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Abstract Microsoft Kinect is a three-dimensional (3D)

sensor originally designed for gaming that has received

growing interest as a cost-effective and safe device for

healthcare imaging. Recent applications of Kinect in health

monitoring, screening, rehabilitation, assistance systems,

and intervention support are reviewed here. The suitability

of available technologies for healthcare imaging applica-

tions is assessed. The performance of Kinect I, based on

structured light technology, is compared with that of the

more recent Kinect II, which uses time-of-flight measure-

ment, under conditions relevant to healthcare applications.

The accuracy, precision, and resolution of 3D images

generated with Kinect I and Kinect II are evaluated using

flat cardboard models representing different skin colors

(pale, medium, and dark) at distances ranging from 0.5 to

1.2 m and measurement angles of up to 75�. Both sensors

demonstrated high accuracy (majority of measurements

\2 mm) and precision (mean point to plane error\2 mm)

at an average resolution of at least 390 points per cm2.

Kinect I is capable of imaging at shorter measurement

distances, but Kinect II enables structures angled at over

60� to be evaluated. Kinect II showed significantly higher

precision and Kinect I showed significantly higher resolu-

tion (both p\ 0.001). The choice of object color can

influence measurement range and precision. Although

Kinect is not a medical imaging device, both sensor gen-

erations show performance adequate for a range of

healthcare imaging applications. Kinect I is more appro-

priate for short-range imaging and Kinect II is more

appropriate for imaging highly curved surfaces such as the

face or breast.

Keywords Kinect � Three-dimensional (3D) imaging �
Depth sensing � Healthcare � Sensor performance

1 Introduction

Creative approaches to healthcare are needed to cope with

ageing populations and increasing economic pressure.

Commercially available gaming systems, which provide

advanced technology made available for the mass market at

low cost, have thus received growing interest. Systems

such as Microsoft Kinect are significantly less expensive

than most medical sensing devices, but have the potential

to provide accuracy sufficient for clinical practice.

Kinect is an input device designed for computer gaming

with the XBox� video game console. The sensor enables

the user to interact in virtual reality by means of body

movement, hand gestures, and spoken commands [1]. It

uses a color camera, infrared (IR) emitter, and IR sensor to

compose a three-dimensional (3D) image comprising a

‘‘cloud’’ of over 200,000 points describing object position

and surface as x, y, z coordinates. Besides its original

application in gaming, this sensor has found use in retail,

education, and training, with healthcare and therapy

applications under evaluation [2]. In the summer of 2014,

the second generation of Kinect (Kinect II) was released,

but to date most publications describe the first-generation

device (Kinect I).

This paper gives a brief overview of the latest research

on healthcare imaging using Kinect. A comparison of the

first- and second-generation devices is given, and then the

influence of imaging distance, angle, and object color on
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sensor performance is examined to assess suitability for

various medical imaging applications.

2 3D Imaging Using Kinect

Both Kinect I and II are designed for computer gaming and

optimized to image humans in a domestic environment. The

sensors use IR light for generating 3D images, although

different measurement methodologies are applied (Table 1).

Kinect I evaluates distances (depth) based on structured

light. This technology works in a way similar to passive

stereo depth sensing, but instead of using two cameras with

known position and orientation, one of the cameras is

replaced by an IR emitter. The IR source emits a single

beam that is split into a pseudo-random pattern of speckles

by a diffraction grating [1]. The beam is projected onto

objects, which distort it according to their distance away

from the IR source. By calculating the correlation between

undistorted and observed speckle location based on 3D

triangulation, object position and surface can be inferred

[3]. To identify each individual point within the camera

image, the specific localized speckle pattern around it

(referred to as its spatial neighbourhood) is analyzed [4].

However, extreme distortion due to challenging geometry

can disrupt this spatial neighbourhood, making it difficult

to establish correspondence between distorted and undis-

torted patterns. This can lead to missing data, or holes, in

the generated 3D image [5].

The second-generation Kinect uses time-of-flight mea-

surement to generate a 3D image. An IR wave is emitted and

its reflection is detected by the Kinect II sensor [6]. To

compose a depth image, the phase shift between the emitted

and incoming wave is analyzed, from which object distance

is calculated. In practice, the phase shift is measured by

comparing the incoming signal to four phase-shifted control

signals [7]. The reflective properties of the imaged objects

can introduce noise into the depth measurement and produce

outliers or data drift [6]. For example, sharp edges, semi-

transparent objects or highly reflective surfaces can lead to

ambiguous reflections and may appear blurred, with greater

variation of depth values than anticipated.

In addition to the depth image, both Kinect sensors also

provide a color stream, which if correctly calibrated can be

combined [8] and potentially used to detect color land-

marks (e.g., surgical pen markings). Both 3D and color

images are captured at a rate of 30 frames per second,

allowing for real-time monitoring of changes (e.g., patient

movement) [2]. Table 2 summarizes the differences

between the two sensor generations with respect to depth

sensing capabilities.

