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Abstract

Decreasing the cost of high-throughput DNA sequencing technologies, provides a huge

amount of data that enables researchers to determine haplotypes for diploid and polyploid

organisms. Although various methods have been developed to reconstruct haplotypes in

diploid form, their accuracy is still a challenging task. Also, most of the current methods can-

not be applied to polyploid form. In this paper, an iterative method is proposed, which

employs hypergraph to reconstruct haplotype. The proposed method by utilizing chaotic

viewpoint can enhance the obtained haplotypes. For this purpose, a haplotype set was ran-

domly generated as an initial estimate, and its consistency with the input fragments was

described by constructing a weighted hypergraph. Partitioning the hypergraph specifies

those positions in the haplotype set that need to be corrected. This procedure is repeated

until no further improvement could be achieved. Each element of the finalized haplotype set

is mapped to a line by chaos game representation, and a coordinate series is defined based

on the position of mapped points. Then, some positions with low qualities can be assessed

by applying a local projection. Experimental results on both simulated and real datasets

demonstrate that this method outperforms most other approaches, and is promising to per-

form the haplotype assembly.

Introduction

Improving the high-throughput DNA sequencing technologies dramatically decreased the

costs of genome sequencing methods. This achievement help researchers to understand the

variation of individual’s genomic data and pave the way toward individualized strategies for

diagnostic or therapeutic decision-making [1]. The most frequent type of genetic variation is

the single nucleotide polymorphisms (SNPs). Each SNP is just a mutation over similar distinc-

tive positions on the DNA sequences of homologous pair of chromosomes in an individual,

and among the corresponding DNA sequences of the whole population. Similarly, the term

“allele” refers to different forms of a gene at one loci. Accordingly, four different alleles are pos-

sible for a given SNP site. Nonetheless, most SNPs are bi-allelic containing only two kinds of
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alleles, which can be simply denoted by ‘0’ and ‘1’ [2]. Each SNP contains valuable information

about genomic alternations. Experimental studies revealed that SNPs have been clustered

across the human genome and are not randomly distributed [3]. In line with this assumption,

linkage disequilibrium (LD), demonstrates that there are correlations and spatial dependencies

among neighboring SNPs. Different SNPs on the string of DNA is known as a haplotype. In

other words, a haplotype could be considered as the combinations of marker alleles which are

positioned closely together on the same strand of DNA, and tend to be inherited together from

parents to offspring [4]. It has been shown that some diseases such as sickle-cell anemia [5],

cystic fibrosis [6] and hemochromatosis [7] are more common in specific ethnic populations

due to unique genetic mutations in their genomes; but they are rarely found in others. There

are also reports indicating that different populations may have various responses to drugs [8–

10]. These findings demonstrate that haplotypes in human genomics data could be a useful

and informative tool in mapping genes that are involves in representative diseases, as well as

personalized medicine [11]. Haplotypes can also be used to investigate the pattern of inheri-

tance over evolution, human migration, and the genetically aspects of populations [12–14].

Genetic association analysis for gene mapping can also be improved by haplotype analysis

[15]. Also, it is possible to detect errors and missing sequencing data in experimental sequenc-

ing of DNA sequences using the information of haplotypes [16].

It is worth mentioning that the experimental analysis of haplotypes is labor-intensive and

expensive. Moreover, it can be used only for constructing local haplotypes. In other words,

human haplotypes are provided as sequencing reads or fragments. It is a vital task to obtain

haplotype information from the numerous fragments due to its profound impacts on different

aspects of medicine and molecular biology [15, 17–19]. However, the detection of genetic vari-

ations has critical limitations compared with the molecular approaches. According to the type

of input data, the existing methods of haplotype reconstruction are divided into two main cate-

gories, including single individual haplotyping (SIH) and haplotype inference. SIH methods

receive several fragments that have been sequenced from a given chromosome. It is to be

noted that most of the fragments contain gaps, and are usually disrupted by noise. To cope

with these problems, the input fragments are clustered based on their similarities. Then, the

haplotypes can be reconstructed using the center of each cluster [4]. The haplotype inference

methods receive genotype information of several individuals as input data and infer their

related haplotype sequences [20]. It is worth noting that each genotype represents a combina-

tion of haplotypes on the homologous chromosomes.

