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Abstract

Background: In recent years, there has been significant developments in surgical robots.

Image-based sensing of surgical instruments, without the use of electric sensors, are pre-

ferred for easily washable robots.

Methods: We propose a method to estimate the three-dimensional posture of the tip

of the forceps tip by using an endoscopic image. A convolutional neural network

(CNN) receives the image of the tracked markers attached to the forceps as an input

and outputs the posture of the forceps.

Results: The posture estimation results showed that the posture estimated from the

image followed the electrical sensor. The estimated results of the external force cal-

culated based on the posture also followed the measured values.

Conclusion: The method which estimates the forceps posture from the image using

CNN is effective. The mean absolute error of the estimated external force is smaller

than the human detection limit.
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1 | INTRODUCTION

Surgical robots have been developed to support minimally invasive

surgeries. A minimally invasive surgery is an operation in which instru-

ments such as endoscopes or forceps are inserted into the abdominal

cavity through small ports. It offers patients the benefits of smaller

scars, faster recovery, and fewer complications, as compared to con-

ventional open surgeries. On the contrary, such operations are compli-

cated due to the narrow field of view of the endoscope, pivot motion

of the forceps centered on the insertion point, and the lack of tactile

feedback.1 The surgical robot da Vinci solved these problems through

a master-slave type teleoperation. The slave manipulator in the patient

body follows the movement of the master device, which is operated

by the doctor. Da Vinci is also capable of reducing hand tremors and

adjusting motion scaling, which enables it to perform complex opera-

tions. Currently, da Vinci is being used for operations on the abdomen,

pelvis, and chest as a surgery support robot to alleviate the burden on

the operator.2 Da Vinci and a majority of other robots are equipped

with sensors that facilitate precise positioning. However, the presence

of many electrical elements around the surgical robot can damage the

sensor system. An electric knife in contact with robotic instruments

may induce a large current to flow near them, thereby damaging the

sensors or causing excess sensor noise.3 An effective approach to

address this issue is to provide alternatives to the sensors, such as

estimating the posture of forceps via endoscopic images. Posture esti-

mation via images also facilitates easier washing.

In the field of computer-aided intervention, there are many studies

that segment the forceps region from images. Attaching a marker to the
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forceps and extracting the forceps region is the easiest method for such

estimations.4,5 However, when using a single marker, it is difficult to

estimate the posture of a forceps with joints. Segmentation methods

employing deep learning can extract the entire region of forceps with-

out markers in the endoscopic image.6,7 However, when the forceps tip

is hidden behind an organ, a different tracking image is obtained from

the same posture.

Allan et al estimated the posture of a surgical instrument from a cam-

era image, using a 3D model.8 Random forest can be used to stochasti-

cally classify the pixels of the endoscope image into surgical instruments

and organs. The 3D posture was restored through the segmentation

image and low-level optical flow. However, this method required

1-20 seconds for classification and posture estimation. It was also con-

firmed that the error from the previous frame gradually increased.

Tanaka et al estimated the posture of a surgical instrument in real

time.9 To estimate the posture of a surgical instrument, they used a

database of projected contour images of a 3D model created in

advance. Real-time estimation was realized by using a high-

performance computer. However, when estimating the posture of the

instrument with a joint, many images for needed for the database,

which can impair real-time estimations.

Du et al constructed a convolutional neural network (CNN) to esti-

mate the 2D posture of a surgical instrument from images subjected to

semantic segments.10 However, this CNN only estimated 2D postures.

The 3D posture estimation via CNNs has not been verified.

In this study, we propose a system to estimate the 3D posture of a

surgical instrument by using a CNN, without the use of a position sen-

sor. The system performs instrument tracking by using markers prior to

inputting the image in the CNN such that any background data

unrelated to the instrument posture is removed. This combination of

the CNN and marker tracking enables posture estimation in unknown

environments; the data set acquired in a dry environment can be used

in vivo. The CNN outputs the estimated instrument posture, which is

obtained from the position sensor in the learning phase. Moreover, it is

possible to estimate the external force acting on the tip of the instru-

ment by using the estimated instrument posture and a backdrivable

pneumatic actuation system. The proposed method does not track the

image temporally, and the error from the previous frame does not

increase. Furthermore, it can estimate forceps posture from a large

number of image databases at a constant rate because the computa-

tional speed of a CNN depends only on the structure of the CNN.