There are three main software libraries available to

Kinect users for the acquisition and evaluation of 3D data:

the Microsoft Kinect Software Development Kit and the

open source libraries OpenNI� and OpenKinect. The

Developer Kit only supports the programming languages

C?? and C# on Microsoft Windows, whereas OpenNI�

and OpenKinect allow a wider range of programming

languages and operating systems, including Linux� and OS

X�. All three libraries provide software tools for acquiring

and analyzing 3D data in real time. For healthcare appli-

cations, widely used tools include 3D fusion, which was

first suggested by Newcombe et al. [9].1 This method

allows consecutive 3D image data frames to be fused into a

3D reconstruction, which is successively updated in real

time. Using this 3D reconstruction can provide increased

stability compared to single-frame analysis, as for example

holes in one data frame can be filled by a later one added to

the reconstruction. Another algorithm applicable to

healthcare generates a simplified model of the human

skeleton from Kinect images of a subject [10]. This has

proved helpful in both motion tracking applications and

morphological measurements [11, 12].

3 Kinect Imaging for Healthcare

3D depth sensing can provide valuable data for healthcare,

including patient position, pose, and movement, or the

extraction of 3D measurements describing body physique

[13]. This ability to generate quantitative data can help to

satisfy the increasing clinical need to base decision-making

and outcome assessment on objective measurements and

facilitate personalized medical practice in a cost-effective

manner [14]. By monitoring movement patterns and

extracting health-related data or indicators of an emergency

situation, Kinect may be used to support independent life

for elderly or health-impaired people [15].The assessment

of patient posture and movement [11] has applications in

disease screening and monitoring [16]. Tailored games

using Kinect can encourage an active lifestyle or provide

motivation for otherwise tedious rehabilitation exercises

[17]. 3D patient models [18] can help with intervention

planning and computer-assisted surgery. In detecting

patient position, Kinect may also be used to improve the

quality of medical imaging and oncological radiation

treatment [19].

3.1 Monitoring Health

Home healthcare can help the elderly or those with health

impairments to preserve an independent lifestyle in their

own home and thus avoid the costs of specialist care

1 Newcombe et al.’s [9] algorithm is for example available as

KinectFusion implemented in the Development Kit.
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facilities. Monitoring of normal activities, recognition of

abnormal behavior, and detection of emergency situations

can assure patient safety. Traditional systems based on

wearable accelerometers or two-dimensional video sys-

tems are cumbersome and limited [20, 21]. Stone and

Skubic [15] monitored elderly subjects in their homes

over several months using a Kinect-based system and

detected falls performed by a stunt man and nine naturally

occurring falls in 98% of cases with only one false alarm

per month. Reasons for failed detection included falls far

Table 1 Physics of depth measurement for Kinect I [3, 67] and Kinect II [6, 7]

Kinect I Kinect II

Structured light Time-of-flight

P—measured point on object surface

E—IR emitter

C—IR sensor

h—unknown distance of measured point from sensor origin

Known/fixed parameters

b—distance between emitter and sensor

a—angle of emitted IR light

f—focal length of the camera

Known/fixed parameters

c—speed of light

f—frequency of emitted IR light

Measured parameter

p—speckle location observed by the IR sensor

Measured parameter

Du—phase shift

Mathematical framework

From law of sines: d
sina ¼ b

sinc

From the angular sum: c ¼ p� a� b

? d ¼ b�sin a
sin p�a�bð Þ ¼ b�sin a

sin aþbð Þ

Withh ¼ d � sin b
? h ¼ b�sin a�sin b

sin aþbð Þ

From the camera geometry
p
2
� b ¼ arctan p

f
? b ¼ p

2
� arctan p

f

? h ¼ b�sin a�sin p
2
�arctan

p
fð Þ

sin aþp
2
�arctan

p
fð Þ

Mathematical framework

Speed of light

c ¼ distance
t

¼ 300000000 m
s

? Dt ¼ 2 h
c
(time shift for incident and reflected signals)

With the definition of phase shift:

Du ¼ 2pfDt ¼ 2pf � 2 h
c

? h ¼ c�Du
4pf
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away from the sensor, falls from a lying position, and

partly occluded falls. In addition to fall detection, Bigy

et al. [22] analyzed tremor or freezing in gait episodes,

which are common in patients with Parkinson’s disease.

They achieved good accuracy, with 91% of tremor and

92% of freezing events detected, but tested their system

only using healthy actors and in a laboratory environment.

Another study reported limitations in assessing the

movement of Parkinson’s patients [23]; whereas gross

motion and motion timing could be assessed with good

accuracy (intra-class correlation when comparing Kinect

with a research grade sensor (Vicon): [0.9), the spatial

characteristics of fine motion such as hand clapping could

not be adequately analyzed (intra-class correlation:

0.009). Coronato and Gallo [24] aimed to monitor daily

activities in order to detect abnormal behavior in patients

with Alzheimer’s disease. They intend to use Kinect to

recognise misplacement of household objects (e.g., plac-

ing a metal object in a microwave). Although they have

only shown general feasibility of the proposed system,

they claim it has the potential to assure patient safety

while also monitoring disease progression or therapy

success.

