter, 1997; Uematsu et al., 2008). Neuroimaging studies
have demonstrated a reduction in GABA levels in the brains of
patients with MDD (Sanacora et al., 1999; Hasler et al., 2007).
GABA is synthesized from glutamate by glutamate decarboxylase
(GAD). GAD exists in two isoforms, GAD67 and GAD65,
which are independently encoded by the GAD1 and GAD2
genes, respectively (Soghomonian and Martin, 1998; Ji et al.,
1999). Several studies have demonstrated decreased expressions
of GAD67 but not GAD65 in the postmortem brains of
patients with MDD (Karolewicz et al., 2010; Scifo et al., 2018),
although these changes were not observed by others (Pehrson
and Sanchez, 2015). Therefore, the emotional disabilities in
patients with MDD may be associated with the dysfunction
of GABAergic neurotransmission from SOM neurons, which
disrupts an inhibitory control to neural excitability (Fee
et al., 2017). Global GAD67 KO mice show cleft palate and
omphalocele, and all of them die during the first day after
birth (Asada et al., 1997; Kakizaki et al., 2015). We recently
developed mice with conditional KO of GAD67 specifically
in parvalbumin (PV)-expressing cells (PV-GAD67 mice) or
SOM-expressing cells (SOM-GAD67 mice). The PV-GAD67
mice demonstrated oscillational disturbance across cortical
layers and schizophrenia-like behavioral abnormalities (Fujihara
et al., 2015; Kuki et al., 2015). However, we had yet to investigate
the behavioral phenotypes of the SOM-GAD67 mice. Behavioral
examination of SOM-GAD67 mice is important for clarifying
whether the deficiency of GAD67-mediated GABA in SOM
neurons contributes to MDD-related symptoms.

Akt and glycogen synthase kinase-3 β-isoform (GSK3β) are
serine/threonine protein kinases that regulate multiple cellular
functions including neuroplasticity and cell survival (Descorbeth
et al., 2018;Wu et al., 2018). Akt/GSK3β signaling is an important

signal that regulates emotional behaviors in rodents (Sui et al.,
2008; Bali and Jaggi, 2016; Pan et al., 2016; Slouzkey andMaroun,
2016). Recently, the Akt/GSK3β pathway has attracted attention
in the molecular biology of MDD and as a novel target of
therapeutic agents (Kitagishi et al., 2012). Interestingly, GABA
signaling affects Akt/GSK3β activities (Lu et al., 2012). Therefore,
the functional alteration of SOM-expressing GABA neurons may
affect Akt/GSK3β activities in the brain.

The aim of this study was to resolve the role of GAD67 in
SOMneurons on emotional regulation using SOM-GAD67mice.
We also examined the plasma corticosterone levels and the
expression levels of Akt and GSK3β proteins, which are relevant
molecules to the pathophysiology of MDD.

MATERIALS AND METHODS

Ethics Statement
This study was performed in accordance with the Guidelines for
Animal Experimentation at Gunma University Graduate School
of Medicine and was approved by the Gunma University Ethics
Committee (Permit number: 14-006). Every effort was made to
minimize the number of animals used and their suffering.

Animals
We previously reported the generation of SOM-GAD67 mice
(Kuki et al., 2015). Briefly, SOM-IRES-Cre mice (Taniguchi
et al., 2011) were obtained from Jackson Laboratories (Bar
Harbor, ME, USA; Stock No: 028864), and GAD67-floxed mice
were previously described (Obata et al., 2008; Fujihara et al.,
2015). SOMIRES-Cre/+;GAD67flox/flox mice (SOM-GAD67 mice)
were obtained by crossing female GAD67flox/flox mice and male
SOMIRES-Cre/+;GAD67flox/+ mice. The littermate GAD67flox/flox

mice were used as the control. We only used male mice from
8 weeks to 16 weeks of age for the behavioral tests, enzyme
immunoassay and western blottings. The animals were housed
with 2–3 mice per cage [16.5 × 27 × 12.5 (H) cm] and had free
access to food and water. The animal rooms for breeding and
experiments were maintained at 22± 3◦C with a 12-h light-dark
cycle (lights on at 6:00, lights off at 18:00). The animals were
used only once.

