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Abstract: A goal of the biotechnology industry is to be able to recognise detrimental cellular states
that may lead to suboptimal or anomalous growth in a bacterial population. Our current knowledge
of how different environmental treatments modulate gene regulation and bring about physiology
adaptations is limited, and hence it is difficult to determine the mechanisms that lead to their effects.
Patterns of gene expression, revealed using technologies such as microarrays or RNA-seq, can provide
useful biomarkers of different gene regulatory states indicative of a bacterium’s physiological status.
It is desirable to have only a few key genes as the biomarkers to reduce the costs of determining the
transcriptional state by opening the way for methods such as quantitative RT-PCR and amplicon
panels. In this paper, we used unsupervised machine learning to construct a transcriptional landscape
model from condition-dependent transcriptome data, from which we have identified 10 clusters of
samples with differentiated gene expression profiles and linked to different cellular growth states.
Using an iterative feature elimination strategy, we identified a minimal panel of 10 biomarker genes
that achieved 100% cross-validation accuracy in predicting the cluster assignment. Moreover, we
designed and evaluated a variety of data processing strategies to ensure our methods were able
to generate meaningful transcriptional landscape models, capturing relevant biological processes.
Overall, the computational strategies introduced in this study facilitate the identification of a detailed
set of relevant cellular growth states, and how to sense them using a reduced biomarker panel.

Keywords: biomarker identification; transcriptional landscape; machine learning; Bacillus subtilis

1. Introduction

The majority of free-living, single-celled bacteria inhabit environments that are con-
stantly changing. As a result, they are subject to periods of stress that are often multifactorial
in nature. In response to these environmental changes, bacteria have evolved a range of
interacting regulatory circuits that bring about metabolic and physiological adaptations
that help to mitigate against the damage resulting from these stresses [1–8]. Failure to adapt
results in the organism being outgrown by competitors or cell death. From a biotechnologi-
cal perspective, where bacteria are grown under a limited set of user-defined conditions,
environmental and cellular stresses can lead to suboptimal growth, lower product yields,
population heterogeneity and reduced viability [9–11]. Understanding how different en-
vironmental treatments modulate gene regulation can enable us to identify signals that
reflect the onset of cellular stresses and facilitate engineering of strategies that ameliorate
their effects. Knowledge of how the global bacterial gene expression profile (i.e., the tran-
scriptome) changes in response to nutrient and environmental stresses is therefore key
to recognising when a population of cells encounters conditions that are detrimental to
growth and product synthesis.
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The transcriptomes of bacteria shift as conditions change. These shifts often correlate
with observable phenotypic and metabolic changes [12,13]. A crucial aspect for the biotech-
nology industry is to be able to monitor transcriptomic profiles, recognise detrimental
cellular states and use existing knowledge to optimise industrial production [14–16]. How-
ever, the determination of the bacterial transcriptional state is still a costly process involving
the quantification of thousands of mRNA molecules using experimental techniques such
as RNA-seq and microarray. Such costs can be reduced by identifying a set of biomarker
genes whose mRNA levels are indicative of a particular cellular state. Consequently, the
expression state of the transcriptome in the transcriptional landscape, and the resulting
cellular state, can then be estimated by measuring the expression of a few key biomarker
genes instead of the whole transcriptome. More cost-effective techniques such as amplicon
panels [17,18] and quantitative RT-PCR [19,20] can then be employed.

Ultimately, reporter sensor systems could be engineered to facilitate the real time
monitoring of the cellular growth state by monitoring the expression of a representative
set of biomarker genes in situ. Once key biomarkers have been identified, sensor circuits
can also be engineered to modulate bacterial stresses, such as the load stress induced by
the production of a foreign protein [21–24], through the use of negative feedback control
strategies [25–28].

Previous work in this area has mostly focused on cell responses to specific stress
conditions [29–31] and the corresponding gene biomarker identification using statistical
algorithms [32–35], lacking the quantitative analysis of global gene regulatory systems un-
der diverse environments. A recent study by Avican et al. [36] analysed the transcriptional
dynamics under a pool of stress conditions for various human bacterial pathogens but did
not provide assessable biomarkers to monitor the stresses. Kim et al. [37] predicted the
cellular states for Escherichia coli in unexplored conditions with multi-omics data, but this
approach requires relatively high data generation costs. The advent of single-cell RNA se-
quencing has made extensive gene expression data available for the deployment of machine
learning methods to study transcriptional heterogeneities in eukaryotic systems [38–40].
For example, clustering and feature selection methods have been widely applied to dis-
cover cell subtypes and transcriptional biomarkers for human diseases [41–44]. However,
due to smaller sample size of prokaryotic transcriptomics datasets which are generated
with conventional RNA-seq and microarray technologies, and the challenges of obtaining
single cell transcriptomic data from bacteria, these data analysis approaches have yet to
be fully explored to investigate different cellular states and expression biomarkers for
bacterial systems.