This article is organized as follows. The robot system used in this

paper is described in Section 2, and the method of posture estimation

via CNN is described in Section 3. The experimental results are pres-

ented in Section 4, and the results are discussed in Section 5. Finally,

the conclusions of this study are presented in Section 6.

2 | SURGICAL ROBOT SYSTEM

This section describes the system components used in this study. The

proposed system consists of a master device, a slave manipulator, and

an endoscope.

2.1 | Slave manipulator

The slave manipulator used in this study is shown in Figure 1. The

slave manipulator consists of a holder robot with four degrees of

freedom (DOFs) and a forceps with three DOFs.11,12 The holder

robot has three rotational joints q1 (yaw), q2 (pitch), and q4 (roll), and

a linear motion q3. The direction of the motion of each axis is

defined to be positive when it moves along the arrow shown in

Figure 1A. The holder robot is designed to pivot around the point O

shown in Figure 1A. The forceps has a 2-DOF tip bending (ϕ1 and

ϕ2) and a grasping mechanism. The driving mechanism of the forceps

is illustrated in Figure 2. The push-pull operation of the nickel tita-

nium wires attached to the pneumatic cylinders causes the the flexi-

ble joint of the forceps tip to bend. The four pneumatic cylinders are

arranged at equal intervals.

The control block diagram of the forceps is presented in Figure 3.

The variable qref is the target value of the forceps posture, and X(q) is

the displacement of the four pneumatic cylinders. We adopted cas-

cade control for the posture control of the forceps, with the inner

Proportional-Integral (PI) control loop of the pneumatic pressure

included in the pneumatic force control. Block and the outer

Proportional-Differential (PD) control loop of the position. To follow

the rapid changes in the target value of the driving force, a

(A) Slave manipulator (B) Master device F IGURE 1 Surgical robot system
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feedforward compensation is applied by using the target posture and

its derivative value. The driving force is obtained by multiplying the

pressure in the cylinder, measured by the pressure sensor, and the

cross-sectional area of the piston.

The pneumatic cylinders and wire transmission mechanisms in

the forceps are backdrivable. The external force acting on the forceps

tip is estimated using the following equation.

f̂ext = JTp

� �+
�JTq F− Ẑ q, _qð Þ

n o
, ð1Þ

where f̂ext is an external force. Jp is a 3-DOF Jacobian matrix, and

JTp

� �+
is a generalized inverse of JTp . Jq is a Jacobian matrix from angu-

lar velocity _q to cylinder velocity _X. JTp

� �+
and Jq are both functions of

the posture q. Therefore, Equation (1) shows that the external force is

estimated using the forceps posture, its differential value, and the

driving force. Haraguchi et al verified the accuracy of the external

force estimation.12 In this study, we use the same force estimation

algorithm as described in.12

2.2 | Master device

Sensable's PHANTOM Desktop, shown in Figure 1B, is used as the mas-

ter device. It measures the position and orientation of the operator's hand

in six DOFs and displays the 3-DOF translational force to the hand. An

additional DOF for controlling the opening and closing of the gripper is

attached to the tip of the master device. A bilateral control system is con-

structed wherein the reference position and posture of the slave arm is

the measurement value for the master device, and the force output of

the master device is the estimated external force of the slave forceps.

2.3 | Endoscope

The endoscope used in this study (ENDOEYE FLEX 3D, Olympus)

is a stereo camera. However, we only used one because similar

images can be obtained from both cameras. In this study, we

obtained 680 × 540 pixels images before applying the proposed

image processing algorithm. The operator observes the 3D image

on the display when teleoperating the slave robot from the

master.

3 | THE PROPOSED METHOD

The proposed method combines the traditional marker tracking pro-

graming and a CNN.

3.1 | Forceps tracking

During posture estimation, the background area, excluding the for-

ceps, is redundant. Therefore, removing this background information

may increase the robustness of the machine learning in an unknown

environment.