Genotyping
Genotyping of the transgenic mice was performed by PCR
using tail genomic DNA. The primer sequences were as follows:
Cre allele, 5′-GTCTCTGGTGTAGCTGATGATCCGAA-3′ and
5′-CCCTGTTTCACTATCCAGGTTACGGA-3′; GAD67 allele,
5′-ACCTTGGCAGCTAACTAGGAGGA-3′ and 5′-ACAGAT
CGGATGGGGAAGCATAA-3′. The lengths of the amplified
DNA fragments were as follows: Cre allele, 321 bp; GAD67 allele,
155 bp; loxP-inserted GAD67 allele, 258 bp.

Open-Field Test
Each mouse was placed in the center of an open-field apparatus
[50 cm × 50 cm × 40 (H) cm] that was illuminated by light-
emitting diodes (30 lux at the center of the field) and allowed
to move freely for 5 min. The time spent in the central area of
the field (36% of the field) was recorded as the index of interest.
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The data were collected and analyzed using ImageJ OF4 (O’Hara
& Co., Ltd., Tokyo, Japan), which is a modified software that is
also based on the public domain ImageJ program. The procedure
was referenced to our previous report (Miyata et al., 2016).

Contextual Conditioned Fear Test
Training and testing took place in a chamber [10 × 10 × 12
(H) cm] equipped with a grid floor placed in an acoustic
box. The grid floor was wired to an isolated shock generator
(MSG-001, Toyo Sangyo Co. Ltd., Japan). The experiments
were conducted over the course of two consecutive days. On
day 1 (training session), mice were individually placed in the
chamber and received scrambled foot-shocks (either 0.2 mA
or 0.4 mA, 2 s) at pseudo-random times; 2.5, 5, 9 and
11.5 min, after the start of the session. Thirty seconds after
the last foot shock, the mice were returned to the home
cage. Twenty-four hours later, the mice were placed in the
same chamber as on day 1 for 6 min without foot-shock
exposure (test session). Background white-noise (55 dB) was
presented during both the training and the test sessions. The
protocol was based on the first two consecutive days of Lattal’s
method (Lattal et al., 2007) to test contextual fear conditioning.
Mouse behavior was recorded and analyzed using Time FZ1 for
Contextual and Cued Fear Conditioning Test software (O’Hara
& Co., Ltd.). The percentage of duration of freezing behavior
in the test session was calculated and compared between
the genotypes.

Forced Swimming Test
Each mouse was placed in an acrylic cylinder (22 cm in height,
11.5 cm in diameter) containing 15 cm of water at room
temperature (22 ± 3◦C). The cylinder was placed in an isolation
box. The behavior of each mouse was recorded for 6 min using
a CCD camera connected to a personal computer and analyzed
using ImageJ PS1 (O’Hara & Co., Ltd.), which is a modified
software package that is based on the public domain ImageJ
program (developed at the U.S. National Institutes of Health
and available at: http://rsb.info.nih.gov/ij). The procedure was
the same as that referenced in our previous report (Miyata et al.,
2016). The percentage of time spent immobile during the 6-min
period was calculated and compared between the genotypes.

Sucrose Preference Test
Sucrose preference test is a well-accepted behavioral test
measuring an anhedonia-like state of mice and rats (Katz, 1982;
Willner, 1997). Mice preferentially take sweet-taste solution
compared with water. The sweet-taste preference disappears in
model mice of depression, such as mice subjected to chronic
mild stress. This behavioral phenotype disappears by sub-chronic
treatment with antidepressant agents (Willner et al., 1987).

One week before the measurement, the mice were provided
2% sucrose solution in a drinking bottle for 24 h to habituate
to sweet taste. Each mouse was subjected to water deprivation
for 16 h before starting the measurement. Mice were transferred
to an individual cage [16.5 × 27 × 12.5 (H) cm], and then
two preweighted bottles (one containing tap water and another
containing 2% sucrose solution) were presented to each mouse
for 4 h. The bottles were weighed again, and the weight difference

was considered to be the mouse intake from each bottle. The sum
of water and sucrose intake was defined as the total intake, and
sucrose preference was expressed as the percentage of sucrose
intake from total intake.

Plasma Corticosterone
Blood samples were obtained from the tail vein by a small
incision. Immediately after the initial sampling, the mice were
restrained in 50-mL Falconr tubes with air vents for 120 min.
The blood samples were collected at 15 and 120 min during
the restraint stress. After the cessation of restraint stress, the
mice were returned to their home cage. Sixty minutes later,
the final blood sampling was conducted. The blood samples
were centrifuged at 1,000 g for 10 min at 4◦C, and the plasma
samples were collected and stored at−80◦C until analysis. Blood
sampling was conducted between 9:00 and 13:00 on the day of
the experiment.