To fill this gap, we located a large condition-dependent transcriptomics dataset for
Bacillus subtilis [45] and designed a set of computational strategies to capture the cellu-
lar transcriptional responses under conditions. We performed the dimension reduction
technique UMAP [46] to transform the high-dimensional transcriptomic data into a ‘tran-
scriptional landscape’ representing the transcriptome shifts under different conditions. The
graph-based clustering algorithm Leiden [47] revealed 10 clusters of distinct transcriptional
states in this landscape, corresponding to different cellular growth states. We applied a
rank guided iterative feature elimination (RGIFE) heuristic [48] to discover transcriptional
biomarkers that are indicative of the cluster in the landscape. We successfully identified a
minimal panel of 10 biomarker genes that together achieved 100% cross-validation accu-
racy in predicting the cluster assignment and a number of alternative biomarker panels
with either larger size or lower prediction power. Finally, we characterised the biology
captured by each of these 10 clusters and studied functions of these 10 biomarkers from
public databases.

2. Materials and Methods
2.1. Tiling Array Data and Data Pre-Processing

In this study, we used a publicly available high density tiling array dataset [45] of
269 samples consisting of B. subtilis strain BSB1 transcriptomes measured under a wide
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range of different conditions, including the use of various nutrients, aerobic and anaerobic
growth regimes, the development of motility, sporulation and germination, and adaptation
to diverse stresses (Supplementary Table S1A, Table 1 from http://genome.jouy.inra.fr/
basysbio/bsubtranscriptome/, accessed on 1 March 2021). The broad range of conditions
potentially led to diverse transcriptional states, making it an ideal platform to explore the
transcriptional landscape of B. subtilis. Although the more advanced RNA-seq technology
has also generated many relevant transcriptomics datasets, they are usually small in size
and only focus on a few conditions. Consequently, the integration of these small datasets is
challenging and would introduce between-experiment noise. In comparison, this tilling
array dataset is a unified dataset where experiments were conducted by different labs
using standard operation procedures and experimental protocols. More importantly, all
the probes were pre-processed together by adopting same approaches and quality control
criteria which minimised the between-experiment noises.

This tiling array dataset identified 5875 transcribed regions, including 4292 Genbank
annotated coding sequences (AL009126.3) and 1583 new transcribed regions (named as S1
to S1583), where the underlying transcription signals for the probes within the transcribed
regions are higher than threshold in at least one hybridisation. An aggregate expression
index was computed for each of the transcribed regions as the median log2 expression
signal intensity of probes lying entirely within the corresponding region. The log2 expres-
sion values were further pre-processed with quantile normalisation [49], rendering a gene
expression matrix for machine learning data analysis (Figure 1A). Log transformation turns
the data distribution from a highly right skewed distribution to a quasi-normal distribution.
Quantile normalisation attempts to make the data distribution across samples identical,
so as to reduce between-sample variations. The log2 expression values are deposited
in Table 2 from http://genome.jouy.inra.fr/basysbio/bsubtranscriptome/, accessed on
1 March 2021. The raw data and pre-processed data can be downloaded in Gene Expression
Omnibus (GSE27219).

Table 1. Biomarker list.

Biomarker Function Product

yddJ prevention of redundant transfer of ICEBs1 into host cells ICEBs1 exclusion factor, putative lipoprotein
phoR regulation of phosphate metabolism two-component sensor kinase
acuB unknown unknown

yqkF unknown NADPH-dependent
4-Hydroxy-2,3-trans-nonenal reductase

yhzB unknown conserved hypothetical protein
yclM (thrD) unknown aspartokinase III

yxbF similar to transcriptional regulator (TetR family) unknown
S520 The antisense RNA of ygxB 5’UTR of mobA

murG peptidoglycan precursor biosynthesis
UDP-N-acetylglucosamine-N-acetylmuramyl-
(pentapeptide)pyrophosphoryl-undecaprenol

N-acetylglucosamine transferase

ptsG
glucose transport and phosphorylation, control of GlcT

activity, phosphotransferase system (PTS) glucose-specific
enzyme IICBA component

glucose permease, trigger enzyme

2.2. Data Processing

Appropriate additional data processing was essential as our computational strategies
involved unsupervised learning where noise or unwanted signals, rather than variations of
biological interest, may be extracted. Firstly, we removed 137 genes that were considered
invariant in all conditions, i.e., genes expressed at top 30% or bottom 30% of whole chromo-
some in all conditions, as they did not provide any information for distinguishing between
transcriptional states. The expression distribution across samples for these invariant genes
commonly showed the first two patterns in Figure 1B which are close to normal distribution
with low dynamic range, while the expression distribution for the biomarker candidates

http://genome.jouy.inra.fr/basysbio/bsubtranscriptome/
http://genome.jouy.inra.fr/basysbio/bsubtranscriptome/
http://genome.jouy.inra.fr/basysbio/bsubtranscriptome/
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usually showed the last two patterns in Figure 1B which are either very right skewed or
left skewed.

Table 2. Validation Performance.