In this study, marker-based forceps tracking is performed to

remove the background information, followed by an CNN-based

posture estimation. The tracking image helps to accelerate training

convergence13 and enables posture estimation, without the influ-

ence of the background areas. Another advantage of the marker-

based method is that it does not require that the endoscope is able

observe the entire instrument. Posture estimation is possible when

F IGURE 2 Driving principle of forceps

F IGURE 3 Forceps control block diagram
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the markers are on the shaft and the wrist of the forceps, even if the

gripper is hidden behind an organ. Two markers of lengths 10 and

22 mm are attached to the tip and root of the wrist joint of the ϕ8-mm

forceps, respectively. A blue marker was selected because the red com-

ponent of the organ is dominant in vivo. The tracking image of the

marker was obtained using the following algorithm:

1. Obtain an image of 680 × 540 pixels for each of the three channels

of red, green, and blue from the endoscope.

2. Flatten the brightness histogram.

3. Binarize to extract a predetermined color range. The color range to

be extracted is from [80, 80, 210] to [210, 240, 255], where the

vector indicates the [red, green, blue] values which range from 0 to

255. The color range was determined experimentally.

4. The colors of unmarked metal parts partially fall into the pre-

determined color range, which results in noise on the binarized

image. As the noise is less than the marked areas, we select the two

largest areas as the markers and remove the remaining small areas.

5. When the distance between the endoscope and the forceps

changes, different tracking images are generated because the size

of the projected marker on the image is different, even if the for-

ceps posture remains the same. The image is trimmed to the mini-

mum bounding rectangle of the set of markers, resulting in a

tracking image that is normalized in size.

6. The image input of the CNN needs should have the same size;

however, due to the uneven size of the trimmed images, they are

resized to 500 × 500 pixels.

7. The roughness of the border of the marker differs according to the

distance. Apply an average value filter of 20 × 20 pixels to the

entire image.

The image output of each process is shown in Figure 4. On per-

forming the aforementioned processing, the influence of the variation

in the distance between the endoscope and the forceps can be

reduced, and a similar image can be obtained from the forceps pos-

ture. In other words, when creating a training data set, it is unneces-

sary to create a separate data set based on the distance between the

endoscope and the forceps. Therefore, the total number of training

data sets is reduced.

3.2 | CNN construction

We used CNNs to estimate the forceps posture from the tracking

image of the marker. The CNN used in this study is shown in Figure 5.

Each CNN is composed of N convolutional layers and one fully con-

nected layer. The tracking image acts as the input to the CNN, and

the CNN outputs forceps posture variables ϕ1 or ϕ2. We use two

independent CNNs to estimate ϕ1 and ϕ2. The kernel and output

shape of each layer are listed in Table 1.

The kernel size of the convolutional layer was empirically deter-

mined to improve estimation accuracy. To obtain the posture as an out-

put, the convolutional layer is activated using the Relu function, and the

fully connected layer is activated using the linear function.14

(A) (B) (C) (D) (E) (F) (G)

F IGURE 4 Image processing before input to the convolutional neural network

F IGURE 5 A convolutional neural network that estimates the forceps posture variables ϕ1 or ϕ2
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4 | EXPERIMENT AND RESULTS

This section verifies the estimation accuracy of the forceps posture in

the master-slave teleoperation. We also verify the estimation accu-

racy of the external force acting on the forceps tip, based on the esti-

mated forceps posture.

4.1 | Training data

Endoscopic surgery employing a surgical robot is controlled using a

master-slave method. However, creating the training data set from a

real operation employing a master-slave method results in a nonuniform

distribution of the forceps posture in the data set. Therefore, we

assigned the slave robot discrete target angles and created a uniformly

distributed training data set. The layout of the devices when creating

the training data set is shown in Figure 6. The coordinate system of the

forceps is represented by solid lines, and the initial coordinate system of

the forceps is represented by a dashed line. In this study, we defined

that z, ϕ1, and ϕ2 axes of the initial coordinate system are parallel to the

xc, yc, and zc axes of the endoscope coordinate, respectively.