With increasing the size of data, a growing number of researchers have tried to solve haplo-

type assembly problem. Moreover, several computational models, including minimum frag-

ment removal (MFR), minimum error correction (MEC), minimum SNP removal (MSR), and

the longest haplotype reconstruction (LHR), have been developed to cope with the SIH prob-

lem. The MEC is one of the most popular and successful algorithms compared with the models

as mentioned above [4, 21–28]. This model attempts to cluster the input fragments, such that

all the fragments belonging to a specified cluster to be compatible. Otherwise, they will be

compatible by applying the minimum alternations. The current approaches can be divided

into exact and heuristic methods. Since finding the optimal minimum error correction is

NP-Hard, the exact approaches have exponential complexity [21]. Among exact solutions,

WhatsHap [29] is regarded as a pioneering method, which is dynamic programming-based

and utilizes a weighted variant of the MEC. The experimental results demonstrate that it can

process long reads at coverage up to 20×. In [30], the authors proposed a parallel version of

WhatsHap which is able to process higher coverages up to 25×. AROHap [24] is a recently

published evolutionary-based method that exploits the asexual reproduction optimization

algorithm to solve the SIH problem. In this method, the fitness function is designed based on
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the MEC model. In [26], a heuristic method, namely, Fasthap was developed, where it makes a

weighted fuzzy conflict graph based on the MEC model. Furthermore, the constructed graph

is used to cluster the input fragments. Fuzzy C-means (FCM) approach has been applied in

[25] to enhance the performance of the proposed method in clustering the fragments. How-

ever, this method obtains low performance in dealing with noisy fragments. Some popular

methods, including MCMC [31], HapCUT [27], and HapCUT2 [32], have differently con-

struct the graph. These methods start with a set of arbitrary sequences as initial haplotypes,

and improve it step by step concerning the input fragments. They make a similar weighted

graph in their distinctive model. However, instead of fragments, SNPs are used as vertices of

the graph. Each pair of SNPs is connected if they are covered by at least one input fragment.

The weight of each edge determines the amount of consistency with their corresponding posi-

tions in the current haplotypes. Although this model efficiently determines the consistency of

the current haplotype with the input fragments, the existing gaps and noise lead to a loss of

accuracy in determining the weight of edges. In [33]. It has been proved that the hypergraph

can precisely describe the distance of input fragments.

Although, various methods have been developed to solve the SIH problem, most of them can

only be applied to diploid organisms, and fail to consider polyploid organisms. It should be

noted that the haplotype reconstruction in polyploid type is more complicated than a diploid

one. Suppose that P is the number of ploids, andm is the length of haplotype sequences. In this

case, there are at least 2m−1(P − 1)m different solutions for phasing the haplotypes [23]. Recently,

several studies, such as [23, 34–36], have been conducted on the polyploid organism. Althap [23]

and SCGD [36] are two recently developed methods based on matrix factorization to solve the

SIH problem. H-PoP [34] is a heuristic method that divides the input fragments into P clusters.

Therefore, the members of each cluster have the minimum distance with each other and are

entirely far from the fragments of other clusters. Belief propagation (BP) [35] is another method

addressing the SIH problem by mapping the MEC model to a decoding mechanism. It involves

a message transmission in a noisy channel. In this context, it has been reported that the haplo-

type’s blocks with proper lengths can exhibit chaotic behavior. This feature has been recently

used to improve the reconstruction rate in the single individual haplotyping problem [37].

Considering the chaotic nature of haplotype sequences, in this paper, an iterative algorithm

is proposed to reconstruct the haplotypes using the hypergraph model. The method includes

two main steps. Firstly, an iterative mechanism is applied due to the SNP matrix to construct

the haplotype set, and the consistency between SNPs is modeled based on the hypergraph.

Then, the corrected parts of the haplotypes are determined by partitioning the hypergraph.

This step is followed by transforming the obtained haplotypes into a line using the chaos

game representation, where a coordinate series is defined based on the position of the mapped

points. Also, a local projection (LP) method is applied to refine the remaining ambiguous mea-

sures and increasing the quality of the reconstructed haplotypes.

The significant contributions of the proposed method are as follows:

• The similarity measurement between the input fragments can be described more accurately

by utilizing the hypergraph model. Moreover, it helps to overcome challenges originated

from the huge amount of gaps and sequencing errors.

• The quality score for each position of the reconstructed haplotypes can be calculated to pre-

dict the remaining error measures.

• The chaotic nature hypothesis is used to refine the reconstructed haplotypes. To this end, we

only concentrate on the neighboring dependencies between SNPs.

• The proposed method could be applied effectively for both diploid and polyploid organisms.
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The rest of the paper is organized as follows. Section 2 provides a brief review of the prob-

lem statement. In section 3, the proposed method is described in detail. Experimental results

are presented in section 4. Finally, the conclusion is arrived at section 5.