Due to Kinect’s ability to generate 3D depth images in

dark conditions, it is especially appropriate for sleep

monitoring. Current methods to assess sleep motion often

involve devices attached to the body and require the subject

to sleep in an unfamiliar environment, which can affect

sleep patterns. Lee et al. [25] were able to record the depth

of sleep and sleeping posture of 20 healthy volunteers

using Kinect. However, blankets could not be used and the

authors reported difficulties in distinguishing between front

and back sleeping postures.

Yang et al. [26] inferred pulse rate from Kinect depth

data by analyzing the periodic subtle head motion that

corresponds with the beating heart. After signal enhance-

ment and denoising, they extracted the oscillation using

principal component analysis. They achieved a mean error

of\10% for 7 healthy subjects compared to measurement

using a finger pulse oximeter.

3.2 Screening and Rehabilitation

The assessment of posture and body movement can provide

important information for screening and rehabilitation

applications. Studies evaluating the sensor’s accuracy in

tracking human joints and body-part motion report suffi-

cient accuracy for clinical use, but reduced performance if

a participant is partly hidden by an object or self-occluded

(one body part in front of another) [12, 16, 27–29]. A

simplified model of the human skeleton can be extracted

from 3D Kinect data using software provided in the

Developer Kit. Bonnechère et al. [12] found that the Kinect

model produced height and arm length values that corre-

lated well with measurements taken directly from the

bodies of 48 healthy subjects (Pearson correlation coeffi-

cient, PCC[ 0.97). For the lower limb, the correlation was

lower (PCC[ 0.69 at acquisition distances of 1.5–2.5 m).

Whereas Bonnechère et al. [12] only assessed a single

standing posture, Xu and McGorry [29] evaluated mea-

sures using 8 standing and 8 sitting postures. The most

accurate results were found for the upright standing posture

similar to that used in, with a mean error of 76 mm for

Kinect I and 87 mm for Kinect II. Larger errors were found

especially for sitting postures, where, for example, crossed

legs were not identified correctly.

Using Kinect as a screening tool has been suggested, for

example to detect reduction in shoulder motion after breast

cancer surgery [30] or femoroacetabular impingement, a

condition of the hip that can lead to limited mobility [31].

Tested on 20 and 24 patients respectively, both groups

claimed that Kinect was helpful for their screening task.

For active shoulder movements, goniometer- and Kinect-

based range of motion measurements correlated (PCC:

0.44–0.70) and severe motion limitation (defined as[40%

restriction) was detected reliably (8% false positives, 2%

false negatives). However, there was only moderate cor-

relation when measuring hip motion (correlation coeffi-

cient: 0.23–0.38).

Gait and movement assessment can determine if patients

are at risk of falling and predict patients’ ability to cope

with daily practice after discharge from hospital. Ejupi

et al. [32] used Kinect to assess patients repeatedly

standing up from sitting, finding that patients prone to

falling were significantly slower performing this task.

Stone et al. [33] suggested continuously measuring speed

of gait in an elderly person’s home environment as an

indicator of the risk of falling, considering it could

potentially be a better indicator than traditional gait anal-

ysis, which provides only a snapshot of performance.

Rehabilitation strategies involving Kinect allow mea-

surement of patient movement during training and exercise.

Presenting rehabilitation exercises as a serious game can

motivate patients to perform otherwise repetitive exercises.

Table 2 Depth sensing hardware of Kinect I and Kinect II [68, 69]

Kinect Ia Kinect II

Measurement principle Structured light Time-of-flight

Depth image (pixels) 320 9 240 512 9 424

Field of view (degrees) 54 9 43 70 9 60

Range (m) Up to 6 Up to 4.5

a Kinect I is available in three different models, Kinect I for Xbox

360 (models 1414 and 1473) and Kinect I for Windows, which adds a

near-field mode. Differences are described in more detail by DiFil-

lippo et al. [63]
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Guided interactive rehabilitation allows online correction

of movements (e.g., to avoid incorrect body posture, which

would make a training exercise less effective) [34]. Xu

et al. [35] reported significantly improved self-care ability,

mobility, and social function after 8 weeks of game-based

training for children with autism and cerebral palsy. Other

groups can also benefit: a gaming system for patients with

Parkinson’s disease significantly improved a 10-m walk

test, as demonstrated on 7 participants over 5 weeks,

although familiarization with the test could also have

played a role [36]. Participants reported that they enjoyed

their training and felt safe. Rehabilitation of patients with

stroke and traumatic brain injury using Kinect was evalu-

ated by Cheng and Putnam [37] in a real-world setting.

They found that their patient group only enjoyed gaming

and felt encouraged if the level of challenge was chosen

adequately. However, this was achieved in less than 50%

of observed game play sessions. Patients were not able to

perform games autonomously, needing cognitive and

physical support from trainers.

