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Breaking the Seizure Randomness Myth:
Evidence for a Recurring Ebb and Flow of
Seizure Risk on the Continuum of Time

Seizure Cycles in Focal Epilepsy
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Importance: Focal epilepsy is characterized by the cyclical recurrence of seizures, but, to our knowledge, the prevalence and
patterns of seizure cycles are unknown. Objective: To establish the prevalence, strength, and temporal patterns of seizure
cycles over timescales of hours to years. Design, Setting, and Participants: This retrospective cohort study analyzed data from
continuous intracranial electroencephalography (cEEG) and seizure diaries collected between January 19, 2004, and May 18,
2018, with durations up to 10 years. A total of 222 adults with medically refractory focal epilepsy were selected from 256 total
participants in a clinical trial of an implanted responsive neurostimulation device. Selection was based on availability of cEEG
and/or self-reports of disabling seizures. Exposures: Anti-seizure medications and responsive neurostimulation, based on
clinical indications. Main Outcomes and Measures: Measures involved (1) self-reported daily seizure counts, (2) cEEG-based
hourly counts of electrographic seizures, and (3) detections of interictal epileptiform activity (IEA), which fluctuates in daily
(circadian) and multiday (Multidien) cycles. Outcomes involved descriptive characteristics of cycles of IEA and seizures: (1)
prevalence, defined as the percentage of patients with a given type of seizure cycle; (2) strength, defined as the degree of
consistency with which seizures occur at certain phases of an underlying cycle, measured as the phase-locking value (PLV); and
(3) seizure chronotypes, defined as patterns in seizure timing evident at the group level. Results: Of the 222 participants, 112
(50%) were male, and the median age was 35 years (range, 18-66 years). The prevalence of circannual (approximately 1 year)
seizure cycles was 12% (24 of 194), the prevalence of multidien (approximately weekly to approximately monthly) seizure
cycles was 60% (112 of 186), and the prevalence of circadian (approximately 24 hours) seizure cycles was 89% (76 of 85).
Strengths of circadian (mean [SD] PLV, 0.34 [0.18]) and multidien (mean [SD] PLV, 0.34 [0.17]) seizure cycles were com-
parable, whereas circannual seizure cycles were weaker (mean [SD] PLV, 0.17 [0.10]). Across individuals, circadian seizure
cycles showed 5 peaks: morning, mid-afternoon, evening, early night, and late night. Multidien cycles of IEA showed peak
periodicities centered around 7, 15, 20, and 30 days. Independent of multidien period length, self-reported, and electrographic
seizures consistently occurred during the days-long rising phase of multidien cycles of IEA. Conclusions and Relevance: Findings
in this large cohort establish the high prevalence of plural seizure cycles and help explain the natural variability in seizure timing.
The results have the potential to inform the scheduling of diagnostic studies, the delivery of time-varying therapies, and the
design of clinical trials in epilepsy.

Commentary

The randomness of seizure occurrence is conventionally a hall-

mark characteristic and often ranked one of the most debilitat-

ing features of epilepsy.1 This unpredictability necessitates a

standing, chronic use of anti-seizure medications (ASM). How-

ever, often we come across people with epilepsy (PWE) who

claim that they more often have seizures at a specific time of

the day, or month and even a particular month of the year.

Currently, seizure diaries are the gold standard for monitoring

seizure frequency in clinical practice and clinical trials. Seizure

diaries maintained meticulously over a long time can

potentially reveal seizure patterns, that is, seizure cycles, which

would otherwise go unnoticed. The ease of use and accessibil-

ity to smartphones and internet-based diaries recently allowed a

big data analysis of more than a million self-reported seizures

in over 10,000 individuals. A circadian pattern with higher

seizure frequency between 7 AM and 10 AM and an increased

reportage during the weekdays compared to the weekend was

noted during a median reporting period of approximately

3 months.2 However, self-reporting of seizures in PWE is sub-

optimal. Less than half of PWE provide a precise seizure bur-

den, and they miss a majority of objectively detected seizures.3
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imaging biomarker for secondary generalization of seizures.