Plasma corticosterone concentrations were determined using
a commercially available enzyme immunoassay kit (Enzo
Life Sciences, Inc., Farmingdale, NY, USA) following the
manufacturer’s instructions.

Western Blot
The mice were killed by decapitation. The frontal cortex (FCx)
was quickly dissected on an ice-cold stainless plate, immediately
frozen in liquid nitrogen and stored at −80◦C until use.
The dissection was performed according to the Chiu’s study
(Chiu et al., 2007). The tissues were homogenized in ice-cold
buffered sucrose (0.32 M) solution containing 20 mM Tris-HCl
(pH 7.5), protease inhibitor cocktail (P8340, Sigma-Aldrich,
Inc.) and phosphatase inhibitor cocktail (07575-51, Nacalai
Tesque, Inc.). The homogenates were centrifuged at 1,000 g
for 10 min at 4◦C, and the supernatants were collected as the
protein samples (S1 fraction). The protein concentrations were
determined using a TaKaRa BCA Protein Assay Kit (T9300A,
Takara Bio Inc., Japan).

The protein samples were diluted with electrophoresis sample
buffer. Proteins (15 µg) were separated by SDS-polyacrylamide
gels and transferred to a PVDF membrane. Blots were
probed with antibodies to Akt (pan; 1:1,000, #4691, Cell
Signaling Technology Japan, K.K.), phospho-Akt (Ser473;
1:2,000, #4060, Cell Signaling Technology, Danvers, MA,
USA), phospho-Akt (Thr308; 1:1,000, #13038, Cell Signaling
Technology, Danvers, MA, USA), GSK3β (1:1,000, #9832,
Cell Signaling Technology, Danvers, MA, USA), phospho-
GSK3β (Ser9; 1:1,000, #5558, Cell Signaling Technology,
Danvers, MA, USA) and β-actin (1:4,000, M177-3, Medical
and Biological Laboratories Co. Ltd., Japan). Immunoblots
were developed using horseradish peroxidase-conjugated
secondary antibodies (GE Healthcare) and then detected with
chemiluminescence reagents (ECL prime, GE Healthcare)
and visualized by an Light Capture AE-9672 (ATTO Co.,
Ltd.). The density of the bands was determined using
ImageJ software.

The Akt and GSK3β activities were assessed by calculating
the ratio of the band densities of phosphorylated/total proteins.
The band densities of β-actin were used as the loading control.
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Data Analysis
Statistical analyses were conducted using BellCurve for Excel
ver. 2.12 (Social Survey Research Information Co., Ltd.,
Tokyo, Japan). Significant differences between two groups
were evaluated by Student’s t-test. Significant differences
among the multiple groups were analyzed by one-way and
two-way analysis of variance (ANOVA) with a Bonferroni
multiple comparison test. Statistical significance was defined
as a p-value less than 0.05. The data were expressed as
means± SE.

RESULTS

Behavioral Phenotypes of SOM-GAD67
Mice
To assess the anxiety-like state of mice, we performed the
open-field test. The SOM-GAD67 mice exhibited significantly
less time spent in the center field than the control mice
(Figures 1A,C), but the total path length in the open-field test
did not differ between the genotypes (Figures 1B,C).

Next, we evaluated the ability to form fear memory in mice
in the contextual conditioned fear test. The duration of freezing
behavior observed in the test session was not significantly
different between the genotypes (Figure 2).

We further evaluated the depression-like state in
mice in the forced swimming test and the sucrose
preference test. In the forced swimming test, the duration
of immobility was not significantly different between

FIGURE 1 | Exploratory behaviors of the somatostatin (SOM)-glutamate
decarboxylase 67 (GAD67) mice (n = 8) and control mice (n = 8) in the
open-field test. The percent exploration of the center field (A) and total path
length (B) for 5 min. (C) Illustrative examples of the travel pathway in two
control and two SOM-GAD67 mice. Data represent the means + SE.
∗p < 0.05 vs. the control mice (Student’s t-test).

FIGURE 2 | Freezing behavior of the SOM-GAD67 mice and control mice in
the contextual conditioned fear test. The mice were subjected to either
0.2 mA (SOM-GAD67; n = 7, control; n = 7) or 0.4 mA (SOM-GAD67; n = 6,
control; n = 4) foot-shocks in the conditioning session. Twenty-four hours
later, the mice were returned to the same chamber, and freezing behavior was
measured for 6 min without foot-shock presentation. The percent duration of
freezing is shown. Data represent the means + SE.