Whereas most early papers evaluated the application of

Kinect for rehabilitation using only convenient samples

(e.g., student volunteers), recent papers have evaluated

their systems using specific patient groups [17, 38].

3.3 Assistive Systems

Assistive systems based on the Kinect sensor have been

developed to help people with a variety of special needs. It

has been suggested that Kinect can facilitate communica-

tion between deaf and hearing people; however, this

capability has so far been limited to the alphabet, which

can be identified with 90% accuracy for known signers,

whose data was used to build the recognition framework,

and 70% accuracy for unknown signers [39]. Sign language

comprises thousands of words that are communicated by

hand pose and movement, facial expression, and body

posture, which is as yet too complex to analyze with the

Kinect device. Kim et al. [40] warned drivers of an electric

wheel chair with an acoustic signal when approaching

hazardous areas detected by Kinect. They showed that

stationary objects such as an unevenness in the road surface

or moving objects such as pedestrians could be detected

under day- and night-time conditions in at least 80% of

cases and that their position was estimated with an error of

less than 0.3 m; however, the authors did not state how

many false alarms would be generated Kinect was com-

bined with a blind man’s cane by Takizawa et al. [41] to

help the user find points of interest, including staircases and

chairs. Testing their system, a blindfolded user located

objects in less than half the time needed when using a

conventional cane; however, feedback from blind users

was not reported and the system is heavy and bulky.

Tomikawa et al. [42] employed Kinect to enable people to

use a computer using head movements, though again their

system has not been tested with impaired subjects who may

have a reduced range of movement. Complex systems such

as assistive robots must have methods to sense their sur-

roundings and patients’ needs. Kinect can help gather this

information [43] and enable the robot to communicate with

individuals [44] or move around the home [45]. However,

even a simple ‘‘go and fetch’’ task requires complex

understanding of the appearance and location of both the

object and the house and the ability to maneuvre autono-

mously [46], which is beyond current capabilities.

3.4 Intervention Planning and Support

Kinect offers the possibility of anthropomorphic measure-

ments in a quick and contactless manner. This has been

explored for surgical planning, e.g., to assess leg length and

hip rotation before and after hip surgery [47] or to plan

breast surgery and assess achieved cosmetic outcome

[48, 49]. Breast volumes were measured with 10% error

[48] and distances of importance for breast surgery (e.g.,

breast width) were estimated with a maximum discrepancy

of 5 mm compared to manual measurement [49]. However,

implementing a surgical plan based on a 3D model is not

straightforward. Even assessing digital data and patient

images is problematic inside the sterile environment of the

operating theater, which makes handling of mouse and

keyboard difficult. Data are often complex and require

interactive movement, tilting, and zooming. Ruppert et al.

[50] presented a Kinect-based user interface that responded

to gesture commands for interactive image visualization in

urological surgery, which was successfully used during

three interventions. More sophisticated gestures, including

zooming and even annotation of regions of interest, were

included by Gallo et al. [51]. In a recent paper, Nouei et al.

[52] described a prototype operating room information

system which allowed not only interaction with medical

images, but also with patient history and other clinical data

using Kinect in a touchless manner. A review of gesture-

based interaction in surgery using Kinect concluded that

feasibility has been demonstrated and that optimization of

systems for particular operating theater situations was now

a priority [53].

To operate a surgical robot inserting a needle for radio-

frequency ablation, Wen et al. [54] used 8 different ges-

tures. Their system has a time delay of 2–3 s between

gesture and robot response, which they claimed would

improve patient safety. In addition, they employed data

acquired with Kinect in conjunction with a stereo vision

system to extract 90 features derived from the palm and

fingers of the operator as a biometric recognition system to

load operator specific data. However, they reported neither

Kinect 3D Sensor for Healthcare Imaging 861
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the accuracy of their gesture or biometric recognition

systems nor the time required for the whole clinical pro-

cedure. Another research group used Kinect to apply pre-

planned virtual ‘‘no cut’’ zones for robotic surgery [55].

However, they described the risk of breaking through these

zones where the point cloud had holes or was insufficiently

populated. To ensure safe cooperation between robots and

theater staff during surgery, the position of humans must be

detected and robotic surgery equipment programmed to

respect safety zones, thus avoiding collision and injury.

Beyl et al. [56] found that in the challenging uncontrolled

environment of the operating theater, the use of multiple

Kinect sensors and careful calibration was advantageous.

The best configuration of their system detected object

positions with a median accuracy of 19.8 mm; however,

the maximum error was around 100 mm, which is inade-

quate for many surgical applications.

Seitel et al. [57] addressed the issue of following a pre-

planned trajectory for biopsy needle insertion, which cur-

rently often involves needle repositioning and repeated

imaging to verify the needle position inside the patient.