However, the study methods and data/result presentation are

complicated and require some attention before we dive deeper

into the discussion of the results.

The authors present data of a large but overall heteroge-

neous group of TLE patients—MRI-negative patients, patients

with hippocampal sclerosis, dysembryoplastic neuroepithelial

tumors, and cavernomas. While not necessarily a major prob-

lem, combining all these groups prior to showing that their

task-related fMRI activations are not different (and that thala-

mic activations are not different) creates a potential confounder

that is not addressed in the study. Further, they utilize their “go-

to” fMRI task—verb fluency—to assess language lateralization

including thalamic involvement in the task. However, since

there is no performance tracking with this covert task, there

is no way of knowing how well the participants performed the

task and how performance on the task influenced the observed

fMRI activations. To offset this, they tested letter fluency as

part of their neuropsychological battery—there were some

group differences including significant differences between left

TLE with and without generalized seizures.

In the primary analysis, they compared fMRI activation

patterns in patients with FBTCS within the last year to patients

with no FBTCS (ie, only with focal seizures [FS]) in the last

year to find that the activation patterns were different between

the groups with higher fMRI activation and more leftward

activation in patients with FS including differences in thalami.

Of interest is the fact that some of the peak activations fell into

the anterior thalamic nuclei that, as we all know, are the target

of deep brain stimulation. In the post hoc analyses, they showed

that FS patients’ thalamic activations were similar to healthy

controls performing the same task but active FBTCS partici-

pants had overall lower thalamic activations when compared to

either of those two groups. Important is that having FBTCS in

the last year was the most significant determinant of thalamic

activation. The study would be very easy to understand and

interpret had they stopped their analyses here. However, the

authors performed several useful but very complicated analyses

that undoubtedly make the interpretation of the results difficult.

These additional, in-part confirmatory in-part follow-up anal-

yses are psychophysiologic interaction, graph theory, and

receiver operating characteristic (RUC) curve analyses. The

understanding and interpretation of these analyses is neither

intuitive nor simple. While disentangling these analyses is not

part of this commentary, for the purpose of better understand-

ing their approach, we can briefly state that psychophysiologic

interaction is a between regions connectivity analysis for fMRI

data that is context-dependent. Graph theory analysis, as

explained previously in great detail,5 allows mathematical

analysis and description of complex systems using terms such

as “hubs,” “centrality,” and “betweenness.” Finally, the term

ROC—probably most recognized by neurologists—is a binary

classifier that allows diagnostic discrimination between groups.

These analyses show that, in patients with active FBTCS, there

is greater context-dependent thalamo-temporal and thalamo-

motor connectivity, higher thalamic degree and betweenness

centrality, and that ROC curves discriminate well between

individuals with and without active FBTCS. These findings

also indicate that having active FBTCS changes the brain more

than having FS alone and that the presence and the degree of

the changes may be used as a biomarker for disease severity.

As complicated as these analyses are, the authors provide

meticulous description of the procedures performed and of the

results in the main body of the manuscript with additional

details included in the supplement. However, more important

are implications of this study. Since fMRI has been a mainstay

of presurgical language and verbal memory evaluation for

years,6 most epilepsy centers obtain fMRI as part of their pre-

surgical patient staging protocol. However, we cannot expect

that psychophysiologic interaction, graph theory, and ROC

curve analyses of the task-related fMRI data will be performed

in the course of such evaluation. Rather, what the study shows

is that the task fMRI data can be used not only to perform a

rather simplistic analysis of language lateralization but also to

identify the negative effects of pathophysiology (here seizures)

on brain networks. Whether independently or in combination

with other measures (eg, functional connectivity or thalamic

stereoelectroencephalography), future research could teach us

if/how such results could be applied to evaluating disease

severity, staging in presurgical evaluation, predicting out-

comes, or deciding the treatment approaches (eg, resection vs

implantable devices).

