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There is a large body of evidence that atomic nuclei can undergo octupole distortion and

assume the shape of a pear. This phenomenon is important for measurements of electric-

dipole moments of atoms, which would indicate CP violation and hence probe physics beyond

the Standard Model of particle physics. Isotopes of both radon and radium have been

identified as candidates for such measurements. Here, we observed the low-lying quantum

states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that

radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their

ground states. We conclude that radon atoms provide less favourable conditions for the

enhancement of a measurable atomic electric-dipole moment.
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It is well established by the observation of rotational bands that
atomic nuclei can assume quadrupole deformation with axial
and reflection symmetry, usually with the shape of a rugby

ball. The distortion arises from long-range correlations between
valence nucleons, which becomes favourable when the proton
and/or neutron shells are partially filled. For certain values of
proton and neutron number it is expected that additional cor-
relations will cause the nucleus to also assume an octupole shape
(‘pear-shape’) where it loses reflection symmetry in the intrinsic
frame1. The fact that some nuclei can have pear-shapes has
influenced the choice of atoms having nuclei with odd nucleon
number A (=Z+N) employed to search for permanent electric-
dipole moments (EDMs). Any measurable moment will be
amplified if the nucleus has octupole collectivity and further
enhanced by static-octupole deformation. At present, experi-
mental limits on EDMs, that would indicate charge-parity (CP)
violation in fundamental processes where flavour is unchanged,
have placed severe constraints on many extensions of the Stan-
dard Model. Recently, new candidate atomic species, such as
radon and radium, have been proposed for EDM searches. For
certain isotopes octupole effects are expected to enhance, by a
factor 100–1000, the nuclear Schiff moment (the electric-dipole
distribution weighted by radius squared) that induces the atomic
EDM2–4, thus improving the sensitivity of the measurement.
There are two factors that contribute to the greater electrical
polarizability that causes the enhancement: (i) the odd-A nucleus
assumes an octupole shape; (ii) an excited state lies close in
energy to the ground state with the same angular momentum and
intrinsic structure but opposite parity. Such parity doublets arise
naturally if the deformation is static (permanent octupole
deformation).

The observation of low-lying quantum states in many nuclei
with even Z, N having total angular momentum (‘spin’) and
parity of Iπ ¼ 3� is indicative of their undergoing octupole
vibrations about a reflection-symmetric shape. Further evidence is
provided by the sizeable value of the electric octupole (E3)
moment for the transition to the ground state, indicating col-
lective behaviour of the nucleons. However, the number of
observed cases where the correlations are strong enough to induce
a static pear-shape is much smaller. Strong evidence for this type
of deformation comes from the observation of a particular
behaviour of the energy levels for the rotating quantum system
and from an enhancement in the E3 moment5. So far there are
only two cases, 224Ra6 and 226Ra7 for which both experimental
signatures have been observed. The presence of a parity doublet
of 55 keV at the ground state of 225Ra makes this nucleus
therefore a good choice for EDM searches8. In contrast to the
radium isotopes, much less is known about the behaviour of
radon (Rn) nuclei proposed as candidates for atomic EDM
searches on account of possible enhancement of their Schiff
moments9–17. For this reason, different isotopes of radon have
been listed in the literature, for example 221,223,225Rn14, each
having comparable half-lives and ground state properties. The
most commonly chosen isotope for theoretical calculations9,10

and the planning of experiments11–13 is 223Rn.
In this work, we present data on the energy levels of heavy

even-even Rn isotopes to determine whether parity doublets are
likely to exist near the ground state of neighbouring odd-mass Rn
nuclei. Direct observation of low-lying states in odd-A Rn nuclei
(for example following Coulomb excitation or β-decay from the
astatine parent) is presently not possible, as it will require sig-
nificant advances in the technology used to produce radioactive
ions. We observe that 224,226Rn behave as octupole vibrators in
which the octupole phonon is aligned to the rotational axis. We
conclude that there are no isotopes of radon that have static-
octupole deformation, so that any parity doublets in the odd-mass

neighbours will not be closely spaced in energy. This means that
radon atoms will provide less favourable conditions for the
enhancement of a measurable atomic electric-dipole moment.

Results
Measurement of the quantum structure of heavy radon iso-
topes. In the experiments described here, 224Rn (Z= 86, N=
138) and 226Rn (Z= 86, N= 140) ions were produced by spal-
lation in a thick thorium carbide target bombarded by ~1013

protons s−1 at 1.4 GeV from the CERN PS Booster. The ions were
accelerated in HIE-ISOLDE to an energy of 5.08MeV per
nucleon and bombarded secondary targets of 120Sn. In order to
verify the identification technique, another isotope of radon,
222Rn, was accelerated to 4.23 MeV/u. The γ-rays emitted fol-
lowing the excitation of the target and projectile nuclei were
detected in Miniball18, an array of 24 high-purity germanium
detectors, each with six-fold segmentation and arranged in eight
triple-clusters. The scattered projectiles and target recoils were
detected in a highly segmented silicon detector19. See Methods.