They used depth images to register computed tomography

data to the patient surface and the Kinect’s color data to

localize the needle, but could not achieve high accuracy on

a porcine model, with a median targeting accuracy of

19.6 mm. Another approach to enhance surgical quality

and efficacy is to assist surgeons by augmenting reality and

projecting X-ray structures and spatial information

regarding current surgical instrument positions on the

patient’s body. A feasibility study by Pauly et al. [58]

showed that larger instruments could be confidently located

from depth data, but small and reflective objects, including

scalpels, could not be accurately segmented. To overcome

this, a marker-based instrument tracking system using two

Kinects was suggested to help surgical trainees to learn

computer-assisted surgery [59]. Markers were tracked with

\1 mm root-mean-square (RMS) error, with the system

working best at a 0.7-m operating distance. Another system

based on Kinect data together with electro-magnetic sensor

information was able to distinguish between instrument

movements of expert and novice surgeons [60].

3.5 Anatomical Framework for Medical Imaging

or Radiation Treatment

In both medical imaging and radiotherapy, patients need to

be positioned precisely and the region of interest has to be

in focus during the entire period of image acquisition or

treatment. Tracking body surface motion allows acquisition

or treatment to be adjusted in real time, and tracked motion

patterns may be used to correct images afterwards. Sources

of motion can be small involuntary posture changes or

respiratory and cardiac motion [61]. Current methods

assess movements with the help of body-attached or tat-

tooed markers. Heß et al. [19] described a system based on

two Kinects to gate positron emission tomography (PET)

acquisition to respiratory motion. They validated their

system using a moving high-precision platform and

detected the platform position with a mean error of

0.2 ± 0.11 mm at a 75-cm measurement distance, and

1.27 ± 0.30 mm at 125 cm. Further tests involving 10

volunteers and 10 cancer patients suggested that thoracic

motion signals, not abdominal respiratory motion, are most

appropriate for PET gating.

Oncological radiotherapy is often delivered over a

number of treatment sessions. Each time, the patient has to

be positioned as predefined by therapy planning to assure

correct dose delivery and to spare healthy tissue. Similarly

to Heß et al., Tahavori et al. [62] validated their Kinect-

based system using a respiratory motion phantom with sub-

millimetre accuracy. They tested their system on 6 healthy

volunteers, comparing Kinect-based positioning and

motion tracking with the usual marker-based approach.

They found that the Kinect-based system evaluated the

complete patient surface and allowed more precise posi-

tioning. Comparing marker-based positioning with the

Kinect predicted position, they found discrepancies of up to

20 mm (in 70% of positioning attempts, it was[5 mm).

4 Evaluation of Sensor Performance

In order to introduce new measurement procedures into

clinical practice, their validity and accuracy must be

evaluated. Applications have to be reliable, bring benefit to

the patient, and prove cost-effective. The sensors used need

to be safe, sufficiently accurate for the application, and

easy to use for the clinician.

The use of Kinect for clinical applications such as

morphological measurements of the human body [12],

body sway and posture [16, 29], and heart rate measure-

ment [26] has previously been evaluated. These perfor-

mance evaluations depend on application-specific data

processing techniques such as the extraction of skeleton

models, data denoising, or frequency analysis. General

sensor performance has been assessed by a number of

researchers, particularly for Kinect I [3, 8]. DiFilippo and

Jouaneh performed one of the most comprehensive evalu-

ations, comparing all three models of Kinect I [63]. They

measured sensor accuracy in terms of the deviation of the

position derived from the depth image compared with the

actual position of a flat phantom. Repeatability was defined

as the standard deviation of depth measurements in an area

of 50 9 50 pixels over 25 frames, and resolution was

defined as the smallest detectable movement. They found

that accuracy varied between the three Kinect models and
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also with sensor temperature. All models performed best at

shorter distances (\0.8 m), with accuracy being within

2.1 mm (for cold temperatures). Repeatability was better

than 2.1 mm for all tested configurations. Resolution was

very high (around 1 mm) for distances up to 0.8 m and

stayed below 10 mm up to their maximum evaluated dis-

tance (1.8 m). They also reported that Kinect outputs

depended on the library used to acquire the 3D data

(Developer Kit or OpenNI).

Whereas the performance of Kinect I has been well

investigated, that of Kinect II has been assessed by only a

few researchers. Yang et al. [64] used a flat surface screen

for their experiments, evaluating performance between 1

and 4 m, with the operating distance varying in 0.5-m

steps. For the screen placed in the center of the sensor field

of view at measurement distances of up to 3 m, they found

an average accuracy error of below 2 mm. Accuracy

decreased at more distant positions (3–4 m), with errors

larger than 4 mm. The resolution of Kinect II at mea-

surement angles of 45� and 60� stayed below 2 mm at

distances of less than 3 m; resolution with the screen facing

directly towards the Kinect was not measured. Measure-

ment stability (referred to by the authors as entropy) was

recorded over 30 frames and was less than 2 mm at dis-

tances under 2 m; increased noise was observed at the

edges of the screen.