Test Condition
Sample Size Accuracy Recall Precision F1-Score

KS p-Value
Treatment Control Mean std Mean std Mean std Mean std

Salinity stress 6 6 0.98 0.03 0.99 0.03 0.98 0.04 0.98 0.03 1.84 × 10−7

Glycine betaine 6 6 0.96 0.05 0.98 0.05 0.95 0.07 0.96 0.05 6.39 × 10−3

Heat stroke 12 9 0.89 0.04 0.92 0.05 0.88 0.05 0.90 0.04 <1 × 10−10

Cold shock 5 4 0.90 0.04 0.82 0.07 1.00 0.00 0.90 0.04 2.42 × 10−9

Oxidative stress 5 5 0.92 0.07 0.86 0.01 0.99 0.01 0.91 0.09 <1 × 10−10

Pressure stress 11 5 0.99 0.01 0.99 0.02 1.00 0.00 0.99 0.01 <1 × 10−10

Stationary phase 9 9 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 4.64 × 10−4

Antibiotic 9 9 0.78 0.06 0.89 0.09 0.79 0.07 0.78 0.07 1.89 × 10−9

Deep starvation 3 4 0.89 0.12 0.99 0.03 0.84 0.16 0.90 0.10 <1 × 10−10
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Figure 1. Tiling array data and data processing. (A) Tiling arrays which measured the RNA signals under various conditions
were pre-processed to a gene expression matrix consisting of the gene expression levels of 5875 genes for 269 samples.
(B) Different distribution patterns for gene expressions across samples. (C) p-Values and log2-fold-changes for the differential
expression analysis performed on 21 pairs of contrasting growth conditions. Genes differentially expressed (p-Value < 0.05,
log-fold-change > 1) for three condition contrasts—sporulation late stage against pre-sporulation stage (S0 vs. S3–S8),
diamide treatment against non-oxidative environment (Oxctl vs. Diami), exponentially growing with glucose in M9 against
in LB (LBGexp vs. M9exp)—are highlighted as black points, respectively. (D) Data processing steps include filtering some
genes and samples, calculating the relative gene expression for treatment conditions with respect to their corresponding
reference expressions. The processed gene expression matrix contains 180 samples and 2536 genes whose expression levels
range from −16.2 to 16.3.

To analyse the variance introduced by different sources we performed differential
expression analysis on 51 paired groups of samples (Supplementary Table S2). These pairs
of sample groups usually correspond to experimental treatment conditions versus the coun-
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terpart control conditions, but can also correspond to other varying factors, e.g., samples
grown in LB medium versus M9 medium. For each pair, we ran moderated t-tests [50] to
identify genes that differentially expressed in one group of samples against the contrasting
group. We showed how different sets of genes were significantly upregulated or downregu-
lated in response to different conditions (Figure 1C). Some treatments (e.g., sporulation and
starvation) led to more differentially expressed (DE) genes and larger log2-fold changes
than other treatments (e.g., mitomycin, diamide). In particular, genes involved in spore
maturation during the late stages of sporulation were found to be active in other conditions
too where they dominated the global transcriptional patterns, rendering the signals gener-
ated by some other conditions more difficult to detect in a fine-grained manner. Moreover,
other factors such as cell density (e.g., OD500 0.4 vs. OD578 1.0), medium (e.g., M9 vs. LB)
and growth phases that vary in different experiments may compound the data analysis.
More details are provided in Supplementary Figure S1.

Guiding by the analysis results above, we further processed the data towards can-
celling out these unwanted variances and enabling the detection of smaller variation
introduced by conditions that resulted in fewer DE genes. Secondly, we removed 3225 DE
genes and 23 samples related to late-stage sporulation which generated much larger
variance than the other genes and samples so as to make variation caused by other con-
ditions more obvious (resulting in the first matrix of Figure 1D). Upon this removal of
features and data points, we saw the data points in the landscape were more spread out in
Supplementary Figure S2A compared to Supplementary Figure S1A, providing a higher
resolution of the data points that were originally stacked together. Thirdly, in order to
remove the variation due to different growth medium, phases, density and other factors
presented in different experiments we standardised the gene expression data to produce
what we call “relative gene expression” profiles: We selected 180 samples that were applied
with extra treatments or stress conditions as compared to the initial control conditions
(Supplementary Table S1B–D) and calculated the relative gene expression matrix (last ma-
trix in Figure 1D) as in Equation (1). D(i,j) (Difference in expression signal intensities for
gene i and sample j) represents the transcriptional signal changes at original scale (before
log2 scaled) between the treatment sample and its corresponding reference sample, where
TE denotes log2 Treatment gene Expression, RE denotes log2 Reference gene Expression
and NE denotes log2 Normalised relative gene Expression matrix. The returned relative ex-
pression values are equivalent to log-fold-changes that represents the transcriptional ratio
changes incurred upon the switch from control conditions to treatment conditions, where
the absolute value of D is added with a small value to avoid -inf and then multiplied with
the signs to enable positive values for upward changes and negative values for downward
changes. The resulting landscape retained only treatment samples with aforementioned
compounding factors largely relieved (Supplementary Figure S1C).

D(i,j) = 2TE(i,j) − 2RE(i,j)

NE(i,j) = Sign
(

D(i,j)

)
∗ log2

[
Abs

(
D(i,j)

)
+ 1
] (1)