Prior to the present work, nothing was known about the
energies and spins of excited states in 224,226Rn, while de-exciting
γ-rays from states in 222Rn had been observed20 with certainty up
to Iπ ¼ 13�. The chosen bombarding energies for 224,226Rn were
about 3% below the nominal Coulomb barrier energy at which
the beam and target nuclei come close enough in head-on
collisions for nuclear forces to significantly influence the reaction
mechanism. For such close collisions the population of high-spin
states will be enhanced, allowing the rotational behaviour of the
nucleus to be elucidated. This is the method described by Ward
et al.21 and has subsequently been coined unsafe Coulomb
excitation22 as the interactions between the high-Z reaction
partners is predominantly electromagnetic. It is not possible to
precisely determine electromagnetic matrix elements because of
the small nuclear contribution. The most intense excited states
expected to be observed belong to the positive-parity rotational
band, built upon the ground state. These states are connected by
fast electric quadrupole (E2) transitions. In nuclei that are
unstable to pear-shaped distortion, the other favoured excitation
paths are to members of the octupole band, negative-parity states
connected to the ground-state band by strong E3 transitions.

The spectra of γ-rays time-correlated with scattered beam and
target recoils are shown in Fig. 1. The E2 γ-ray transitions within
the ground-state positive-parity band can be clearly identified, as
these de-excite via a regular sequence of strongly-excited states
having spin and parity 0þ; 2þ; 4þ; ¼ with energies �h2

2= I I þ 1ð Þ.
In this expression the moment-of-inertia = systematically
increases with increasing I (reducing pairing) and with number
of valence nucleons (increasing quadrupole deformation). As
expected from multi-step Coulomb excitation the intensities of
the transitions systematically decrease with increasing I, after
correcting for internal conversion and the γ-ray detection
efficiency of the Miniball array.

The other relatively intense γ-rays observed in these spectra
with energies <600 keV are assumed to have electric-dipole (E1)
multipolarity, and to depopulate the odd-spin negative-parity
members of the octupole band. In order to determine which states
are connected by these transitions, pairs of time-correlated
(‘coincident’) γ-rays were examined. In this analysis, the energy
spectrum of γ-rays coincident with one particular transition is
generated by requiring that the energy of this ‘gating’ transition
lies in a specific range. Typical spectra obtained this way are
shown in Fig. 2. Each spectrum corresponds to a particular gating
transition, background subtracted, so that the peaks observed in
the spectrum arise from γ-ray transitions in coincidence with that
transition.
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The level schemes for 224,226Rn constructed from the
coincidence spectra, together with the known20 scheme for
222Rn, are shown in Fig. 3. For 226Rn the energy of the strongly-
converted 2þ ! 0þ transition overlaps with those of the Kβ X-
rays, but its value can be determined assuming that the relative
intensity of Kβ, Kα X-rays is the same as for 222,224Rn. The E2
transitions connecting the states in the octupole band are not
observed because they cannot compete with faster, higher-energy
E1 decays. The only other plausible description for this band is
that it has Kπ ¼ 0þ or 2+, implying that the Kπ ¼ 0� octupole
band is not observed. (Here K is the projection of I on the body-
fixed symmetry axis.) This is unlikely as the bandhead would have

to lie significantly lower in energy than has been observed in
222,224,226Ra, and inter-band transitions from states with I’ > 4 to
states with I and I-2 in the ground-state band and in-band
transitions to I’-2 would all be visible in the spectra. The spin and
parity assignments for the positive-parity band that is strongly
populated by Coulomb excitation can be regarded as firm,
whereas the negative-parity state assignments are made in accord
with the systematic behaviour of nuclei in this mass region.

Characterisation of octupole instability. From the level schemes
and from the systematics for all the radon isotopes (Fig. 4) it is
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clear that the bandhead of the octupole band reaches a minimum
around N= 136. The character of the octupole bands can be
explored23 by examining the difference in aligned angular
momentum, Δix ¼ i�x � iþx , at the same rotational frequency ω, as
a function of ω. Here ix is approximately I for K=0 bands and �hω
is approximately ðEI � EI�2Þ=2: For nuclei with permanent
octupole deformation Δix is expected to approach zero, as
observed for several isotopes of Ra, Th, and U5. For octupole-
vibrational nuclei in which the negative-parity states arise from
coupling an octupole phonon to the positive-parity states, it is
expected that Δix � 3�h as the phonon prefers to align with the
rotational axis. This is the case for the isotopes 218,220,222,224Rn at
values of �hω (<0.2 MeV) where particle-hole excitations do not
play a role, see Fig. 4. Thus we have clearly delineated the lower

boundary at Z > 86 as to where permanent octupole deformation
occurs in nature.

