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Single-atom nanozymes (SAZs) with reaction specificity and optimized catalytic properties have great application prospects in
tumor therapy. But the complex tumor microenvironment (low content of H,O,) limits its therapeutic effect. In this study, we
developed a bionic mesoporous Fe SAZs/DDP nanosystem (CSD) for enhanced nanocatalytic therapy (NCT)/chemotherapy
by simultaneously encapsulating the chemotherapeutic drugs cisplatin (DDP) and Fe SAZs with high peroxidase (POD)
activity into the cancer cell membrane. CSD could evade immune recognition and actively targets tumor sites, and DDP
upregulates endogenous H,O, levels by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, thereby
enhancing SAZs-mediated hydroxyl radical (-OH) production, which subsequently leads to mitochondrial damage and
intolerance to chemotherapy drug. We used the HGC27/DDP cell line for in vitro and in vivo experiments. The results
showed that CSD achieved good therapeutic benefits, without any side effects such as inflammatory reaction. This system can
induce multiple antitumor effect with H,O, self-supply, mitochondrial damage, and ATP downregulation and eventually lead to

chemosensitization.

1. Introduction

With the development of anticancer drugs, the quality of life
of cancer patients has been gradually improved, but the
emergence of multidrug resistance (MDR) has brought diffi-
culties to chemotherapy, which is also the main reason for
the failure of chemotherapy [1-3]. MDR is characterized
by the cross-resistance of cancer cells to a variety of antican-
cer drugs with different structures and mechanisms of
action. The mechanisms of MDR include overexpression of
drug efflux proteins, changes in apoptosis signaling, and
activation of DNA repair mechanisms [4]. Methods to deal
with MDR include the combination of chemotherapeutic
drugs with efflux protein inhibitors, proapoptotic drugs,

and tyrosine kinase inhibitors. However, simple combina-
tion chemotherapy is limited by the different pharmacoki-
netic properties of the drugs. Application of nanocarriers is
a strategy to solve the above problems, such as liposomes,
polymer micelles, mesoporous silica nanoparticles, gold
nanoparticles, and cell membrane coating technology
[5-9]. Loading drugs into traditional nanocarriers can
achieve the same drug distribution in vivo, and nanoscale
particles can also target tumor tissues through high perme-
ability and retention effects [9, 10].

Nanozymes are a class of artificially simulated enzymes
that have both the unique properties of nanomaterials and
the catalytic efficiency and enzymatic reaction kinetics similar
to natural enzymes [11]. Emerging single-atom nanozymes
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ScHEME 1: Cancer cell membrane biomimetic mesoporous nanozyme system with efficient ROS generation for antitumor chemoresistance.

(SAZs), integrating single-atom technology and inherent
enzyme-like active sites, elevate nanozyme technology to the
atomic level and provide new opportunities to break through
its inherent limitations. In SAZs, atomically dispersed metal
centers maximize atom utilization efficiency and active site
density [12]. SAZs have an excellent catalytic activity 10-100
times higher than that of traditional nanozymes [13, 14].
Metal-based SAZs have great potential to regulate tumor
microenvironment to generate ROS such as -OH, which could
disrupt mitochondrial activity within tumor cells, thereby
downregulating ATP synthesis; thus, redox microenviron-
ment homeostasis was disrupted, and the end result is that
tumor cells were killed through apoptosis or necrosis. In this
process, MDR effect was synchronously tackled [15]. How-
ever, the -OH content catalyzed by SAZs with peroxidase
(POD) activity is highly dependent on the H,O, content
[16]. Intracellular reducing agents such as glutathione (GSH)
balance the H,O, level, which conspicuously suppressed
SAZ-mediated -OH production [17]. Therefore, improving
the intracellular H,O, concentration could effectively improve
the therapeutic effect of SAZs.