Additionally, we used one DOF of the bending motion ϕ1 and roll

q4 of the holder robot to create training data equivalent to the 2-DOF

bending motion of ϕ1 and ϕ2. The motion range of the slave manipula-

tor is defined in Table 2. The joint angles in Table 2 are expressed as

the displacement from the initial coordinate system. A step input of 5�

is given for each degree of freedom, and the reference angles and the

endoscope image at the steady state is recorded. Thus, we obtained

112 554 images. However, when the direction of the forceps tip bend-

ing is parallel to zc of the endoscope coordinate system, the marker at

the forceps tip could not be detected as it is hidden behind the shaft or

the flexible joint. Therefore, we excluded the postures wherein the area

of the tip marker was less than 10% of that of the root marker. Finally,

107 166 data remained as the training data set.

4.2 | Selecting the CNN structure

The structure of a CNN suitable for learning from tracking images is

unclear. Therefore, we select the number of the convolutional layers

suitable for an experimental posture estimation.

The created training data set consists of postures within the move-

ment range defined in Table 2. In this study, we evaluate the mean

absolute error (MAE) of the entire training data as the evaluation func-

tion for selecting the CNN. We prepared eight CNNs with 0-7 con-

volutional layers. The CNN with N convolution layers is constructed

with N sets of convolution and maximum pooling layers, followed by a

fully connected layer, using a flatten function. For example, the CNN

with three convolutional layers has 8 × 59 × 59 nodes before flattening,

and regresses to a forceps posture from a fully connected layer of

27 848. The number of batches is 400, number of epochs is 30, and the

loss function is MAE. The optimization algorithm was Adam, and the

weights and the biases are initialized using the initial value of He.15,16

Table 3 shows the minimum MAE for each of the trained CNNs. The

minimum MAE of ϕ1 is achieved by the CNN with three convolutional

TABLE 1 Structure of convolutional neural network

Layer name Kernel size Output (C × H × W)

Convolutional 1 5 × 5 4 × 496 × 496

Maxpooling 1 2 × 2 4 × 248 × 248

Convolutional 2 5 × 5 4 × 244 × 244

Maxpooling 2 2 × 2 4 × 122 × 122

Convolutional 3 5 × 5 8 × 118 × 118

Maxpooling 3 2 × 2 8 × 59 × 59

Convolutional 4 4 × 4 8 × 56 × 56

Maxpooling 4 2 × 2 8 × 28 × 28

Convolutional 5 4 × 4 16 × 25 × 25

Maxpooling 5 2 × 2 16 × 12 × 12

Convolutional 6 3 × 3 16 × 10 × 10

Maxpooling 6 2 × 2 16 × 5 × 5

Convolutional 7 2 × 2 32 × 4 × 4

Maxpooling 7 2 × 2 32 × 2 × 2

Fully Connected - 1

F IGURE 6 Device placement when creating
data sets
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layers, and the minimum MAE of ϕ2 is achieved by the CNN with two

layers. These CNNs are used in the subsequent experiments.

4.3 | Validation data

The training data were created without moving the linear joint q3 of the

holder robot or the posture ϕ2 of the forceps. However, when operat-

ing in the master-slave mode, these two values change continuously.

Therefore, to verify the accuracy of the estimated forceps posture

when realistic trajectory data with continuous values are provided, vali-

dation data are created using the master-slave method. In this study,

two types of validation data were created, as shown below:

Case A. Operates freely without a load.

Case B. A palpation motion which an external force acts on the tip of

the forceps.

In case A, the operator randomly created trajectory data, and in

case B, the operator created trajectory data so as to press the forceps

to the object simulating the organ, as shown in Figure 7. Each valida-

tion data set has a total of 1000 images acquired at 25 Hz, using the

endoscope. In the case B, the driving force of the pneumatic cylinder

is simultaneously recorded to estimate the external force.

4.4 | Posture estimation

To verify the accuracy of the forceps posture estimation, we compared

the estimated posture with the posture measured using the sensor. The

estimated posture was calculated from the validation data set using the

CNN, based on the MAE of the entire training data set. For the compar-

ison, we used sensor data instead of the ground truth (eg, motion

capture data) because the purpose of this study is the development of a

system that can estimate the forceps posture without the use of a posi-

tion sensor. We noted that previous reports suggested that the position

sensors of the forceps have sufficient accuracy for practical purposes.