Gonzales-Jorge et al. [65] compared the performance of

Kinect I and Kinect II using spheres and cubes placed at

distances of 1–6 m. Accuracy was evaluated by calculating

the centers of fitted geometrical models, and precision was

evaluated by assessing the residuals. The sensors were

evaluated facing directly towards the test object and at

angles of ±45�. Both sensors had similar accuracy (up to

1 m) with maximum errors of 12 mm (Kinect I) and

7.5 mm (Kinect II). However, at greater distances (up to

2 m), Kinect II had stable performance (maximum error of

7 mm), whereas the errors for Kinect I increased to a

maximum of 25 mm. Precision of both sensors was similar

at distances of up to 1 m (\6 mm). Kinect II again

remained stable at longer distances, whereas the precision

of Kinect I declined with error, rising to above 10 mm. The

measurement angle did not influence accuracy or precision.

The performance of Kinect specifically for healthcare

applications has also been evaluated [12, 23, 27]. However,

the focus has been on testing available high-level inter-

pretation methods, e.g., the accuracy of a face tracking

system [66] or the accuracy of a skeleton model and motion

tracking capabilities [28]. To our knowledge, only one

publication has evaluated the depth sensing performance of

both Kinect sensors in a setting relevant for healthcare.

Hamza-Lup et al. [18] aimed to explore the sensors’ ability

to generate 3D patient models. They used a 1 9 0.6 m flat

surface placed at 1 and 2 m to evaluate sensor accuracy.

They found an average deviation of 4 mm at 1 m and

11 mm at 2 m for Kinect I with a maximum error of up to

65 mm; the average deviation of Kinect II (3 mm) was

similar for both distances. However, few details about the

experiments were provided, so it is uncertain how the

ground truth was determined or whether the phantom

periphery was excluded. Surprisingly, smaller RMS and

maximum errors were reported at the 2-m operating dis-

tance than for the shorter measurement distance for Kinect

II.

4.1 Aims

Our aim was to compare the performance of Kinect I2 and

Kinect II under conditions relevant to healthcare applica-

tions. Accuracy, precision, and resolution at various mea-

surement distances and angles were investigated. The

extent to which target surface angle limits performance and

the lower limit of operating distances were assessed. All

performance measures were evaluated using different color

test objects to represent variation in skin tone.

4.2 Methods

Stiff paper cards (A2 size: 42.0 9 59.4 cm) were fixed to

an optical bench in an upright position. As we had observed

that object color can influence performance (Fig. 1), cards

of different colors were used to represent human skin tones.

Similarly to skin, paper reflects light in a diffuse, near-

Lambertian manner and was therefore considered an

appropriate model. Three colors of card represented pale,

medium, and dark skin (Fig. 2b).

For our experiments, each Kinect sensor was aligned

with the center of the card and placed at the end of the

optical rail. Measurement distance was varied by shifting

the cards along the rail to distances of 0.5, 0.6, 0.7, 0.8, 1.0,

and 1.2 m, a range suggested as being optimal for Kinect

performance [64–66]. Moreover, at these distances, a field

of view of 1.22 9 0.94 m for Kinect I and 1.68 9 1.38 m

for Kinect II can be imaged, which would capture the

complete human torso. Cards were also rotated to assess

the sensor’s ability to resolve body parts presented at dif-

ferent angles. At each distance, cards facing directly

towards the sensor (zero-degree configuration) and at 15�,
30�, 45�, 60� and 75� angulation were imaged (Fig. 2a).

For each sensor, there were 108 measurement configura-

tions resulting from variation in distance, angle, and card

color. The experiment was repeated three times on differ-

ent days. For each configuration, a separate 3D depth

image was taken using the KinectFusion algorithm as

implemented in the Developer Kit for both Kinect sensors

2 Model 1414.
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(Developer Kit 1.8 and 2.0, respectively),3 which returns a

cloud of points. Each image was stored, saving the 3D

coordinates of each data point (x-, y-, z-coordinates).

Experiments were performed in a physics laboratory with

illumination varied for the three measurement sessions

with closed blinds and low lighting, bright artificial illu-

mination, and natural daylight, respectively. Both sensors

were allowed to reach steady-state temperature before the

first images were acquired, as previously suggested [63].

Matlab 2014a was employed for further evaluation of an

area of 20 9 20 cm in the center of the cards, as shown in

Fig. 3a. The edges of the cards were excluded as it is well

known that Kinect performance at sharp edges is poor [64]

and such edges are not representative of the human form.

Accuracy was evaluated by comparing the position

measured by Kinect with the physical position on the

optical bench (manual position accuracy of 1 mm). The

mean z-values of the point clouds acquired for the zero-

degree configurations were computed and relative dis-

tances between card positions compared as the exact

optical center of each sensor with respect to its housing is

not known. Paired t tests were used for comparing the

sensors and to investigate the influence of object color.

Precision was assessed using the assumption that the

cards were perfectly flat. A mathematical plane was fitted

by least squares fitting to the observed point clouds

(Fig. 3b). The Euclidean distance from each individual

measurement point to this plane was then calculated and

subsequently averaged as a measure of precision. Repeated

measures analysis of variance (ANOVA) was performed to

evaluate the repeatability of the measurements and poten-

tial influence of illumination; the precision of the two

Kinect sensors and the influence of the three different card

colors were compared using paired t tests.