In this study, a cancer cell membrane bionic mesoporous
Fe SAZs/cisplatin cascade catalysis nanoplatform (CSD) was
developed to weaken tumor resistance to DDP and remodel
the TME for enhancing nanozyme-based NCT (Scheme 1).
Tumor cell membrane biomimetic nanoparticles have good
tumor homology targeting and biosafety and have been
widely studied in recent years [18, 19]. CSD not only have
homologous targeting at the cellular level, but at the animal
level. As a typical platinum-based drug in clinical chemo-
therapy, cisplatin (DDP) can interact with the nuclear
DNA of cancer cells to form Pt-DNA adducts that could
cut off intracellular gene replication and transcription,
thereby triggering many cellular responses, including cell

cycle arrest, DNA inhibition replication, and transcriptional
processes as well as apoptosis and necrosis [20-22]. It also
activates nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase to generate superoxide anion (O,e)
[23, 24], which is subsequently dismutated by superoxide
dismutase (SOD) to promote the production of H,O,. This
motivates us to combine DDP with SAZs to satisfy both
tumor catalytic therapy treatment and chemotherapy, as
SAZs could destroy cell homeostasis to further weaken
MDR and improve cisplatin resistance. In addition, CSD
could successfully escape the interception of the liver and
kidney, prolonging its circulation time in the body. Eventu-
ally, DDP upregulates H,O, levels in the TME, and Fe SAZs
can generate a large amount of -OH, causing mitochondrial
damage and downregulating ATP content, thereby improv-
ing the efficacy of DDP-mediated chemotherapy. This cas-
cade reaction could achieve coadjutant NCT/chemotherapy
and significantly inhibit tumor growth without physiological
toxicity. This work achieves precise cancer treatment and
enhanced efficacy of DDP through novel biomimetic nano-
technology, which has good clinical translation potential.

2. Results and Discussion

SAZs have uniformly dispersed active sites and well-defined
coordination structures, which can mimic the activities of
various natural enzymes and can be used for biological
detection and cancer treatment [25, 26]. The atomically dis-
persed Fe SAZs were obtained by firstly anchoring of iron
ions on mesoporous carbon sphere precursors, followed by
a pyrolysis process in an argon atmosphere, as shown in
Figure 1(a). Firstly, mesoporous carbon sphere precursors
were prepared by an organic-organic self-assembly approach
that uses Pluronic F127 as soft template, ethanol/water
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FiGUre 1: (a) Schematic illustration of Fe SAZ synthesis. (b) AC HAADF-STEM image of Fe SAZs. (c) HAADF-STEM image and
corresponding EDS mapping of Fe SAZs. (d) XRD pattern of the Fe SAZs. (e) N, absorption and desorption curves. (f) Pore size

distributions for Fe SAZs.

mixture as solvent, and dopamine as carbon and nitrogen
source, respectively. The precursor was then mixed with
Fe’* in water to anchor iron atom. Finally, the Fe SAZs were
obtained by pyrolysis process at 600°C for 4h. The isolated
and high-density bright spots observed in aberration-
corrected high-angle annular dark field scanning transmis-
sion electron microscopy (AC-HAADEFE-STEM) image
(Figure 1(b)) implied the existence of single metal atoms.
The uniform distribution of elements of C, N, and Fe in
samples was observed in the EDS mappings (Figure 1(c)).
Energy dispersive X-ray spectroscopy (EDX) (Figure S1)

result shows that Fe SAZs are composed of two elements,
namely, Fe and C. And XRD energy spectrum also showed
no obvious diffraction peaks of Fe and its oxides,
suggesting that Fe is distributed in atomic form
(Figure 1(d)). The N, adsorption-desorption measurements
demonstrated a mesoporous size distribution of Fe SAZs
(Figures 1(e) and 1(f)). According to the Barrett-Joyner-
Halenda method, the specific surface area of prepared
sample was calculated as 437m?/g and has a fine pore
structure. According to the results of ICP-AES, the iron
content is about 1.1%.
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FIGURE 2: (a) TEM image of Fe SAZs. (b) TEM image of CSD. (c) High magnification TEM image of CSD. (d) Absorption spectra of Fe
SAZs, DDP, and CSD in PBS. (e) Statistical graph of measured diameter size of Fe SAZs and CSD (n = 3). (f) Zeta potential values for
Fe SAZs, CV, and CSD nanovesicles (n = 3). (g) Under different H,O, conditions, the absorption peak at 652nm in the chromogenic
reaction of TMB involving Fe SAZs and CSD (n=3; 1: Fe SAZs, 1 mM H,0,; 2: CSD, 1 mM H,0,; 3: Fe SAZs, 2mM H,0,; 4: CSD,
2mM H,0,; 5: Fe SAZs, 5mM H,0,; and 6: CSD, 5mM H,0,). (h) Under different pH conditions, the absorption peak at 652 nm in
the chromogenic reaction of TMB involving Fe SAZs and CSD (n = 3; 1: Fe SAZs, pH =7; 2: CSD, pH =7; 3: Fe SAZs, pH = 6.5; 4: CSD,
pH =6.5; 5: Fe SAZs, pH =5.5; and 6: CSD, pH =5.5). (i) In vitro DDP release profile in the presence and absence of H,0, (n = 3).