FIGURE 3 | Depression-like behaviors of the SOM-GAD67 mice and control
mice in the forced swimming test and the sucrose preference test. (A) The
percentage of time spent immobile in the forced swimming test is shown
(SOM-GAD67; n = 9, control; n = 9). (B) The percent intake of sucrose in the
sucrose preference test is shown (SOM-GAD67; n = 8, control; n = 7). Data
represent the means + SE.

the genotypes (Figure 3A). In addition, there was
also no difference in sucrose preference between the
genotypes (Figure 3B).

Stress Reactivity in SOM-GAD67 Mice
To assess the reactivity to stress, we measured the plasma
corticosterone levels in mice under baseline conditions and
during a stressful condition. Under baseline, there was no
difference in the plasma corticosterone levels between the
genotypes. Under conditions of restraint stress, the plasma
corticosterone levels were increased in both genotypes, but the
elevated plasma corticosterone levels were similar between the
genotypes. One hour after cessation of the stress, the plasma
corticosterone levels had decreased in both genotypes, but there
were no differences in the plasma corticosterone levels between
the genotypes (Figure 4).
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FIGURE 4 | Plasma corticosterone levels in the SOM-GAD67 mice (n = 7)
and control mice (n = 7). After the first blood sample collection (pre), the mice
were subjected to restraint stress for 120 min. The blood was collected
15 min and 120 min after the beginning of the stress exposure. After the
cessation of the stress exposure, the mice were returned to their home cage,
and 60 min later, the final blood sample was collected. The plasma
corticosterone levels were determined by the enzyme immunoassay kit. Data
represent the means + SE.

Cortical Akt/GSK3β Signaling in
SOM-GAD67 Mice
To assess the link between Akt/GSK3β signaling and anxiety-like
behavior in SOM-GAD67 mice, we examined the expression
levels of Akt and GSK3β by Western blotting and calculated
the expression ratio of phosphorylated forms/total proteins. The
expression ratio of the p-AktSer473/Akt protein was significantly
lower in the FCx of the SOM-GAD67 mice than in that of the
control mice (Figure 5). On the other hand, the expression ratio
of the p-AktThr308/Akt protein was not different between the
genotypes. The expression ratio of p-GSK3βSer9/GSK-3β protein
was significantly lower in the SOM-GAD67 mice than in the
control mice (Figure 5).

DISCUSSION

In the current study, SOM-GAD67 mice exhibited behavioral
abnormalities in the open-field test but no effects on locomotor
activity. The reduction in exploration of the center region of
the open field is accepted as anxiety-like behavior in rodents
(Parks et al., 1998). Therefore, the deletion of GAD67 from
SOM-expressing GABA neurons induced an anxiogenic-like
effect in mice. In the contextual conditioned fear test, the
duration of freezing was not different between the genotypes,
indicating that the ability to form contextual fear memory is
normal in SOM-GAD67 mice. Unexpectedly, the SOM-GAD67
mice showed depression-like behavior in neither the forced
swimming test nor the sucrose preference test. The forced
swimming test and the sucrose (or saccharine) preference test
are accepted as animal models of depression and screening
methods for antidepressant agents (Porsolt et al., 1977; Katz,
1982). Therefore, the deletion of GAD67 from SOM-expressing

GABA neurons had no effect on the depression-like state in
mice. Based on the current behavioral studies, we suggest that
GAD67 in SOM neurons mainly regulates the anxiety-like state
in mice.

In clinical studies, elevated concentrations of cortisol, the end
product of the hypothalamic-pituitary-adrenal axis, are observed
in the blood of patients with MDD (Schlesser et al., 1980). In
addition, the blood concentrations of corticosterone, the major
glucocorticoid in rodents, are increased in animal models of
depression (Marcilhac et al., 1999; Miyata et al., 2004; Kubera
et al., 2013; Iñiguez et al., 2014). We measured the plasma
levels of corticosterone in the SOM-GAD67 mice before, during
and after the restraint stress. Both genotypes demonstrated a
stress-elicited increase in plasma corticosterone levels, but there
was no difference between the genotypes at any time period
measured. The results indicate that deletion of GAD67 from
SOM neurons is not sufficient to affect the reactivity of the
hypothalamic-pituitary-adrenal axis. SOM KO mice have been
reported to exhibit an enhanced response to stress in plasma
corticosterone levels (Zeyda et al., 2001; Lin and Sibille, 2015;
Viollet et al., 2017). The hormonal reaction in the current
SOM-GAD67 mice was different from that in SOM KO mice.
SOM is coreleased with GABA to inhibit excitatory synaptic
transmission (Martel et al., 2012). These findings indicate that
the effects of SOM and GABA released from SOM neurons on
the reactivity of the hypothalamic-pituitary-adrenal axis may
be different.