2.3. Dimension Reduction and Clustering

We use the Uniform Manifold Approximation and Projection (UMAP) algorithm [46]
for dimension reduction to project our data in two-dimensions. This two-dimensional
map describing sample patterns structured by their transcriptional profiles was regarded
as the transcriptional landscape. From the UMAP representation of the data, we con-
structed a nearest-neighbour graph of the samples, and then applied the Leiden clustering
algorithm [47], which detected communities within a graph, to identify clusters in the
transcriptional landscape. Samples within a cluster are believed to present similar cellular
states resulting from similar transcriptional profiles. This strategy to identify clusters from
gene expression data is routinely used in other areas such as the analysis of single-cell
RNA-seq data [51–53].
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The choices of clustering algorithm, distance function, model parameters, and di-
mension reduction subspace in which clustering takes place can possibly lead to different
solutions, but it is generally not possible to adjudicate unambiguously these between
methods. Here, we tuned the model parameters from both dimension reduction algo-
rithm UMAP and clustering algorithm Leiden to optimise the clustering solution. We
first performed the grid search for a range of parameters (minimal distance- 0.08, 0.1,
0.15, number of neighbours- 10, 15, 20 in UMAP and resolution- 0.08, 0.1, 0.15, number
of neighbours- 8, 10, 15 in Leiden) and validated resulted different clustering solutions
by manually inspecting how much the solution was in line with prior known label and
existing knowledge in the domain. The solution with highest number of clusters while not
splitting biological replicates and samples sharing underlying molecular mechanisms was
chosen as the final solution.

2.4. Feature Selection Method

We performed a feature selection process to identify the transcriptional biomarkers,
i.e., a reduced set of genes that can pinpoint the cluster in the transcriptional landscape.
This was achieved by iteratively removing specific features while optimising or maintain-
ing the classification performance, where the features are the gene expression profiles and
classes are labelled as previously learned clusters. In order to identify candidate genes
with good discriminative power between clusters, we have used our own machine learn-
ing algorithm called RGIFE (Rank-Guided Iterative Feature Elimination). This algorithm
was designed to identify reduced and highly discriminative panels of biomarkers from
high-throughput omics data [48] and has shown good performance across a variety of
scenarios including omics technologies (transcriptomics, proteomics) and diseases (cancer,
osteoarthritis) [54,55]. RGIFE starts by considering all potential biomarkers as candidates,
and iteratively some are dropped if their removal has no negative effect on the predictive
capacity of the RandomForest (RF) machine learning algorithm. The predictive perfor-
mance of the RF models is estimated from our data using stratified 8-fold cross-validation.
This data partitioning process and predictive capacity estimation is performed within the
RGIFE algorithm in order to select models having good predictive capacity on unseen
data. The order in which features are removed is determined by the ranking of feature
importance produced by RF as part of its training process. Initially RGIFE will attempt to
remove blocks of 25% of the number of features. If the trial to remove a block fails (because
its removal led to a model of worse quality) the algorithm will attempt to remove another
block, following the ranking of features produced by RF. After five consecutive failed trials,
the block size will be divided by 4 and the process will start again by attempting to remove
the block at the bottom of the ranking. Once the block size is reduced to 1, the algorithm
will stop after five unsuccessful trials and will return the remaining features as the final
panel, hence automatically deciding when to stop the iterative feature elimination process.
For a full description of the algorithm please see [48].

We validated the overall prediction power of this model by performing nested n-folds
cross validation. The whole dataset was split into 8 folds (outer layer) to construct training
datasets and test datasets while each training dataset was further split into 6 folds (inner
layer) for model parameters tuning. The parameter configuration that achieved the best
performance was chosen after scanning ‘maximum depth’ in 5, 8, ‘number of trees’ in 500,
1500 and 3000, ‘tolerate misclassification’ in 1, 2. Additionally, we performed stratified
sampling to ensure each fold is balanced in classes and carefully chose the number of folds
to ensure at least one sample from each class would be included in the test data for two
layers of cross-validation. For extra robustness, we repeated this process 20 times. For each
time, training datasets and test datasets were regenerated and the average performance of
the model across the folds was recalculated. The performance was reported in terms of
accuracy, recall, precision, f1 score and the roc curves for all classes.

The biomarkers were obtained by running the model on the full dataset after parameter
hypertuning (‘maximum depth’ = 8, ‘number of trees’ = 1500, ‘tolerate misclassification’ = 1).
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As RGIFE and Random Forest classifier are both stochastic algorithms, we ran the model
100 times and selected an optimal solution which had: (i) best predicting performance in
terms of f1 score, (ii) smallest panel size.

2.5. Statistical Tests: Differential and Enrichment Analysis

We performed differential expression analysis during both the data processing and
cluster validation steps. The former step aims to study how genes may be differentially
expressed under different conditions. We compared treatment conditions and control
conditions carried out within an experiment which were the relevant biological factors
we were interested in, as well as similar treatment conditions carried out in different
experiments with other factors (such as growing medium and phase) varying. The latter
step identifies genes which are more highly or lowly expressed in the samples of one
cluster than in the remaining samples. Both analyses were carried out using Empirical
Bayes moderated t-tests [50]. We selected the genes with Benjamini–Hochberg adjusted
p-Value < 0.05, log-fold-change > 1 as the DE genes. We also performed Gene Ontology
(GO) and KEGG pathway enrichment analyses using hypergeometric two-sided tests
with Bonferroni correction in ClueGO [56]. The tests were based on GO_10.03.2015 and
KEGG_11.03.2015 databases and only terms with p-Value < 0.05 were reported.

