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Abstract

The impact of senescence and pathogen infection on Aedes aegypti life-history traits

remains poorly understood. This laboratory study focused on the impact of Zika virus (ZIKV)

infection and the age of first blood intake on blood meal and clutch sizes, and more impor-

tantly on the egg production ratio per μL of blood. Three groups of ZIKV-infected and unin-

fected Ae. aegypti females that received their first blood meal at 7 (young feeders), 14

(mature feeders) and 21 days old (old feeders) were monitored daily for survival and

received a blood meal free of ZIKV once a week. The number of eggs laid per female were

registered 3–4 days after blood feeding. Infection by ZIKV and age of feeding produced a

strong negative impact on survival and oviposition success (e.g. likelihood of laying at least

one egg per gonotrophic cycle). Interestingly, clutch size presented a dramatic reduction on

uninfected mosquitoes, but raised from 36.5 in clutch1 to 55.1 eggs in clutch 3. Blood meal

size remained stable in uninfected females, while a slight increase was observed for the

infected counterparts. In uninfected Ae. aegypti, egg production was strongly affected by

the age of feeding with younger females laying three times more eggs than when older. On

the other hand, ZIKV-infected mosquitoes had a constant but low egg production. Overall,

mosquito senescence and ZIKV infection had an impact on mosquito egg production by

causing a sharp decrease in the number of eggs along the clutches for uninfected mosqui-

toes and a slight increase for infected mosquitoes. Despite some study limitations, our

results contribute to a better understanding of the effects of mosquito aging and pathogen

infection on the vectorial capacity of Ae. aegypti.

Introduction

In the last decades, mosquito-borne arboviruses have emerged in different regions of the globe

causing severe outbreaks on human population. Since the 1970’s, dengue virus (DENV) trans-

mission has shown a 30-fold increase in its worldwide incidence with estimates of around 400
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million new infections every year [1,2]. During the late 2000’s, chikungunya virus (CHIKV)

became pandemic after reaching the Americas with at least two distinct genotypes: the Asian

genotype probably arrived through the Caribbean while the East-Central-South African

(ECSA) genotype was first detected in central Brazil [3,4]. In 2014, Zika virus (ZIKV) emerged

in Pacific islands and later invaded the Americas, leading to a public health emergency due to

its association with microcephaly in newborns [5,6]. Between December 2016 and April 2017,

an outbreak outside the endemic region of Brazil resulted in the largest epizootic of jungle Yel-

low Fever virus (YFV) with 209 deaths and a case-fatality superior to 30% [7].

With the exception of the sylvatic cycle of YFV, which is maintained by New World pri-

mates and sylvatic mosquitoes, DENV, CHIK and ZIKV have Aedes mosquitoes as their pri-

mary vectors [8,9]. The dominant role of Ae. aegypti as primary vector for these arboviruses

can partially be explained by their close association with human dwellings. Females are more

likely to obtain energy for their metabolism by blood feeding on human hosts rather than on

other vertebrates or from sugar feeding. Around 3–4 days later, females preferentially lay their

eggs on a variety of man-made breeding sites in the surroundings of human properties [10–

12].

The intensity of disease transmission is partially shaped by alterations in vectorial capacity,

which is defined as the total number of potentially infectious bites on humans on a single day

[13,14]. For example, dengue transmission intensity is governed by local variations of Ae.

aegypti vectorial capacity parameters [15]. An accurate estimate of the components of vectorial

capacity in endemic field settings has proven to be extremely difficult due to the complex and

multifactorial effects of clime, landscape, mosquito and host densities, and breeding site avail-

ability [16].