Cell membrane-coated biomimetic nanoparticles are
mainly composed of a layer of cell membrane wrapping
functional nanoparticles, thus forming a nanoparticle core-
cell membrane-shell structure [27, 28]. In this study, we first
prepared cancer cell membrane vesicles (CV) and then
encapsulated Fe SAZs and DDP into CV to obtain a biomi-
metic hybrid material CSD. Transmission electron micros-
copy (TEM) image of as-prepared Fe SAZs is shown in
Figure 2(a). And CSD showed a clear gray membrane coat-
ing on the outside of the Fe SAZs (Figures 2(b) and 2(c)).
The drug loading efficiency of CSD was about 17.2% calcu-
lated by UV-Vis absorption spectroscopy (Figure 2(d)).
The size of Fe SAZs and CSD was quantitatively calculated
for three consecutive days (Figure 2(e)), and the results

showed that the single-atom enzyme we prepared had good
stability. The zeta potential of Fe SAZs was about -12.5mV,
and the zeta potential of CSD modified by cancer cell mem-
brane was close to the level of CV (Figure 2(f)). Cancer cell
membrane marker, Epcam, was detected using western blot-
ting (Figure S2). This also indicates successful encapsulation
of the cell membrane. The tumor microenvironment (TME)
is different from the physiological environment of normal
cells [14]. Due to the insufficient supply of nutrients and
oxygen at the tumor site, glycolysis produces lactic acid,
so the pH of the tumor site is usually lower than that of
the normal adjacent tissues, showing a weak acid trend
[29]. We carried out TMB (3,3',5,5'—tetramethylbenzidine)
chromogenic reaction experiments under different pH
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FIGURE 3: (a) Representative fluorescence images of HGC27/DDP cells after incubation with RSD or CSD for 2 h. Scale bars: 50 um. Cells
were stained with DAPI (blue: cell nucleus; green: Dil). (b) Fluorescence image of hydroxyl radicals (-OH) and JC-1 in cells. Scale bars:
50 um. (c) ATP inhibition ability of different formulations (n=3). (d) Cell viability of HGC27/DDP cells following the indicated
treatments (n=3). (e) Cell viability of HGC27/DDP cells following the CSD treatments under different DDP concentrations (n = 3).

***P < 0.005.

conditions or H,O, concentration to explore the POD
activities of CSD and Fe SAZs. The results showed that
the POD activities of Fe SAZs and CSD enhanced with
the increase of acidity and H,0O, (Figures 2(g) and 2(h)).
DDP can disrupt redox homeostasis, upregulate NADPH
oxidase activity (Figure S3), and stimulate more H,O,
production. And the coincubation of CSD and H,0, will
gradually release DDP, which is because the ROS generated
by CSD could damage the cell membrane (Figure 2(i)).
Usually, the immune system recognizes and eliminates
tumor cells in the TME [30]. However, in order to survive
and reproduce, tumor cells can employ different strategies
to suppress the body’s immune system so that it could not
properly recognize and kill tumor cells, thereby surviving
all stages of the antitumor immune response [31-33]. The
above-mentioned characteristic of tumor cells is called
immune escape. Tumor cell membranes retain cell adhesion
molecules on the surface of the source cell, including cadher-
ins, selectins, integrins, and immunoglobulin superfamily.