Discussion
The observation of octupole-vibrational bands in the even-even
radon isotopes is consistent with several theoretical calcula-
tions24–26, which predict that only nuclei with Z > 86 have stable
octupole deformation. Other calculations suggest that radon
isotopes with A~222 will have non-zero values of the octupole
deformation parameter β327,28. For such nuclei, which have a
minimum in the nuclear potential energy at non-zero values of
β3, the positive- and negative-parity states are projected from
intrinsic configurations having Kπ ¼ 0þ; 0�, which are degen-
erate in energy. In the odd-A neighbours parity doublets arise by
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coupling the odd particle to these configurations. This is not the
case for reflection-symmetric nuclei that undergo octupole
vibrations around β3 ¼ 0: Bands of opposite parity with differing
single-particle configurations can lie close to each other
fortuitously29,30 but in general those arising from coupling the
odd nucleon to the ground state and octupole phonon will be well
separated. The separation will be determined by the spacing of the
bands in the even-even core, ~500 keV in the case of 222-226Rn
(see Fig. 4), and will be in general much larger than that the value
(~50 keV) observed for parity doublets in radium isotopes1.
Quantitative estimates of Schiff moments for octupole-vibrational
systems have yet to be made31. Nevertheless, it can be concluded
that, if measurable CP-violating effects occur in nuclei, the
enhancement of nuclear Schiff moments arising from octupole
effects in odd-A radon nuclei is likely to be much smaller than for
heavier octupole-deformed systems.

Methods
Production of radioactive radon beams. In our experiments, 222,224,226Rn were
produced by spallation in the primary target, diffused to the surface and then singly
ionized (q= 1+) in an enhanced plasma ion-source32 with a cooled transfer line.
The ions were then accelerated to 30 keV, separated according to A/q, and deliv-
ered to a Penning trap, REXTRAP33, at a rate of around 8 × 106 ions s−1 for 222Rn,
2 × 106 ions s−1 for 224Rn and 105 ions s−1 for 226Rn at the entrance. Inside the
trap, the singly-charged ions were accumulated and cooled before being allowed to
escape in bunches at 500 ms intervals into an electron-beam ion source, REXE-
BIS33. Here, the ions were confined for 500–700 ms in a high-density electron beam
that stripped more electrons to produce a charge state of 51+ (222Rn) or 52+

(224,226Rn) extracted as 1 ms pulses before being mass-selected again according to
A/q, and injected at 2 Hz into the HIE-ISOLDE linear post-accelerator. The Rn
beams then bombarded a 120Sn target of thickness ~2 mg cm−2 with an intensity of
about 6 × 105 ions s−1, 1.1 × 105 ions s−1 and 2 × 103 ions s−1 for 222Rn, 224Rn and
226Rn, respectively. The total beam-times were respectively 8, 16 and 24 h. The level
of Fr impurity in the Rn beams could be estimated for A= 222 as below 1% by
observing radioactive decays at the end of the beam line.

Data selection and Doppler correction. Events corresponding to the simulta-
neous detection of γ-rays and heavy ions in Miniball and the silicon detector array
respectively were selected if the measured energy and angle of either projectile or
target satisfied the expected kinematic relationship for inelastic scattering reactions.
This procedure eliminated any background from stable noble-gas contaminant
beams produced in REX-TRAP having the same A/q as the radon beams. In the
present setup the average angle of each of the 16 strips of one side of the silicon
detector array ranged between 19.6° and 54.9° to the beam direction, corresponding

to a scattering angular range of 140.9°–0.2° in the centre-of-mass. In order to
reduce background from Compton scattering, events were rejected if any two
germanium crystals in each triple-cluster registered simultaneous γ-ray hits, in
contrast to the normal adding procedure which would substantially increase the
probability of summing two γ-rays emitted in the same decay sequence (‘true pile-
up’). Miniball was calibrated using 133Ba and 152Eu radioactive sources that
emitted γ-rays of known energy and relative intensity. The relativistic Doppler
correction was performed by determining the momentum vector of the projectile,
using the energy and position information in the pixelated silicon detector, and the
emission polar and azimuthal angle of the detected gamma-ray in the segment of
Miniball where most energy was deposited. In the case of the latter the relative
orientation of each segment to each other and to the beam axis was determined by
employing d(22Ne,pγ) and d(22Ne,nγ) reactions. The Doppler corrected energies
for transitions in 224Rn and 226Rn together with the deduced level energies are
given in Table 1.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request. The software used to sort the raw data is available at
https://doi.org/10.5281/zenodo.2593370 (Gaffney, L. P. & Konki, J., MiniballCoulexSort
for Coulex, SPEDE, CREX and TREX). Information about the ROOT software package
used to analyse the data can be found at https://doi.org/10.1016/j.cpc.2009.08.005.
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