Although of paramount relevance, the effects of pathogen infection on the biology of mos-

quitoes have received relatively low attention so far. Some arboviruses are able to invade sev-

eral tissues including the mosquito’s brain and are likely to modify its physiology and

metabolism. Hence, arboviruses are prone to affect vectorial capacity and the pattern of disease

transmission [17,18]. A reoccurring observation noted in several studies is the effect of senes-

cence and pathogen infection on fecundity (i.e. the number of eggs laid per clutch). Older

Culex quinquefasciatus females laid less eggs over time, especially after 10-days post-eclosion

[19]. A similar pattern was also observed for Cx. tarsalis [20]. Infection with pathogens wors-

ens the fecundity: the number of eggs laid by Ae. aegypti females decreased more than two-fold

within the first five clutches, and dengue-infected individuals presented a sharper reduction

on fecundity over time [21,22]. Culex tarsalis infected with West Nile Virus presented a

harsher reduction in fecundity compared to an uninfected control group [20]. Moreover, a

smaller first clutch was observed in Anopheles stephensi fed with a blood meal infected with

Plasmodium yoelii nigeriensis [23].

The present study investigated i) the effects of the age of first feeding and blood meal size

on the fecundity of Ae. aegypti and ii) whether ZIKV infection produced an additional loss on

these life history traits.

Materials and methods

Mosquitoes

The mosquito population used in this study was the F0 from a field population previously col-

lected in Urca, a high-income area with high infestation at Rio de Janeiro city, Brazil (-22˚

57’10.29" S -43˚09’35.76" W) [24]. A total of 80 ovitraps were distributed on the peridomestic

area (houses and buildings) ~50m apart from each other as a way to guarantee larger genetic

variability of mosquitoes. Eggs from all ovitraps were hatched in plastic basins containing 3L
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of water and yeast extract, after which the larvae were separated in basins with 500 larvae and

3L of water each and fed with Tetramin1 every day until pupation. Following emergence,

adults were kept under insectary conditions (80 ± 5% humidity and 25 ± 3˚C) in cylindrical

cages with no more than 800 mosquitoes per cage and fed ad libitum with 10% sucrose solution

for up to 36h before the first blood meal. Adults were allowed to mate until the females were

offered their first blood meal.

Virus strain

The infections were performed using one of the circulating strains of ZIKV (BRPE243/2015)

obtained from a patient’s blood in Pernambuco during the 2015 Brazilian outbreak and since

then maintained in cell culture [25]. Viral titers were quantified via plaque-forming assay prior

to experimental infection. The virus stock contained 3.55 x 106 PFU/mL and was stored at

-80˚C until use.

Experimental design and oral infection with ZIKV

To better understand the effects of the age of first feeding on fecundity, adult Ae. aegypti
females were separated into three different groups. Each group received the first blood-meal

(infected or uninfected) on either 6–7 (young feeders, YF), 13–14 (mature feeders, MF) or 20–

21 days-old (old feeders, OF). At 36h before the first blood meal, mosquitoes were deprived

from the sucrose solution and were at this moment divided into two sub-groups: one receiving

ZIKV-infected blood in a proportion of 1mL of virus to 2mL of washed human erythrocytes

(infected); the other receiving blood mixed with 1mL of cell culture (uninfected). The oral

infection was conducted through a membrane feeding system (Hemotek, Great Harwood,

UK) adapted with a pig-gut covering. After feeding for 30 minutes, fully engorged females

were placed in individual plastic vials containing a piece of humid cotton covered with filter

paper as oviposition substrate and covered with mosquito net on the top. A cotton soaked in

10% sucrose solution was provided as carbohydrate source. The same procedure was repeated

with MF and OF (Fig 1). Sample size for YF was 300 females (150 ZIKV-infected and 150

uninfected) and MF and OF groups had 100 females each (50 ZIKV-infected and 50 unin-

fected). A sample of 18 infected mosquitoes was kept in small cylindrical cages until 14 and 21

days post-infection (dpi) and then stored at -80˚C to confirm ZIKV infection. When a dead

mosquito was observed, it was removed from the plastic vials; wing lengths were measured as

the distance from the axillary incision to the apical margin, excluding the fringe [26].

Fig 1. Experimental design: Sample size of each group and monitoring scheme.

https://doi.org/10.1371/journal.pone.0200766.g001
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Blood feeding and fecundity

After the first blood meal, both infected and uninfected females received an uninfected blood

meal for 30 minutes once a week. On 4–5 days after every blood meal, the filter papers were

removed from the vials and the number of eggs laid per Ae. aegypti female was recorded. A

new filter paper was added as oviposition substrate for the following clutch. These procedures

were repeated every week until the mosquitoes from all age groups had died.