Akt and GSK3β are serine/threonine protein kinases that
regulate multiple cellular functions, including neuroplasticity
and cell survival (Descorbeth et al., 2018; Wu et al., 2018).
The phosphorylation of Akt at the Thr308 and Ser473 sites
is needed for its full activation (Bellacosa et al., 1998).
Akt at Thr308 is phosphorylated by phosphoinositide-
dependent protein kinase-1 (Song et al., 2005). Akt at Ser473 is
autophosphorylated or phosphorylated by mechanistic target
of rapamycin complex-2 (Toker and Newton, 2000; Jacinto
et al., 2006). Akt phosphorylates GSK3β at Ser9 and inhibits
its kinase activity (Sutherland et al., 1993; Cross et al., 1995).
Decreased activity of Akt and increased activity of GSK3β
have been found in the prefrontal and occipital cortex of
suicide victims with depressive disorder (Hsiung et al., 2003;
Karege et al., 2007, 2011). In addition, Akt/GSK3β signaling
is associated with the treatment responses of therapeutic
agents of mental illness (Beaulieu et al., 2009; Kim et al.,
2009; Zhang et al., 2010; Kitagishi et al., 2012; Costemale-
Lacoste et al., 2016). In animal studies, mice lacking Akt2,
an isoform of Akt, exhibited anxiety-like and depression-like
behaviors (Leibrock et al., 2013). The expression levels of
p-AktSer473 and the p-AktSer473/Akt ratio were decreased in
the hippocampus in animal models of depression (Xia et al.,
2016; Wu et al., 2017). In addition, the expression level of
p-GSK3βSer9 in the frontal cortex was decreased in an animal
model of depression (Szymańska et al., 2009). Treatments with
antidepressant agents normalized these alterations in p-AktSer473

and p-GSK3βSer9 expression in the prefrontal cortex and the
hippocampus of those models (Xia et al., 2016; Szymańska
et al., 2009; Wu et al., 2017). Furthermore, treatment with
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FIGURE 5 | Protein levels of Akt and glycogen synthase kinase-3 β (GSK3β) in the frontal cortex of the SOM-GAD67 mice (n = 3) and control mice (n = 3). The band
densities were determined using ImageJ software. The expression ratio of phosphorylated/total proteins was compared between the genotypes. Data represent the
means + SE. ∗p < 0.05 vs. the control mice (Student’s t-test).

a GSK3β inhibitor ameliorated stress-elicited anxiety-like
behavior in mice (Bali and Jaggi, 2017). In contrast, treatment
with an Akt inhibitor interfered with the neuroprotective and
anxiolytic-like effects of therapeutic agents (Pei et al., 2016).
These findings indicate that the decreased activity of Akt and
the increased activity of GSK3β contribute to the development
of anxiety-like and depression-like states in rodents. In the
current study, SOM-GAD67 mice demonstrated reductions
in the p-AktSer473/Akt ratio and p-GSK3βSer9/GSK3β ratios in
the FCx, indicating that Akt kinase activity is decreased and
GSK3β kinase activity is increased in the FCx of SOM-GAD67
mice, which are similar to the findings in the postmortem
brain of depressive patients. The details of the mechanisms by
which GAD67 in SOM neurons regulates Akt/GSK3β activity
are still unclear, but impairment of Akt/GSK3β signaling may
be associated with the development of an anxiety-like state
in SOM-GAD67 mice. Further studies are needed to resolve
this relationship.

In this study, SOM-GAD67 mice demonstrated anxiety-like
behavior but not depression-like behavior. In psychiatric

examinations, subsyndromal anxiety is often comorbid in
patients with MDD (Zimmerman et al., 2000; Zbozinek et al.,
2012; Steenkamp et al., 2017). Therefore, dysfunction of
GAD67 in SOM neurons might be associated with subsyndromal
anxiety but not depressive symptoms in patients with MDD.

CONCLUSION

GAD67 in SOM neurons regulates the anxiety-like state in mice
mediated by the modification of cortical Akt/GSK3β activity.
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