For the evaluation of resolution, point cloud density was

analyzed by calculating the number of points describing the

20 9 20 cm measurement area and dividing this by the

surface area. The influence of illumination was evaluated

by performing repeated measures ANOVA. Paired t tests

were used to compare sensor resolution and the influence

of surface color. All results are reported as the mean and

standard deviation (SD), where appropriate.

4.3 Results

Our results showed that acceptable operating distances for

the Kinect devices depend both on the sensor used and on

the color of the object. Kinect I allowed image acquisition

at distances of as short as 0.5 m, irrespective of card color.

In contrast, Kinect II was unable to generate images at

distances of less than 0.6 m when using the dark card and

0.7 m for pale and medium cards (Fig. 4). Kinect II

allowed imaging at all angular configurations tested (up to

75�). However, Kinect I was more limited in terms of

angular range: it failed to produce a 3D image for the

3 The parameters volume max integration weight and volume voxels

per meter were set to maximum values (1000 and 768).

Fig. 1 Checkerboard imaged

with (a) Kinect I and (b) Kinect
II; color bars indicate measured

distance (m)

Fig. 2 Setup of experiments.

a Cards were placed in front of

Kinect I or Kinect II on optical

rail, with distance varied by

sliding along this rail and

measurement angle varied by

twisting the fastening, b Three

different cards colors were

evaluated representing pale,

medium, and dark skin
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largest angle (75�) at distances of up to 0.7 m for dark and

medium cards and 0.8 m for the pale card. Surfaces facing

up to 60� from the sensor could be imaged from 0.5 to

1.2 m (Fig. 4). The operating range was not influenced by

the three different illumination conditions.

Accuracy was found to be high for both sensors, with the

majority of measurements (59% for Kinect I and 64% for

Kinect II) within 2 mm. Accuracy was not significantly

different for Kinect I (mean: 2.5 mm, SD: ±1.9) and

Kinect II (4.0 mm ± 3.8) (mean difference: 1.6, 95%

confidence interval, CI -0.1 to 3.2, p = 0.07) or was not

influenced by the object color (p[ 0.53 for all paired

comparisons). Overall, accuracy was best at shorter oper-

ating distances.

Precision was evaluated by comparing the location of

each individual 3D point within the 20 9 20 cm mea-

surement area against a fitted plane, resulting in up to

[300,000 measurements. Figure 5 shows an example of

point-to-plane measurements at a 0.8-m distance and 0�.
For Kinect I, at least 55% of points were within 1 mm of

the fitted surface and 88% were within 2 mm; for Kinect II,

60% of points were within 0.3 mm and 83% were within

0.5 mm. With mean point-to-plane error as an indicator of

precision, there was no significant difference between the

three different lighting conditions (F(1.34, 233.9) = 0.62,

p = 0.48), so further analysis used means. Point-to-plane

error did not exceed 2 mm in any configuration (Fig. 6).

Mean precision for the Kinect I was 1.0 mm ± 0.35; the

smallest mean point-to-plane error (0.50 mm) was

observed for the dark card at a 0.6-m distance and 45�, and

the largest error (1.82 mm) was observed for the pale card

at a 1.2-m distance and 45�. Precision of Kinect I declined

with increasing operating distance, and increased with

larger angles. However, precision was poor for the 75�
configurations. Mean precision of Kinect II was

0.52 mm ± 0.27, with minimum point-to-plane error

(0.31 mm) for the pale card at 0.8 m and 0�, and maximum

error (1.44 mm) at 1.2 m and 75�. In contrast to Kinect I,

Kinect II precision remained more stable over different

operating distances, but decreased moderately with

Fig. 3 Point clouds.

a Representative point cloud

depicted using Matlab; central

highlighted area used for

performance evaluation,

b Mathematical plane least-

squares fitted to point cloud of

central area (z-axis scaled for

better visibility)

Fig. 4 Operating range of

Kinect sensor influenced by

object color (see color code).

a Kinect I and b Kinect II

Fig. 5 Cumulative distribution of point-to-plane error between each

point in point cloud and fitted mathematical surface model for

different cards (both sensors at 0.8 m operating distance, 0�)
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increasing angle. Again, precision for the 75� configura-

tions was noticeably worse. Overall precision of Kinect II

was significantly higher than that of Kinect I, with on

average a 0.47-mm shorter mean point-to-plane error (95%

CI 0.39–0.59, p\ 0.001). Precision of Kinect I was unaf-

fected by the object color (p[ 0.12 for all paired com-

parisons). Kinect II showed significantly higher precision

for the pale card than the dark card (mean difference: 0.06,

95% CI 0.02–0.11, p = 0.04); precision for the pale and

medium cards and the medium and dark ones did not differ

significantly (p = 0.75, p = 0.09). Mean precision was

0.51 mm ± 0.27 for pale, 0.52 mm ± 0.27 for medium,

and 0.57 mm ± 0.27 for dark cards.