Blood meal size quantification

After recording the number of eggs per female, the filter papers were added to 1.5mL tubes

containing 1mL of a 1% lithium carbonate solution as a way to dilute the feces. A standard

curve was prepared by diluting known amounts of blood and measuring the corresponding

absorbance (0; 0.8; 1.6; 2.4; and 3.2 μL) producing a R2 = 0.97. The samples were analyzed in a

spectrophotometer with an absorbance at 387 nM [27]. The ratio of eggs produced per blood

meal was calculated on the first three gonotrophic cycles by dividing the number of eggs per

female that laid at least one egg by the hematin estimation.

ZIKV-infection confirmation

A total of 18 individuals (10 collected at 14 dpi and 8 at 21 dpi) were used to confirm ZIKV-

infection. Viral RNA was extracted from the mosquito whole body using the QlAamp Viral

RNA Mini kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. Detec-

tion and quantification of viral RNA was performed using qRT-PCR with SuperScriptTM III

PlatinumTM One-Step qRT-PCR Kit (Thermo Fisher Scientific, Invitrogen) in QuantStudio 6

Flex Real-Time PCR System (Applied Biosystems). Each reaction was made using 600 nM for-

ward primer (5’-CTTGGAGTGCTTGTGATT-3’, genome position 3451–3468), 600 nM

reverse primer (5’-CTCCTCCAGTGTTCATTT-3’, genome position 3637–3620) and 800

nM probe (5’FAM- AGAAGAGAATGACCACAAAGATCA-3’TAMRA, genome position 3494–

3517). The cycling conditions 95˚C for 2 minutes, 40 amplification cycles at 95˚C for 15s, 58˚C

for 5s and 60˚C for 30s. Virus copy number in each sample was calculated by interpolation

from a standard curve made up of a 7-point dilution series of an in vitro transcribed ZIKV

RNA [28].

Statistical analysis

Ae. aegypti longevity presented a non-normal distribution, but the logarithm of longevity satis-

fied the assumption of normality (Shapiro-Wilk W = 0.9915, P = 0.0592). Day zero was set as

the day in which the YF received their first blood meal. Daily survival monitoring for MF and

OF started on the day mosquitoes fed. The effects of treatment (infected or uninfected), age on

the day of infection (YF, MF, OF) and wing length on the log10 of mosquito longevity were

analyzed with ANOVA. A log-rank test compared the survival distribution of Ae. aegypti
females from different treatment and age of first feeding. Survival rate is defined as the number

of individuals still alive as a function of time.

Fecundity and blood meal size were analyzed by considering the first three clutches of eggs,

as only a small number of females (especially OF) blood fed and laid eggs at later clutches pre-

cluding adequate numbers for analysis. Two aspects of fecundity were analyzed: oviposition

success and clutch size. The oviposition success, i.e. the likelihood that a mosquito laid at least

one egg (at a given clutch) was analyzed with a logistic analysis that included treatment, age of

first feeding, wing length and clutch-number (i.e. age). Next, the number of eggs per clutch

was analyzed from those mosquitoes that laid at least one egg, using a repeated measures
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analysis and square-root transformed the number of eggs to satisfy the assumptions of normal-

ity. We included clutch-number as the variable repeatedly measured and estimated the effects

of treatment, age of first feeding, wing length and ageing on clutch size. Blood meal size in the

first three blood meals was analyzed by repeated measure analysis. Blood meal was included as

the variable repeatedly measured and we estimated the effects of treatment, age of first feeding,

wing length and ageing on the amount of blood ingested over time. All analyses were carried

out with the statistical software JMP 9 (http://www.jmp.com/).

Ethical statement

Human blood was obtained from anonymous donors whose blood bags would be discarded

due to small volume. Blood was derived from the blood bank of the Rio de Janeiro State Uni-

versity. We have no information on donors, including sex, age and clinical condition. The use

of human blood was approved by the Fiocruz Ethical Committee (process CAAE

53419815.9.0000.5248).