2.6. Knowledgebase: Gene Annotations, Transcriptional Regulatory Network, Gene Ontology,
KEGG Pathways

To validate the biological significance of our cluster and biomarker results, we in-
spected the functions of genes differentially expressed in each cluster, together with their
Gene Ontology and KEGG pathway. We integrated the regulatory network reconstructed
by Jose et al. [57] and the Subtiwiki regulon database [58]. The curated regulatory network
consists of 294 regulators and 2816 targeted genes, representing 30 different mechanisms
of regulation such as transcriptional factors, RNA switches, riboswitches, and small regu-
latory RNAs. The network also includes 160 metabolites which are related to 1382 genes.
Using this knowledge base, we studied how different regulators may have been playing
roles in different cellular states represented by our identified clusters. We inferred the regu-
lator activities in a cluster by looking at both the expression intensity level and expression
percentage level of the genes regulated by corresponding regulators. The intensity level
was computed as the average relative expression across the samples within a cluster. The
percentage level was calculated as the proportion of samples sensitive to this regulator in a
cluster—a regulator is activated (or repressed) in a sample if the average expression of the
genes it regulates is higher (or lower) than the 70th (or 30th) percentile expression in the
whole transcriptome.

2.7. Validation of the Biomarker Panel on Independent Datasets

To examine the effectiveness of our biomarker panel in classifying different cellular
states induced by diverse conditions, we validated these biomarkers on 8 external gene
expression datasets which studied 9 different treatment conditions against their correspond-
ing control conditions (Supplementary Table S5). We trained classification models using
our biomarkers as input features and performed Leave One Out cross-validation to assess
if the panel of biomarkers can distinguish the treatment conditions from control conditions.
Due to the small sample size (N = 7~21) of these datasets we used a simple classifier, linear
Support Vector Machine (SVM), to lower overfitting risk. Given that the limited dataset
sizes often produce overoptimistic estimation, we adopted additional steps for further
evaluate the robustness of our biomarkers panel: (i) For datasets with class imbalance, we
oversampled the minority class by applying Synthetic Minority Oversampling TEchnique
(SMOTE) [59]. (ii) We performed stratified bootstrapping with replacement to regenerate
the training dataset of same size and repeated the cross-validation evaluation 100 times
with different bootstrap samples. (iii) We compared the prediction performance of our
biomarkers with the prediction performance of 500 randomly selected gene panels of same
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size by running the Kolmogorov–Smirnov (KS) test, which assesses whether two empirical
distributions are from same population.

3. Results
3.1. The Transcriptional Landscape Constructed by Condition-Dependent Transcriptomes Reveals
Major Cellular States of B. subtilis

To study the transcriptional changes in response to environmental conditions, we
delineated the patterns of gene expression shifts underlining the condition-dependent tran-
scriptomes in a landscape. This transcriptional landscape was constructed by transforming
the high dimensional transcriptomics data into a two-dimensional map where samples un-
dergoing similar transcriptional changes were positioned close to each other. We identified
10 clusters representing distinct changes in the transcriptional state, among which four clus-
ters containing samples predominantly grown in similar conditions and six clusters contain-
ing samples grown in multiple different conditions (Figure 2, Supplementary Table S3A).
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Figure 2. Transcriptional landscapes. (A) Transcriptional landscape in UMAP embedding, where samples (data points)
with similar transcriptional profiles are positioned close to each other. Ten clusters were identified as indicated by colour.
(B) Transcriptional landscape in UMAP embedding colour-coded according to the conditions in which they were grown.
Clusters containing samples predominantly grown in similar conditions are circled with full lines. Clusters containing
samples grown in multiple different conditions are circled with dotted lines.

We further analysed the common genetic regulatory effects shared by each cluster
coupling with the common physiological effects of the treatment conditions to infer the
cellular growth states that the bacteria presented in different clusters. We studied the
functions of genes that were significantly upregulated or downregulated in each cluster
(Figure 3A, Supplementary Table S3B,C) and identified the corresponding enriched GO
terms or KEGG pathways (Supplementary Table S3D). To obtain a global picture of how
different sigma factors and transcriptional regulators (TR) played roles across clusters,
we averaged the activities of genes regulated by each sigma factor or TR for each cluster,
using both the percentage of samples that saw an increased or decreased expression in
genes regulated by a given sigma factor or TR and the average intensity of gene expression
(Figure 3B, Supplementary Table S3E). However, we note that this activity score of sigma
factors or TR are based on the common increased or decreased expression in all the targeted
genes, it is not sensitive to the sigma factor or TR that regulates large pool of genes, such as
SigA, AbrB, SigE, etc.
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Cluster 1 is associated with a range of conditions including 1 to 2 h after the induction
of sporulation, 90 min after the induction of competence, transition to or in stationary
phase (Lbtran, Lbstat, LBGtran, LBGstat), colonies or swarming cells growing on agar, and
45 min after treatment with the DNA damaging compound, mitomycin. In the majority
of samples, increases were observed in the expression of genes activated by SigO, YofA
and an over representation of the GO term cell communication, suggesting the bacteria
were experiencing post-exponential growth and/or the induction of cellular differentiation.
One common underlying factor in this cluster is the imposition of a starvation state,
particularly of amino acids, as it sees a general increased biosynthesis of branched-chain
amino acids [60]. The inclusion of the 45 min mitomycin treated samples may relate to



Sensors 2021, 21, 2436 10 of 18

the imposition of stress due to DNA damage [61] causing inhibition of DNA replication
elongation and activation of the stringent response which are also seen in Amino acid
starvation [62,63].