Resolution of the depth image was evaluated by mea-

suring the density of the point clouds (in points per cm2)

describing each individual measurement surface. Reso-

lution measurements under different illuminations were

significantly different (F(1.21, 212.4) = 575.6,

p\ 0.001). For both sensors, resolution was higher under

low lighting (Kinect I 496.4 ± 55.6, Kinect II

481.8 ± 39.6) than under bright illumination (Kinect I

422.3 ± 17.8, Kinect II 399.7 ± 33.5) and lowest under

bright illumination and daylight combined (Kinect I

414.7 ± 23.3, Kinect II 397.7 ± 25.6). For all conditions,

Kinect I had significantly higher resolution (low lighting:

mean difference: 20.5, 95% CI 9.5–31.5, bright illumi-

nation: 21.6, 14.3–28.8, bright illumination ? natural

light: 17.5, 10.8–24.2, all p\ 0.001). The choice of

object color did not significantly influence the resolution

of either sensor, with one exception; for Kinect II, med-

ium object color led to significantly lower resolution than

pale color (mean difference: 5.5, 95% CI 0.37–10.6,

p = 0.04). Figure 7 shows the average resolution for each

of the three lighting conditions evaluated (results were

averaged over the three card colors as this has been shown

to have little influence). The resolution of Kinect I

declined at the closest measurement distance (0.5 m) with

on average 6% fewer points per cm2 than the average

resolution observed with Kinect I. Both sensors showed

the highest resolution for measurement angles of 30� and
45�, with 3–5% more points per cm2 than the measured

sensor average. It was observed that the reduced resolu-

tion for Kinect I was not caused by a homogenously

sparse point cloud; the affected point clouds exhibited

holes and left parts of the objects undescribed (Fig. 8a).

Kinect II did not show this (Fig. 8b).

Table 3 gives an overview of the performance of Kinect

I and Kinect II.

Fig. 6 Precision of Kinect I (top) and Kinect II (bottom) in terms of point-to-plane error evaluated for different object colors: pale (left), dark

(center), and medium (right)
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5 Discussion

Our experiments compared the performance of Kinect I and

II for healthcare applications that require high measurement

fidelity, such as surgical planning or motion compensation in

medical imaging. Both sensors were tested taking into

account relevant measurement distances and angles and

studying the influence of object color. This work is the only

comparison of Kinect I and Kinect II taking into account

imaging conditions, the influence of object color, and angles

of up to 75�, which are highly relevant to healthcare.

Accuracy is important for applications where the knowledge

of position is crucial. Examples are collision avoidance

between robots, humans in operating theaters, and guiding a

visually impaired person. Both Kinect sensors allow the

location of objects at 2-mm accuracy in most situations,

giving results comparable with those in the literature [63],

but we also observed outliers of up to 14 mm in certain

conditions. A conservative safety margin should therefore be

used where the application demands.

We investigated the effect of skin tone on performance

using colored cards of appropriate shades. Precision was

Fig. 7 Resolution of Kinect I (top) and Kinect II (bottom) evaluated for different lighting conditions: low lighting (left), artificial lighting

(middle), and artificial lighting plus daylight (right)

Fig. 8 Point clouds with

reduced resolution. a Kinect I

data may contain holes and

some areas may be unobserved,

as for pale card at 0.5 m, 0�,
b Kinect II did not show this

effect, but areas may be covered

by fewer points per cm2 as seen

on side facing away from sensor

for medium card at 0.8 m, 75�
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\2 mm, independent of lighting conditions, but the pre-

cision of Kinect II was shown to vary with object color.

With an average resolution of over 390 points per cm2,

the Kinect sensors are suitable for imaging complex sur-

faces, such as those involved when generating an

anatomical framework for intervention planning. Based on

our results, Kinect II is more suitable than Kinect I for

depicting structures or parts, which face away from the

sensor. With significantly higher precision and the ability

to image 60� and 75� configurations, it is suitable for

imaging curved surfaces such as the face or the female

breast.

If space is restricted, for example during imaging or

interventional procedures, Kinect I allows measurement at

closer measurement distances. It should be noted that

although Kinect I produces images with significantly

higher resolution than that of those produced by Kinect II,

data may contain holes under certain circumstances and

some areas may be unobserved. Illumination influenced

both sensors’ resolution significantly and should be con-

trolled where possible, as resolution was reduced in bright

environments.

6 Conclusions

Kinect is a touchless real-time 3D sensor that is easy to use,

affordable, and free of ionizing radiation. The capability of

the device to localize and track people, at the same time

gathering information about movement and body physique,

can potentially help to improve healthcare. This ability can

be used for rehabilitation and screening, to support inde-

pendence of people with impairments, or to assist inter-

vention. It has the potential to replace complicated, marker-

based setups, such as those used in radiotherapy, and to

enable data acquisition in a sterile fashion.

Although Kinect was developed for gaming, its perfor-

mance is suitable for a range of healthcare imaging

applications. It is currently under clinical investigation, but

studies have yet to prove patient benefit in a controlled and

randomized fashion.
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