Results

ZIKV oral infection

A total of 500 Ae. aegypti field-caught females from Urca, Rio de Janeiro, Brazil were divided

into three groups according to the age when they received their first blood meal: YF (first

blood meal at 6–7 days old, N = 300), MF (first blood meal at 13–14 days old, N = 100) and OF

(first blood meal at 20–21 days old, N = 100). In each group, half of the mosquitoes received a

ZIKV-infected first blood meal, while the other half served as uninfected control receiving

only blood and cell culture media free of ZIKV following the same feeding procedure. A sam-

ple of 18 mosquitoes was individually tested at 14 (N = 10) and 21 days (N = 8) post infection

(dpi) for the presence of ZIKV RNA copies with RT-PCR. All mosquitoes showed high num-

bers of ZIKV RNA copies (average 2.6 x 107 PFU), confirming infection. Mosquitoes sampled

at 14 and 21 dpi had a comparable amount of ZIKV (t-test = -1.28; df = 11.003; p = 0.228; Fig

2) supporting the assumption that the mosquitoes used in the fecundity experiments were also

ZIKV positive.

ZIKV effects on survival

Regardless the age group, uninfected mosquitoes survived longer than the ZIKV-infected

counterparts (YF: χ2 = 46.7, df = 1, P < 0.001; MF: χ2 = 6.3, df = 1, P = 0.014; OF: χ2 = 8.5,

df = 1, P = 0.003). Survival curves indicate a sharp decrease in survival immediately after blood

feeding, irrespective of the age group and treatment (Fig 3). As expected, survival was also

affected by the age of first feeding, since mortality was higher when older mosquitoes were

blood fed (Table 1). The ANOVA corroborated the survival data: ZIKV-infected mosquitoes

survived less than the uninfected and the age of infection negatively affected survival (Table 2).

A strong interaction between treatment and age group was observed: the negative effects on

mosquito survival were more evident when older mosquitoes were infected with ZIKV.

Oviposition success

Oviposition success in the non-infected group was not affected by the age at which the mos-

quitoes received their first blood meal. On the other hand in the infected group, the likelihood

of females laying at least one egg per gonotrophic cycle was strongly influenced by the age at

infection, dropping from a success of 76.1% in YF to 59.3% in OF (Table 3). Regardless of the
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age group, ZIKV-infected mosquitoes were significantly less likely to lay eggs than the unin-

fected group.

Fecundity

This analysis consisted on the number of eggs laid by the females who laid at least one egg.

Overall, ZIKV-infected mosquitoes laid less eggs than the uninfected with the exception of

uninfected YF which dropped from 63.3 to 42.3 eggs from clutch 1 to clutch 3, while clutch

sizes of the infected raised from 36.5 eggs in clutch 1 to 55.1 eggs in clutch 3 (Fig 4). The age of

the first feeding apparently had no relevant influence on the number of eggs laid per gono-

trophic cycle. Wing size had no significant effect on clutch sizes (Table 4).

Blood meal size

Blood meal size was measured weekly by quantifying the hematin from mosquito feces on the

filter paper in the vials (Table 5). ZIKV-infected females ingested significantly more blood

than their uninfected counterparts in the first week (F = 9.386, df = 1, P = 0.002) (Fig 5). No

significant effects were noted for age of infection and wing size. The blood meal size of unin-

fected mosquitoes remained stable over the two first gonotrophic cycles, however, the amount

of eggs produced upon a roughly similar amount of ingested blood dropped with age (Fig 4;

Fig 5). The ratio of egg production per blood volume ingested remained constant for ZIKV-

infected mosquitoes, while a reduction of egg production over time was noted in the unin-

fected group. Infected individuals were less effective in producing eggs from a blood meal than

uninfected ones in the first two gonotrophic cycles (Fig 6).