For example, the forceps used in this study are able to perform the task

of block transfer without problems.17

The results of posture estimation and estimation error in case A

are shown in Figure 8. Figure 8A,B shows the results of posture esti-

mation of ϕ1 and ϕ2. In Figure 8A,B, the red lines are the forceps

postures measured from the position sensor, and the blue lines are

the forceps postures estimated from the image. Figure 8C,D shows

the absolute error of Figure 8A,B respectively. The MAE of ϕ1 and

ϕ2 in case B are 6.7� and 6.5�, and the maximum error of ϕ1 and ϕ2

are 25.6� and 25.6�. The results of posture estimation and estima-

tion error in case B are shown in Figure 9. Figure 9A,B shows the

results of posture estimation of ϕ1 and ϕ2. Figure 9C,D shows the

absolute error of Figure 9A,B, respectively. The MAE of ϕ1 and ϕ2 in

case B are 9.9� and 14.1�, and the maximum error of ϕ1 and ϕ2 are

23.9� and 14.2�.

4.5 | External force estimation

To verify the accuracy of the external force estimation, we compared

the estimated force with the force calculated by the position sensor

and the driving force of the pneumatic cylinder with Equation (1). For

the comparison, we used the calculated force instead of the ground

truth (eg, three axis force sensor) because the force estimation accu-

racy had been verified by previous research.12

We verified the accuracy of the external force estimation using

the case B. The results of the force estimation and the estimation

error for the case B are shown in Figure 10. Figure 10A shows the

results of force estimation. In Figure 10A, the red line is the external

force measured based on the position sensor, and the blue line is

the external force estimated based on the image. Figure 10B shows

the absolute error of Figure 10A. The MAE of the x, y, and z external

TABLE 2 Range of postures that surgical robot could take
(degrees)

Posture q1 q2 q4 ϕ1

Range 0 to 60 −50 to −10 0 to 180 −60 to 60

TABLE 3 Estimation accuracy related by the number of
convolutional layers (degrees)

Number of
convolutional layer

Estimation
accuracy of ϕ1

Estimation
accuracy of ϕ2

0 2.02 3.68

1 1.80 3.16

2 1.70 2.81

3 1.45 4.02

4 1.56 3.15

5 1.71 3.49

6 1.75 4.05

7 1.70 2.85

F IGURE 7 Image in which the forceps and simulated organs are
in contact in case B
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(A) Result of φ1 posture estimation in Case A (B) Result of φ2 posture estimation in Case A

(C) Estimation error of φ1 in Case A (D) Estimation error of φ2 in Case A

F IGURE 8 Result of posture estimation and
estimation error in case A

(A) Result of φ1 posture estimation in Case B (B) Result of φ2 posture estimation in Case B

(C) Estimation error of φ1 in Case B (D) Estimation error of φ2 in Case B

F IGURE 9 Result of posture estimation and
estimation error in case B

(A) Result of norm of external force estimation (B) Estimation error of external force

F IGURE 10 Result of external force
estimation and estimation error in case B
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force estimations are 0.29, 0.14, and 0.32 N, respectively. The MAE

of the norm of the external force estimation is 0.30 N, and maximum

error is 0.82 N.

5 | DISCUSSION

This section considers the accuracy of posture estimation and external

force estimation.

5.1 | Posture estimation

In posture estimation in case A, Figure 8A,B show that the pro-

posed method could estimate the forceps posture. However, the

maximum error of ϕ1 and ϕ2 is 25.6�. The estimation error gives a

deviation from the actual posture during position control. In partic-

ular, the deviation of 25.6�, which is the maximum error, is a gap

that can be recognized by the operator through the video. There-

fore, the estimation accuracy needs to be improved for use as a

position sensor. In order to improve posture estimation accuracy,

it is considered effective to use a high-resolution endoscope. We

investigated the relationship between image resolution and pos-

ture estimation error to examine whether it is effective to use a

high-resolution endoscope. We resized the images from case A

video into 340 × 270 and 170 × 135 and acquired the tracking

image with the same algorithm as the original image size. MAEs of

posture estimation for each image size are shown in Table 4.