Cluster 6, containing samples grown to glucose starvation or stationary phase (M9stat,
LPhT), is also associated with the imposition of a starvation state, although not only
carbon starvation. As might be predicted, the full activation of SigO indicates the acidic
environment that results, perhaps from overflow metabolites, in the stationary phase, while
the repression of CggR (repressor of the glycolytic gapA operon) and BirA (repressor of
biotin synthesis) indicates the nutrient limitation. The increased activities in SigL suggests
the introduction of mechanisms to scavenge alternate nutrients through the synthesis of
degradative enzymes such as levanase and enzymes for argenine catabolism. The increased
expression of genes regulated by AcoR, LicR, TreR, AhrC also indicates the utilisation
of overflow metabolites and other secondary carbon sources and amino acids including
acetoin, lichenan, trehalose and arginine.

Cluster 3 represents conditions where the carbon source is changed from glucose to
other compounds (glycerol, malic acid, pyruvate, gluconate, fructose) and anaerobic grow-
ing conditions, which both result in a radical shift in the metabolism. This cluster sees the
upregulated expression in genes involved in respiration (ctaC/ctaD/ctaE/ctaF/ctaG/qcrA/
qcrB/qcrC/cccA/cccB) as well as genes regulating aerobic and anaerobic respiration (resD/resE),
and downregulated expression in genes involved in glutamate, threonine, purine synthesis
(CltC switched off, ThrR and PurR switched on).

Cluster 2 includes conditions in which malate was added to cells grown in glucose
(GM), or cells induced for competence for 30 min (C30). Cluster 4, conversely, includes
the conditions in which glucose was added to cells grown in malate (MG). Cluster 4 sees
the reduced expression in the genes mediated by CcpA, CcpN which are related to carbon
catabolite repression. This is because the genes necessary for the utilisation of less energetic
carbon sources are repressed in the presence of glucose. Cluster 2 sees the opposite trend.
In the conditions GM and M+G, cells relieve catabolite repression on the utilisation of
malate as a carbon source as MalR accounting for malate uptake activates. The reason
for the inclusion of C30 in this cluster is not immediately obvious but may be related to
commonalities in the regulation of aromatic amino acid biosynthesis genes (aroA/aroB)
during catabolite repression and early ComK mediated competence.

Cluster 5 contains samples exposed to high temperature at 51 ◦C (HiTm), high osmo-
larity (1.2 M sodium chloride, HiOs), low-phosphate, alternative carbon sources (fructose,
gluconate, glutamic acid + succinic acid) and non-shaking treatment to form biofilms.
Cluster 7 contains samples treated with compounds including diamide, paraquat and per-
oxide that induced oxidative stress. Cluster 9 contains samples treated with ethanol, high
temperature at 48 ◦C (Heat) and 0.4 M sodium chloride (Salt). All three clusters include
conditions that were likely to lead to the induction of the general stress response. This is
the case especially for cluster 9 which sees the activation of SigB, SigY, SigM. However,
the genes mediated by SigB are not generally upregulated for cluster 5 and cluster 7 as
they were exposed to conditions in which additional physiological modifications were
imposed. For cluster 7, apart from the activation of AdhR for detoxification and BmrR for
multidrug resistance which were commonly observed in cluster 9, it additionally switched
on CtsR, HrcA, PerP for oxidative stress response. Cluster 5 and cluster 9 both include
heat or high salinity conditions. As expected, genes involved in DNA repair and heat,
cold, osmotic or ethanol stress responses were increasingly expressed for both clusters,
however, the number of regulated genes and upregulation levels were much lower for clus-
ter 5 which contains samples treated with higher temperature or higher sodium chloride
concentrations. This difference may be explained by the increased denaturation of proteins
at the higher temperature of 51 degree, leading to an adaptive response to remove these
denatured proteins in addition to the normal heat stress response. For example, differential
expression of genes encoding resistance to osmotic down-shock (yhdY) and DNA repair
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(mutT) both indicate the presence of cellular damage. This cellular damage could be caused
by the sample treatment at 51 degree or in 1.2 M sodium chloride medium.

Cluster 8 contains samples treated with low temperatures at 16 or 18 ◦C and 90 min
of mitomycin. Common upregulated genes between these samples are involved in DNA
repair (uvr/ruvA/dinB). This is because mitomycin is a potent cross linker of DNA which
induces the DNA damage response [64] and evidence [65,66] also shows that nucleotide
restructuring occurs in cold shock resulting in negative supercoiling of DNA, which also
requires DNA excision repair. In addition, cluster 8 sees reduced expression in genes in-
volved in synthesis of alternative amino acids or vitamins (asnH/cysE/folEB/metA/pks/rib)
and cell division (ftsW/glpG), suggesting the slow growth which generally leads to reduced
protein and DNA replication synthesis.

Cluster 10 contains samples taken during spore germination whose gene expression
patterns are very distinct from normal vegetative growth in Bacillus. As expected, this
cluster sees many enriched GO terms related to cellular metabolism. Compared to ex-
ponentially growth in LB, it also shows less expression in genes involved in TCA cycle
(CcpC), mannose uptake (ManR) and more expression in genes involved in thymidine
nucleotides/folate synthesis (CcpN), cell wall synthesis (tagA/tagB), glutamate biosynthe-
sis (GltC).