Fig 2. Viral load in the Ae. aegypti mosquitoes infected with ZIKV. A total of 18 mosquitoes was individually tested

for the presence of ZIKV RNA copies with RT-PCR on days 14 (N = 10) and 21 (N = 8) post infection (dpi).

https://doi.org/10.1371/journal.pone.0200766.g002
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Discussion

This study investigated in detail the potential impact of aging, blood meal size and ZIKV infec-

tion on Ae. aegypti life-history traits covering fecundity, namely oviposition success, clutch

size and egg production per unit of blood ingested. Mosquitoes received their first blood meal

Fig 3. Survival curves of three cohorts of Ae. aegypti females infected with ZIKV and uninfected counterparts. Data based on the daily monitoring of survival of 500

Ae. aegypti females: 300 YF, 100 MF and 100 OF. Half of mosquitoes per group was ZIKV-infected. Arrows indicate the day on which each group had it first blood meal.

https://doi.org/10.1371/journal.pone.0200766.g003
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(ZIKV-infected or uninfected) at the age of 7, 14 or 21 days-old. ZIKV infection produced a

negative effect on lifespan and oviposition success, but increased the number of eggs laid per

female at later clutches. Furthermore, egg production presented a sharp decrease over time in

uninfected mosquitoes, while ZIKV-infected individuals presented a low but stable production

of eggs per μL of blood ingested.

Mosquito survival is one of many parameters that can influence vectorial capacity since

mosquitoes must live for at least 10 days after infection to support ZIKV transmission [29].

Our data show that ZIKV consistently caused a negative effect on survival: all three age groups

that had received a first infective blood meal presented lower survival rates than their unin-

fected counterparts. The differences in survival rates between the age groups, infected or not,

showed a strong age-dependent factor on mortality [30] that was further enhanced by the pres-

ence of ZIKV infection. Mortality was strongly associated with the first blood meal with ~30%

of mosquitoes dying in the days following blood ingestion. Interestingly, MF and OF showed

similar survival trends after blood-feeding, but ZIKV-infected individuals started to die faster

one week after infection (Fig 2). We hypothesize that the cost of eliciting an immune response

to ZIKV increases with age, enhancing mortality of OF compared to YF and MF (Table 1).

The likelihood of younger mosquitoes presenting a longer lifespan after ZIKV-infection rein-

forces that arbovirus transmission models must consider a different mortality distribution for

infected individuals [30]. More details regarding the age-dependent mortality, particularly in

the scenario where disease vectors are infected with their natural pathogens, would incorporate

a more comprehensive knowledge on disease transmission [30–33].

ZIKV infection had a significant impact on fecundity. The likelihood of infected individuals

laying at least one egg was statistically lower than for their uninfected counterparts. On the

other hand, YF infected females laid a bigger 3rd clutch compared to those uninfected. As far

as we are aware, there are yet no papers pointing to any modification in mosquito fecundity

due to ZIKV infection. DENV infection is able to reduce fertility and fecundity in vertically

Table 1. Log-rank p-values of the paired comparison of survival curves of infected and uninfected Ae. aegypti females from YF (fed with 6–7 days old), MF (13–14

days old) and OF (20–21 days old) groups.

Uninf_YF Uninf_MF Uninf_OF Inf_YF Inf_MF Inf_OF

Uninf_YF

Uninf_MF 0.012

Uninf_OF <0.001 0.035

Inf_YF <0.001 0.017 0.081

Inf_MF <0.001 0.014 0.062 0.575

Inf_OF <0.001 <0.001 0.003 <0.001 0.002

https://doi.org/10.1371/journal.pone.0200766.t001

Table 2. Analysis of variance (ANOVA) of the logarithm of survival of ZIKV-infected and uninfected Ae. aegypti
mosquitoes.

Source d.f. Sum of squares F P-value
Treatment 1 4.883 36.76 <0.0001

Age group 2 1.931 7.27 0.0008

Wing size 1 1.315 9.90 0.0018

Treatment + age group 2 1.081 4.07 0.0177

Treatment + wing size 1 0.069 0.52 0.4701

Age group + wing size 2 0.972 3.66 0.0265

d.f.: degree of freedom.