Table 4 shows that the higher-resolution images results in the

lower MAEs of posture estimation. This result suggests that the

accuracy of posture estimation is improved when 4 or 8 K endo-

scopes are used.

We plotted an error map to analyze the relationship between

posture distribution and posture estimation errors. To plot the error

map, we defined a coordinate system derived from the equation

below, as follows:

ϕ̂1

ϕ̂2

" #
=

cos q4 −sin q4
sin q4 cos q4

� �
ϕ1

ϕ2

� �
, ð2Þ

where ϕ̂1 and ϕ̂2 are the postures measured on the forceps coordinate

system when the roll of the holder robot q4 = 0. We consider the rela-

tionship between the distribution of ϕ̂1 , ϕ̂2 , and the estimation error

of ϕ̂1 , ϕ̂2 . The posture estimation error map of the training data and

case A are shown in Figure 11. Figure 11 maps the root mean square

error (RMSE) of ϕ̂1 and ϕ̂2. Figure 11A shows the estimation accuracy

of training data to be nonuniform, and Figure 11B shows the estima-

tion accuracy of case A is nonuniform. In both figures, the RMSE

tends to be large in the region where the angle of ϕ̂1 or ϕ̂1 is large.

Therefore, uniform training is also important for improving posture

estimation accuracy.

Figure 9A,B show that the posture estimation of case B con-

tained a large error compared to case A. Table 5 compares the MAE

of posture estimation under the condition of contact and non-

contact. The possible cause of the error is the lack of rigidity of the

flexible joint and elongation of the wires. This transmission loss may

result in the error of the measurement value rather than that of

image-based estimation value. The wire elongation and the joint

deformation secures large when the forceps are in contact with

organs. Table 5 shows that the posture estimation error calculated

in the results at contact is larger than at noncontact. This result indi-

cates that the contact between the forceps, and the simulated organ

greatly affects the posture estimation error calculated in the results

in case B.

TABLE 4 Relationship between input image size and posture
estimation error (degrees)

Image size (pixel) 170 × 135 340 × 270 680 × 540

ϕ1 9.0 7.2 6.7

ϕ2 9.4 7.6 6.5

(A) Error map of training data (B) Error map of Case A
F IGURE 11 Posture estimation error map
of training data and case A

TABLE 5 Posture estimation error in case B when in contact and
noncontact (degrees)

Noncontact contact

ϕ1 5.8 11.4

ϕ2 3.8 4.3
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5.2 | External force estimation

During the external force estimation of case B, as shown in Figure 10,

the proposed method could was capable of estimating the external

force. It has been previously reported that a person could detect an

external force exceeding 0.3 N, in a master-slave operation.18 The

MAE of the external force in our experiment was 0.3 N; therefore, the

image-based force estimation is sufficient for a master-slave surgical

robot. However, the maximum error in the external force is 0.82 N.

To reduce the uncomfortable feeling given to the operator due to the

error in the estimated external force estimation, it is necessary to

improve the estimation accuracy. The posture estimation error is a

component of the error in the estimated force because the driving

force data used to estimate external force is the same. Therefore, an

improvement in posture estimation leads to acceptable force

estimations.

6 | CONCLUSIONS

In this study, we propose a system that estimates the 3D posture of

the forceps of a surgical robot by using endoscopic images, without

the use of position sensors. This system employs CNNs that receive

tracking images of the markers attached to the forceps as an input

and output the posture of the forceps. The accuracy of posture esti-

mation was verified using the trajectory generated by the master-

slave operation. The experimental results show that the posture of

the forceps estimated from the endoscopic image was accurate.

Moreover, the external force acting on the tip of the forceps was esti-

mated by combining the posture of the forceps estimated from the

image and the driving force of the pneumatic cylinders. The validation

results show that the MAE of the external force estimated using

image processing is less than the required accuracy for force sensing

in a master-slave surgical robot. The experimental results indicate the

effectivity of posture and external force estimation via CNNs.
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