3.2. A Small Subset of Genes Can Be Used as the Biomarker Panel to Indicate the Cellular State of
B. Subtilis

As clusters of samples representing different cellular transcriptomic responses and
growth states were revealed in the transcriptional landscape, we treated the identification
of cellular state biomarkers as a process of selecting a minimised set of genes whose
transcriptional profiles are able to distinguish between these clusters. We applied the RGIFE
heuristic approach embedded with Random Forest Classifier (RGIFE+RF) to iteratively
eliminate blocks of genes until the prediction power of the remaining genes degrades to an
intolerable degree. We ran 20 repeats of nested n-folds validations to examine the overall
performance of this RGIFE+RF model (i.e., the prediction power of the RF classifier built
with only the genes selected by RGIFE) in which that the accuracy, recall, precision, f1
scores which were all higher than 0.94 (Figure 4A). The receiver operating characteristic
curves of the classifier showed a high level of diagnostic ability for all classes except for
class 5, where the area under the curve was slightly lower (Figure 4B).
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Due to the stochastic nature of the RGIFE+RF model and the high level of correlation
between many of the gene features, the set of genes selected by the model and the perfor-
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mance of the model may vary with each run. We ran the RGIFE+RF model one hundred
times and discovered many alternative solutions that achieved comparable prediction per-
formance with less than 20 genes, however, some genes were more frequently selected than
others (Supplementary Table S4). In Table 1, we show the biomarker panel that achieved
the best performance (n-folds cross validation within RGIFR showed f1-scores at 1.0) with
smallest gene set size (10 genes).

As might be expected, this biomarker panel includes members regulated by a large
range of sigma factors and cellular regulators. The smallest connected regulatory net-
work that connects seven of the biomarkers together demonstrates that these genes are
distributed across the regulatory and metabolic networks of B. subtilis (Figure 5A). The
rest of the biomarkers, including an antisense RNA, a putative transcriptional regulator
and a coding sequence for conserved hypothetical protein, are less well studied but may
have as yet to be identified as having important cellular functions. We visualised the
variation in relative gene expressions for each of the biomarkers across clusters and within
clusters (Figure 5B). It shows the potential utility of theses biomarker individually and as a
set. In Supplementary Figure S2, we show in more detail how the individual biomarker
profiles across each sample of the data. However, the random forest model used to identify
biomarkers is a multivariate model, and the distinguishability of all clusters is based on
the collective efforts of all biomarkers.
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Figure 5. (A) The sub-regulatory network that connects the biomarkers (highlighted as red). Only 7 biomarkers were
included in the complete B. subtilis regulatory network which consists of 294 regulators targeting 2816 genes and 160 metabo-
lites related to 1382 genes. Red lines indicate activation while blue lines indicate repression. (B) The heatmap shows
the average relative gene expression levels for identified biomarkers (columns) under different conditions (rows) which
are grouped by clusters. As some biological replicates grown under the same conditions (e.g., M40T45) presented dis-
tinct transcriptional states and thus were grouped into different clusters, we re-labelled those conditions accordingly
(e.g., ‘M40T45_A’ and ‘M40T45_B’). The violin plots present the patterns of biomarker expression distributions of samples
included in corresponding clusters.
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To validate if the biomarker panel remains effective at distinguishing different cellular
states studied in independent studies, we tested their classification power to identify the
transcriptomics profiles underlying nine environmental conditions from external datasets.
Most of these conditions are similar to the ones (e.g., salinity stress, cold shock, heat
stroke, oxidative stress) that were presented in the original dataset, while others are new
conditions (such as pressure stress and deep starvation). Our biomarkers showed good
performance at discriminating between treatment and control samples (f1-score > 0.9)
for most of the conditions as shown in Table 2. Surprisingly, we also achieved good
classification performance for new conditions, i.e., pressure stress and deep starvation,
which were not seen in the training datasets used to identify our biomarkers. The exception
was the antibiotic condition to which our biomarkers were less sensitive to.

In addition, we compared the distribution of biomarker performances across 100 rep-
etitions of bootstrap resampling with the distribution of performances of 500 randomly
chosen gene panels and calculated the Kolmogorov–Smirnov (KS) statistical test which
indicates if the former can possibly be sampled from the later (Supplementary Figure S4A).
In all datasets our biomarkers panel showed superior performance to the random panels,
and all performance differences were significant according to the KS test. Although the
genes in the biomarker panel work collectively to make predictions, their contributions
varied across datasets. For example, gene ptsG played crucial role in distinguishing sam-
ples in heat stroke but was almost discarded for identifying pressure stress, and only five
genes (yqkF, thrD, murG, yddJ, ptsG) were important for predicting cold shock samples
(Supplementary Figure S4B).

4. Discussion

Bacteria experience cellular stresses when encountering unfavourable environments,
nutrient limitation or protein production stress in laboratory scale-up experiments and
industrial bioreactors. Monitoring the growth states and understanding the molecular
activities within the cell population sheds lights on ways to relieve cellular stress and
optimise product yield, however, current studies have been mostly confined in unravelling
the signalling systems of individual treatment conditions and their corresponding gene
regulatory systems. Making the most effective use of high throughput transcriptomics data
collected under a wide range of conditions, our research deploys data-driven approaches
to enhance the global understanding of transcriptional shifts in response to different
conditions and to quantitatively extract a few key genes as the transcriptional biomarkers
for sensing diverse cellular growth states presented in this transcriptomics data.