https://doi.org/10.1371/journal.pone.0200766.t002
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infected batches [34] as well as the oviposition success and clutch size in orally challenged indi-

viduals [21,22]. The age of the first blood meal negatively affected oviposition success but pre-

sented no significant effect on clutch size. The number of eggs laid often decreases over time

but seems to reduce faster if mosquitoes are infected with pathogens. In Cx. quinquefasciatus,
the number of eggs per clutch reduced significantly as the mosquitoes senesce [19]. A sharper

reduction on clutch sizes was detected when Cx. tarsalis and An. stephensi were infected with

WNV and P. yoelli nigeriensis, [20,23]. Ae. aegypti females infected with a DENV-2 strain had

lowered fecundity with the main impact occurring 2–3 weeks post-infection [22]. These find-

ings of age-dependent effects on life-history was thought to be a consequence of the dynamics

and tropism of DENV, since it is disseminated over the Ae. aegypti body after ~10–14 days

[35]. The biological relevance of the reduction of oviposition success and late increase on

clutch size in ZIKV-infected mosquitoes is still unknown.

So far, the fitness cost due to ZIKV infection on Ae. aegypti mosquitoes remains largely

unknown. A cost of arbovirus infection on vector survival was demonstrated in DENV-2

infected Ae. aegypti, as infected groups showed higher mortality rates than uninfected [21,22].

One important consideration regarding the fitness cost of arbovirus is the natural history of

both virus and vectors. Vector competence to a same virus strain often presents great variation

Table 3. Logistic regression analysis of the clutch, treatment, wing size and cohort on the success of oviposition of

Ae. aegypti females.

Source Nparm d.f. χ2 P-value

Clutch 6 6 8.702 0.1910

Age group 4 4 15.079 0.0045

Wing 2 2 2.752 0.2525

Treatment 2 2 54.868 < .0001

Wing + treatment 2 2 0.683 0.7104

Age group + treatment 4 4 0.382 0.9838

Nparm: Number of parameters associated with the effect; d.f.: degree of freedom; χ2: chi square test value.

https://doi.org/10.1371/journal.pone.0200766.t003

Fig 4. Average number of eggs laid by mosquitoes from the different treatment and age groups. Data based on the weekly

observation of ZIKV-infected and uninfected mosquitoes.

https://doi.org/10.1371/journal.pone.0200766.g004
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among mosquito populations, showing a strong geographical component [36–39]. Here, we

used Ae. aegypti mosquitoes from Rio de Janeiro city and a ZIKV from Pernambuco, a North-

east State distant ~1,800Km. Despite the linear distance between Rio de Janeiro and Pernam-

buco, ZIKV emerged from an unimportant virus with mild symptoms to a public health

emergence in less than a decade, which could mean that the interactions between Ae. aegypti
and ZIKV are too recent for evolution leading to genotype by genotype interactions. There-

fore, the impact observed here on mosquito longevity and fecundity is potentially experienced

by natural Ae. aegypti populations with the arrival of ZIKV.

Ae. aegypti is highly adapted to densely urbanized areas, feeding mostly on human hosts

and laying eggs 3–4 days later on man-made breeding sites [10,12,40]. The number of eggs laid

per gonotrophic cycle is dependent on the amount of blood ingested [19]. Our results show

that uninfected mosquitoes ingested a stable amount of blood on the first three gonotrophic

cycles, but the number of eggs produced decreased from 63,3 to 42,3 from clutch 1 to 3 (Fig 3).

These data suggest that older mosquitoes become less effective in producing eggs. On the

other hand, the blood meal sizes varied in a similar trend over the first three gonotrophic

cycles, but there was an increase in the number of eggs for the ZIKV-infected mosquitoes. As a

consequence, the ratio of eggs produced per μL of blood ingested exhibit a slight increase for

ZIKV-infected and a sharp decrease for uninfected mosquitoes (Fig 5). Although there are still

no other studies with observations on feeding behavior for ZIKV-infected individuals, studies

on other vector-parasite systems have reported changes on feeding behavior. For example, Ae.

aegypti and An. gambiae showed an increased bite rate and probing time when infected with P.

gallinaceum and P. falciparum, respectively [41,42]. Similar results were seen for Ae. aegypti
mosquitoes infected with DENV with increased probing time, larger blood intake [17,22] as

well as a higher avidity to start a second blood meal [43]. Studies with Cx. tarsalis infected with

WNV also showed that the infected group would ingest a larger amount of blood than the

uninfected group [20].