These receptors enable tumor cell membrane-coated nano-
particles to escape immune clearance and exhibit cognate
targeting behaviors that greatly enhance their cancer-
specific accumulation and retention [18, 34, 35]. We pre-
pared erythrocyte membrane-coated Fe SAZs and DDP by
a similar method, named RSD. Fe SAZs and DDP were
coated with cancer cell membrane extracted from HGC27
cell line to form CSD (HGC27), which were used to function
as control groups to verify the targeting ability of CSD. CSD,
CSD (HGC 27), and RSD were labeled with Dil and coincu-
bated with tumor cells (Figure 3(a)). The results showed that
CSD is more easily phagocytosed by tumor cells than RSD as
there are no receptor proteins on the erythrocyte membrane
that recognize cancer cells. In addition, the number of CSD
(HGC27) phagocytosed by HGC27/DDP was less than
CSD, which may be due to the membrane protein change.
In vitro cell uptake experiments were carried out with
CSD, CSD (HGC 27), and RSD containing different concen-
trations of DDP, and the results also showed that CSD had
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FIGURE 4: (a) Fluorescence images of HGC27/DDP cells stained with FDA (live cells, green fluorescence) and PI (dead cells, red
fluorescence) after incubation with different formulations. Scale bars: 200 ym. (b) Colony of HGC27/DDP cells treated with different
formulations. (c) Colony of HGC27/DDP cells following the CSD treatments under different DDP concentrations.

the best HGC27/DDP cell-targeting ability (Figure S4). Next,
we detected -OH formation of different groups with the
hydroxyphenyl fluorescein (HPF) fluorescent-staining
experiment; the result showed that CSD-induced green
fluorescence was the brightest (Figure 3(b)). Mitochondria,
as the energy-producing structures of cells, are the main
sites of cellular aerobic respiration. High concentrations of
‘OH trigged by CSD group could damage mitochondria
(Figure 3(c)), then the energy production channels of
mitochondria are inhibited, and the content of ATP in
cells is significantly reduced (Figure 3(d)). While RSD has
a moderate tumor therapeutic effect, CSD with good
homologous targeting ability induced the admirable
killing efficiency. Initially, CSD could be recognized and
preferentially phagocytosed by cancer cells, causing the
release of DDP and Fe SAZs. Fe SAZs could catalyze
the production of toxic -OH from endogenous H,O,,
and the subsequently generated -OH in situ could
disrupt mitochondrial activity, reducing ATP content.
Simultaneously, DDP upregulate NADPH activity, which
would induce tumor cells to produce more H,O,; this
repeated cycle of treatment could continuously replenish
H,0, and maximize the effectiveness of DDP, thereby
profoundly killing tumor cells. Cell viability in the CSD
group was less than 15%, indicating that our complementary
treatment was found to be effective for achieving enhanced
NCT/chemotherapy. Similarly, we adjusted the loading of
DDP in CSD, the concentrations of DDP were 0, 2, 4, and
8ug/mL (Figure 3(e)), respectively, and cell viability
decreased with increasing DDP concentration without
exhibiting drug resistance. Similarly, we detected the
fluorescence images of HGC27/DDP cells stained with FDA
and PI under different formulations; the results showed that
CSD could maximumly eliminate cancer cells (Figure 4(a)).

Colony formation assay also demonstrated consistent results
(Figures 4(b) and 4(c)).

The good in vitro experimental results of CSD motivated
us to continue to explore the tumor accumulation ability and
therapeutic efficiency of CSD in vivo. First, a subcutaneous
tumor model was established in Balb/c nude mice. We
explored the in vivo pharmacokinetics and biodistribution
of CSD and RSD. Due to the coating of the cell membrane,
both CSD and RSD could significantly improve the circula-
tion time in the body and reduce the accelerated blood clear-
ance (ABC), thereby showing good long-term blood
circulation. In vivo biodistribution experiment also showed
that CSD and RSD achieved better immune evasion. Com-
pared to RSD, only a small amount of CSD and CSD
(HGC-27) accumulated in liver. However, RSD will not
actively target tumor sites, and the constructed biomimetic
nanoparticle CSD could better retain key proteins on the
HGC27 cell membrane and escape immune clearance,
and more importantly, CSD could specifically target
drug-resistant tumor cells, resulting in better tumor accu-
mulation (Figures 5(a) and 5(b)). In addition, ordinary cell
membrane-encapsulated CSD (HGC27) have weak tumor
targeting properties, which also reflects the homologous
targeting ability of CSD. These results encouraged us to
continue our in vivo antitumor experiments. The animals
were randomly divided into four groups, each of which
was subjected to one of the following treatments: (1)
PBS, (2) CS, (3) RSD, and (4) CSD. When the tumor vol-
ume in these groups grew up to about 200 mm’, treat-
ments were administered intravenously to each group.
We measured tumor growth curves and mouse body
weight every two days during antitumor period. As shown
in Figure 5(f), the mice body weights did not exhibit
excessive fluctuations during the treatment period and
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labeled RSD and CSD at 12h postinjection by confocal laser scanning microscopy (blue: DAPI; red: Dil). Scale bars: 100 ym. (c) The
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were not affected by the various treatments. This is very
important. Although many nanomaterials have good kill-
ing effect on tumors, they also have corresponding physi-
ological toxicity, which limits their long-term biological
and clinical value [36]. The treatment schedule is shown
in Figure 5(c). As shown in Figure 5(d), the tumor volume
of the control group increased within two weeks, while the
CS group containing only Fe SAZs showed almost no vis-