Perhaps more importantly, these findings teach us some-

thing about the disease itself. They provide information about

the pathophysiology of temporal lobe seizures, about the

negative effects of seizures not only on local but also on

remote executive brain regions (ie, confirm the proposed a

long-time ago “nociferous cortex hypothesis”7), and outline the

negative effects of FBTCS on brain connectivity and pathways

of information transfer. While previously such negative effects

have been documented in resting-state studies, this effort

extends those findings to cognitive tasks and task-based con-

nectivity. This study shows that the task data can be used not

only to localize and lateralize brain functions but also to mea-

sure the effects of the disease on brain networks and its

severity.
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Therefore, accurate analysis of seizure variations over time

requires objectively measured data, ideally collected over the

years to avoid missing risk cycles that span several days to

months. In the absence of seizure forecasting devices, evidence

for the existence of seizure cycles would provide PWE a sense

of seizure predictability, which significantly reduces the epi-

lepsy burden.4

Technological advances in continuous intracranial EEG

(ciEEG) acquisition by the NeuroVista and responsive neuro-

stimulation (RNS) System (NeuroPace Inc) have helped over-

come the above limitations of seizure diaries.5,6 These 2

devices have tremendously advanced our knowledge about the

temporal variations in interictal epileptiform activity (IEA),

their interplay with seizures, and the potential for seizure fore-

casting. Now, Leguia et al have retrospectively analyzed

ciEEG data from 222 PWE with drug-resistant focal epilepsy,

a majority (57.2%) being mesial temporal in origin, who parti-

cipated in the RNS clinical trial with the explicit goal of map-

ping out discrete patterns of seizure cycles.7 They analyzed

seizures at 3 distinct time scales and measured the strength of

seizure clustering (effect size) by phase-locking value (PLV;

ranging from 0 to 1 with PLV >0.4 suggesting strong phase

clustering). The seizure data were accrued over a median of 5.9

years, with some PWE monitored for as long as 9.5 years.

Circannual (around 1 year; also known as “seasonal epilepsy”)

seizure cycles were infrequent (24/194; 12%) and had weak

phase clustering (mean PLV of 0.17). In contrast, the circadian

and multidien (ranging from >2 days to several weeks) seizure

cycles were highly prevalent and had similar, moderate

strength of phase clustering (mean PLV of 0.34). Circadian

seizure cycles were noted in 89% (76/85) PWE, similar to the

prevalence reported in studies from NeuroVista and Seizure-

Tracker, a self-reported seizure diary.8 Multidien seizure cycles

were noted in 60% (112/186) of PWE. The multidien cycles did

not align with fixed period lengths such as the day of the week,

month, or lunar phase, highlighting the unlikely influence of

external or environmental cues and their likely governance by

endogenous factors. It is tempting to consider the role of hor-

monal cycles in modulating the multidien seizure cycles, like in

catamenial epilepsy. However, the prevalence of multidien

seizure cycle is equal in men and women in the current and

another recent study.8 Although hormones such as testosterone,

cortisol, and aldosterone have multidien fluctuations, we are far

from understanding their interactions with the multidien sei-

zure cycles. In contrast, moving from systemic influences on

seizure cycles to inherent brain mechanisms provides tempting

and concrete evidence for drivers of the multidien seizure

cycles in the form of interaction of IEAs and seizures.

Prior studies that relied on short timescale EEG recordings

have found an inconsistent relationship between IEA and sei-

zures. In contrast, a previous analysis of 37 PWE with RNS, a

subset of the current study population from the same research

group, found that IEA show clear circadian and multidien clus-

tering in an individual PWE.9 Extending these results, Leguia

et al found that most multidien chronotype PWE had electro-

graphic and self-reported seizures clustered around the peak

periodicities of the IEA. These multidien seizure cycles could

be divided into 5 distinct patterns occurring at 7, 15, 20, and

30-day periods with one group exhibiting irregular periodicity.