Although the ZIKV-infected group showed a constant egg production during their lifespan,

it was on a lower ratio than the uninfected group (most pronounced in clutches 1 and 2). Not

much is known about the effects of immune response in ZIKV-infected Ae. aegypti models.

Our data suggest discrepant effects of infection since it negatively affected mosquito survival

Table 4. Repeated measures analysis (with clutch size as the repeatedly measured variable) of the square-root of

the number of eggs laid by Ae. aegypti females.

Source Num df Den df F P-value
Clutch + treatment 2 53 3.374 0.041

Clutch + age group 4 106 0.634 0.638

Clutch + wing 2 53 0.287 0.751

Num df: Numerator degree of freedom; Den df: Denominator degree of freedom.

https://doi.org/10.1371/journal.pone.0200766.t004

Table 5. Repeated measures analysis (with hematin as the repeatedly measured variable) of the square-root of the

blood meal size taken by Ae. aegypti females.

Source Num df Den df F P-value
Clutch + Treatment 2 65 4.016 0.022

Clutch + Age group 4 130 1.203 0.312

Clutch + Wing 2 65 1.421 0.248

Num df: Numerator degree of freedom; Den df: Denominator degree of freedom.

https://doi.org/10.1371/journal.pone.0200766.t005
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rates and oviposition success but surprisingly increased clutch sizes over time. Perhaps, the

lower egg production per μL of blood ingested in ZIKV-infected versus uninfected mosquitoes

is a manifestation of the fitness cost associated to infection. The presence of ZIKV may likely

stimulate mosquitoes to mount an immune response to clear infection, although in-depth

knowledge of cellular and humoral immunity responses of Ae. aegypti to arboviruses is still

growing. The presence of midgut infection barriers seems to be the most efficient way to avoid

virus dissemination [44]. For instance, RNA interference may modulate infection by produc-

ing molecules that inhibit virus replication [45]. Eliciting an immune response may have

caused a trade-off with clutch size resulting in a lower egg production per μL of blood ingested

[46]. Although our results are relevant, our study design did not address such questions.

Although our results point to a negative impact of Zika virus, the biological relevance of

these results may be limited for two reasons. Firstly, Ae. aegypti PDS (Probability of Daily Sur-

vival) ranges around 0.83–0.87 in low income crowded areas and 0.60–0.70 in higher income

localities [24,47]. Considering a PDS equals 0.75, only 5.6% of mosquito females would survive

longer than the extrinsic incubation period of 10 days to ZIKV [29,48]. As such, only a few

mosquitoes would survive long enough to overcome the negative effects of ageing and infec-

tion on a field scenario, which is much shorter than observed in lab settings [49]. Secondly,

very few mosquitoes in the field are found naturally infected with ZIKV [9], making it unlikely

that the fitness cost caused by the virus would have any effect on the natural population.

Our exploration of the effects of ageing and ZIKV infection on the fitness of Ae. aegypti
revealed a strong age-dependent effect in the survival of both groups, in the clutch size of the

uninfected mosquitoes and in the oviposition success of the infected group. Additionally,

ZIKV had a negative impact on oviposition success and clutch size in the first two gonotrophic

cycles. We also showed that ZIKV infected mosquitoes seem to ingest a larger amount of

blood during their first meal, which may increase the potential to transmit the virus [50]. The

fitness cost associated with ZIKV infection is likely to have an important impact on ZIKV

transmission. Further investigations are still required to estimate the impact of arboviruses

on mosquito biology in more realistic settings, for example by varying the temperature in

which mosquitoes are maintained, varying the virus titer of the initial inoculum and using

Fig 5. Average blood meal size of the different treatment and age groups. Data based on the weekly quantification of blood meal size of

ZIKV-infected and uninfected Ae. aegypti females.

https://doi.org/10.1371/journal.pone.0200766.g005
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mosquitoes and virus from the same geographical area. Anyhow, this study is the first to dem-

onstrate the negative impact of ZIKV infection on Ae. aegypti biology.
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