ible tumor suppressive effect, which is due to insufficient
H,O, content in the tumor physiological environment
[37-39], Fe SAZ-mediated -OH production was little.
Notably, the RSD group achieved a moderate tumor sup-
pression, and tumor volume in the CSD group was signif-
icantly suppressed during the treatment cycle. Cancer cell
membrane-encapsulated CSD achieved immune escape
and homologous targeting capabilities and accumulated
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FIGURE 6: (a) Histopathologic examination of the tissues including the heart, liver, spleen, lung, and kidney from BALB/c nude mice after
different treatments. Scale bars: 100 ym. Blood biochemistry data including liver function markers ((b) ALP and (c) ALT) and AST and
kidney function markers ((d) CRE and (e) BUN) from BALB/c nude mice after different treatments.

specifically at tumor sites, greatly improving their cancer
therapeutic effects. And Fe SAZ-mediated nanozyme-
catalyzed therapy and DDP-mediated chemotherapy com-
plement each other and improve the TME during the
treatment, further increasing the corresponding effect of
Fe SAZs/DDP. After the treatment, the tumors were
weighed, and it was found that the average tumor mass
in the RSD group was about 0.47g, while that in the
CSD group was only about 0.1g, which was consistent
with the tumor volume in mice (Figure 5(e)). Terminal
deoxynucleotidyl transferase-mediated dUTP-biotin nick
end labeling (TUNEL) and Ki-67 staining of tumor tissues
from all groups are shown in Figure 5(g); the CSD group
showed a large amount of tumor cell apoptosis and lower
cell proliferation effect. ROS can destroy the active compo-
nents of tumor cells, causing damage to their cell mem-
branes, nucleic acids, proteins, etc., eventually leading to
cell death [40, 41]. TME stimulated by DDP upregulates
H,0, levels, thereby promoting the ROS content catalyzed
by CSD. CSD exhibited the highest ROS fluorescence pro-
duction, indicating that our prepared material is an ideal
redox destroyer.

After the treatment, slices of the basic organs (heart,
liver, spleen, lung, and kidney) of the control group and
CSD group were taken for pathological toxicity analysis, as
shown in Figure 6(a). There were no obvious physiological
and morphological changes and inflammatory responses in
both groups. And we conducted further blood biochemical
analysis (Figures 6(b)-6(e)). All the indicators were normal.
This result shows that the health of the mice was not affected
after the treatment. The CSD we prepared not only has a
good tumor inhibition rate but also exhibits far-reaching
biosafety. The nanocarrier can maintain good biocompati-
bility of cell membranes, has relatively low cytotoxicity and
immunogenicity, and would not cause significant side effects
and rejection, reducing drug accumulation and toxic side
effects in internal organs.

3. Conclusion

In conclusion, we have designed a cancer cell membrane bio-
mimetic mesoporous single-atom nanozyme drug delivery
system for self-enhancing catalytic therapy of drug-resistant
tumors. CSD with cancer cell membrane modifications are
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more easily recognized and phagocytosed by tumor cells,
subsequently release DDP and SAZs, and produce a
domino-linked cell-killing effect. Firstly, DDP activated
NADPH oxidative stress, thereby promoting more H,O, pro-
duction. Then, Fe SAZs catalyze the H,O, to generate a large
amount of -OH, thereby killing tumor cell mitochondria and
destroying ATP production, which also lead to a decrease in
multidrug resistance of tumor cells and maximize the effect
of DDP chemotherapy. This effective catalytic therapy pro-
vided a new insight for tackling multidrug-resistant tumors.
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