We achieved these goals with a set of data mining techniques where unsupervised
learning was first performed to extract data representation-the clusters in the transcriptional
landscape—and supervised learning-selection of features relevant to cellular growth states-
was then performed with the ‘ground truth’ class labels set as the previously learned
clusters. Caution was taken to prevent the clustering solution being driven by the nuisance
variation and irrelevant biology. We explored the existing batch effects correcting and
factor analysis methods including Combat [67], sva [68], sc-batch [69], mnnCorrect [70],
but all failed to remove the unwanted variances introduced by different experiments,
growing medium, or other unmodelled factors in the growth conditions. This is because
the experiment design in our data does not meet the assumption of these algorithms, which
requires that the factor of interest is not severely confounded with the other factors. Instead,
our approaches are fairly simple in design but were successful in cancelling out most of
the nuisance variation and irrelevant biology: We first removed the variances correlated to
sporulation which are not a focus in this study and then standardize the gene expression
values in treatment samples with respect to the reference gene expression values in their
corresponding control samples.

Although there is no clear measure of success for the unsupervised learning methods,
we validated the cluster solution using the existing knowledge, such as the gene regulatory
network, gene annotation, KEGG and GO databases, to infer the underlying cellular growth
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states. The computational strategies designed in this study indicated the possibility of
combining supervised learning methods with unsupervised learning processes, utilising
domain knowledge to guide data-driven strategies or to assess the results.

The RGIFE model, which was used to identify the biomarkers, uses heuristics to
find approximate solutions that do not guarantee convergence to a global optimum. We
therefore run the model multiple times to find the best solution as well as several alternative
solutions. Through the validation on external datasets, we showed how our biomarker
panel was able to separate normal from treatment (i.e., stressed) cells under a broad range
of stress conditions, among which pressure stress and deep starvation were beyond the
conditions which were studied in the original dataset from which the panel was derived.
This shows the potential of our biomarkers in identifying unknown, complicated stress
conditions. However, we may still fail in distinguishing the conditions where only a
few genes or unique genes were differentially expressed, e.g., our biomarkers showed
worse prediction for the antibiotic condition. Nevertheless, we believe that analysing the
expression of these biomarkers should allow most of the cellular state of the organism
to be inferred in practice. For example, a biotech company can conduct rapid RNA-seq
experiments to monitor the cellular states of a bioreactor or growing population. In the
future, strains could be engineered with reporter genes linked to these biomarker genes for
the in vivo real-time measurement of the bacterial cell transcriptional state. As the research
is conducted in a data-driven manner, we would still expect laboratory experiments to
solidly verify the biomarkers we identified.

Some limitations in this study and directions to extend the work are: (i) Validation of
the biomarkers on a comparable independent dataset is missing. Although the tiling array
dataset we used contains a broad range of conditions and therefore is ideal for exploring
transcriptional landscape, it adopts old transcriptomics measuring technology, while most
of the recently generated transcriptomic datasets are based on RNA-seq technology. There-
fore, validating our biomarkers with a comparably large and diverse RNA-seq dataset
is preferred. However, such dataset is difficult to find. The computational strategies we
have designed for this work are not restricted to a specific dataset type and should be
applicable to any new dataset generated with enough experimental conditions to infer a
diverse expression landscape from it. A large and diverse dataset would allow our machine
learning models to achieve good performance and enable the discovery of biologically
meaningful information. (ii) This landscape is limited by the experimental design in the
transcriptomics data we used. Additional samples grown, for example, under conditions
that mimic industrial fermentations would help validate the biomarkers in an industrial
setting. (iii) The generation of these landscapes is limited by the characteristics of the
expression data. For example, the approach is unable to distinguish cellular states if only
a few genes are differentially expressed at a low level. This situation may be improved
in the future with additional feature engineering. (iv) With only transcriptomic data we
are unable to analyse post-transcriptional activities which provide additional information
about the physiological state of bacteria. These computational strategies can be applied at
multi-omics scale to enhance the understanding of cellular activities at molecular levels.

In conclusion, we introduce a set of data mining methods designed to construct a
landscape from transcriptomics data that reveals limited clusters of different transcriptional
patterns and to identify an enough small panel of biomarkers that characterise the transcrip-
tional state denoted by clusters in the landscape. We show that different transcriptional
states (i.e., clusters) we identified for B. subtilis can be linked to different cellular growth
states by analysing their biological significances and thus the transcriptional biomarkers
that are distinguishable of these clusters can be exploited to sense cellular growth state of
the bacteria. We believe these computational strategies have the potential to be applied to
a wide range of applications involving the design of biosensors from data in which clear
ground truth labels are missing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21072436/s1. Supplementary Figure S1. The UMAP embedding of transcriptomics data
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before data processing; Supplementary Figure S2. The UMAP embedding of transcriptomics data
after data processing; Supplementary Figure S3. The spectrum of biomarker gene expressions in
the landscape; Supplementary Figure S4. The performance and feature importance in external
validation; Supplementary Table S1. Samples and conditions; Supplementary Table S2. Differential
expressed genes on different conditions; Supplementary Table S3. Clusters; Supplementary Table S4.
Biomarkers; Supplementary Table S5. Validation datasets; The interactive Figures can be found in
https://neverbehym.github.io/TB_InteractiveFigures.html (accessed on 1 March 2021).
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