A given PWE could have one or more such multidien periodi-

city, independent of sex, or seizure focus. In contrast, the cir-

cadian cycles of electrographic seizures peaked around 00:00,

03:00, 09:00, 14:00, and 18:00 hours but lacked phase associ-

ation with IEA because the latter consistently peaked during

the night on a circadian timescale. Combined, this suggests that

while the sleep–wake cycle is the primary modulator of hourly

IEA, an interplay between the sleep–wake cycle and endogen-

ous circadian rhythms modulate the circadian seizure chrono-

types. The current study relies on data from PWE undergoing

neurostimulation. But similar seizure risk cycles are noted

using nonstimulation intracranial devices in PWE and animals,

with the latter showing that such seizure cycles are independent

of ASM usage.10

The most significant contribution of the study by Leguia

et al is its validation of the decades and centuries of clinical

observation of the presence of seizure cycles, which turns out is

much more frequent than previously appreciated, especially at

multidien timescale. This information may advance the use of

chronotherapy, that is, adjusting ASMs based on temporal

changes in seizure risk, currently used in nocturnal and cata-

menial epilepsies. The results of the current study behoove us

to consider chronotherapy for well-recognized, individualized

multidien cycles. Additionally, the yield of epilepsy monitor-

ing unit evaluation for diagnostics and presurgical evaluation

can be improved by timing admissions based on seizure risk

cycles.

As most PWE seem to have a relatively strong phase clus-

tering of seizures at circadian and multidien timescales, it is

only logical and expected to question the predictability of an

upcoming seizure. The science of accurate seizure prediction

has advanced by leaps and bounds in the last decade. Research-

ers have already achieved above-chance accuracy in warning of

an imminent seizure in a majority of PWE analyzed using

intracranial devices such as NeuroVista and self-reported sei-

zure diaries.5,11 Incorporating information of individualized

seizure cycles promises to refine prediction accuracy further.

The forecasting of seizures by NeuroVista device improved

significantly after accounting for circadian chronotypes in

PWE.12 Now, the new found knowledge of the existence of

multidien IEA and seizure cycles has helped the research team

led by Vikram Rao and Maxime Baud, the senior authors of the

currently discussed paper, to push the envelope in seizure pre-

diction further. They recently reported that predictive models

that used multidien IEA information could forecast seizure

risk, better than chance, a day in advance in two-thirds of the

validation cohort. In a few PWE, the forecasting could be per-

formed 3 days in advance.13

Continued advancement in the field of seizure forecasting

could herald the era of individualized, dynamic ASM manage-

ment. Although the current study provides a critical blow to the

idea of seizures being a random phenomenon, the ultimate

benefit of these findings to the wide epilepsy community
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7. Sillanpää M, Anttinen A, Rinne JO, et al. Childhood-onset epi-

lepsy five decades later. A prospective population-based cohort

study. Epilepsia. 2015;56(11):1774-1783.

8. Reyes A, Kaestner E, Edmonds EC, et al. Diagnosing cognitive

disorders in older adults with epilepsy. Epilepsia. 2021;62(2):

460-471.

9. Lopinto-Khoury C, Mintzer S. Antiepileptic drugs and markers of

vascular risk. Curr Treat Options Neurol. 2010;12(4):300-308.

10. Mintzer S, Skidmore CT, Abidin CJ, et al. Effects of antiepileptic

drugs on lipids, homocysteine, and C-reactive protein. Ann

Neurol. 2009;65(4):448-456.

11. Mintzer S, Maio V, Foley K. Use of antiepileptic drugs and lipid-

lowering agents in the United States. Epilepsy Behav. 2014;34:

105-108.

12. Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses

neuronal network dysfunction and reverses synaptic and cognitive

deficits in an Alzheimer’s disease model. Proc Natl Acad Sci

U S A. 2012;109(42):E2895-E2903.

164 Epilepsy Currents 21(3)

cannot be realized until the discovery of noninvasive biomar-

kers of the IEA and seizure cycles. Nonetheless, the current

study in the era of breakneck technological advances raises the

hope of wearable technology in the near future that monitors

the dynamic and measurable biomarkers of the seizure cycle to

provide actionable seizure forecasting.
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