Preliminaries and assumptions

The challenge of the SIH problem in the polyploid organisms includes the reconstruction of

the whole setH = {h1, h2, . . ., hP} containing P haplotype sequences. It is based on the available

aligned input fragments. Similar to diploid case, the input fragments can be represented as a

standard form. Let X be the SNP matrix in which each row corresponds to an input fragment,

and each column indicates a specified SNP. In binary allelic haplotypes, it is assumed that

xij 2 {0,1,0 −0} indicating the obtained allele in a specified fragment fi at SNP sj. Also, each hap-

lotype hi (i = 1,2, . . ., P) equals to {1,0}N. In diploid case, there are some positions called homo-

zygote sites in which h1k equals to h2k. On the other hand, the sites with different measures are

called heterozygote positions. Homozygote sites are usually removed from the input matrix, as

they do not provide useful information for the haplotype assembly problem. It is worth noting

that the 0−0 sign indicates missing information during the sequencing process. For two frag-

ments which are originated from different haplotypes, it is expected that there are some dis-

similarities between them. Several relations have been developed to describe the differences

between the two fragments. Hamming distance (HD) is the most practical approach, which

can be used to calculate the differences between two input fragments fi and fj as follows:

HDðfi; fjÞ ¼
X

l¼1
dðfi½l�; fj½l�Þ ð1Þ

Where d is defined as follows:

dðx; yÞ ¼
1 x 6¼ y and; x 6¼ 0� 0and y 6¼ 0� 0

0 else

(

ð2Þ

In the case where the SNP matrix is error-free, two fragments that were sequenced from the

same haplotype are compatible, as their distance equals to zero. On the other hand, in dealing

with the noisy SNP matrix, for two arbitrary fragments fi, fj, it is not possible to simply inter-

pret the dissimilarity between two fragments, as they can be originated from the existing noise

or have been sequenced from different haplotypes. In the error-free case, the fragments can be

clustered in P clusters, such that the members of each cluster are compatible with each other.

Fig 1 represents an example of the SIH problem in the ploidy level. The rows of matrix X
indicate sequenced fragments, and the rows of matrixH contain the obtained haplotypes.

In diploid case, several models have been proposed to solve the SIH problem based on the

input fragments.

Extending the models to solve the SIH problem in polyploidy form is a difficult task [38].

Recently, several MEC-based approaches have been developed to solve this problem. In this

regard, the input fragments are organized in P clusters, and the haplotypes are considered as

the centers of constructed clusters. In fact, each cluster involves the fragments which have the

same provenance. The optimized result of the clustering algorithm can be obtained by mini-

mizing the following Eq.:

MECðX;HÞ ¼
XP

i¼1

X

f2Ci

HDðf ;HiÞ ð3Þ
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In the optimal case, if the SNP matrix is error-free, then the MEC measurement equals

zero, and each fragment f belonging to Ci is compatible withHi. However, in dealing with the

noisy SNP matrix, it is expected that some fragments to be in conflict with their corresponding

haplotypes. It should be noted that finding the optimal MEC measure is an NP-hard problem.

On the other hand, the huge amount of gaps in the input fragments does negatively affect the

distance measurement between pairs of input fragments. Therefore, the current work aims to

address these challenges by a better description of the similarity measurement between the

input fragments. This was done by a heuristic method with a favorable runtime based on the

hypergraph model.

The proposed method

This section presents a Haplotype Reconstruction approach based on the Chaotic viewpoint

and Hypergraph model (HRCH). The proposed method is briefly described below.

(i) a set of haplotype sequences is randomly generated;(ii) the input fragments are assigned

to the haplotype sequences based on their similarities;(iii) a weighted SNP hypergraph is built,

using the similarity measure between haplotype sequences and the assigned input fragments;

(iv) the constructed hypergraph is used to find a set called CutSet, containing the SNPs which

should be modified. This procedure is repeated for a predefined number of iterations to mini-

mize the MEC score. Next, by considering the existence of chaotic properties of haplotype

sequences, the results are improved. A high-level overview of the method is demonstrated in

Fig 2.

Data preprocessing

As described in the preliminaries sections, XM×N is a matrix containingM reads with length N.

It is essential to note that homozygote columns can be ignored in diploid cases. Removing the

homozygote positions was performed as described by [33] such that the most frequent

Fig 1. An example of SNP matrices X and H relevant to the resulting haplotypes. The red measures in X indicate

sequencing errors. Each row ofH demonstrates a specified haplotype sequence.

https://doi.org/10.1371/journal.pone.0241291.g001

PLOS ONE A chaotic method to solve haplotype assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0241291 October 29, 2020 5 / 19

https://doi.org/10.1371/journal.pone.0241291.g001
https://doi.org/10.1371/journal.pone.0241291


measure for each column could be found. If the frequency is higher than 0.8, the column is

identified as a homozygote site. Thus, the output of this step is a matrix withM fragments and

N0 columns; where N0 � N. Finally,H0 = {h1, h2, . . ., hp}, as an initial set of haplotypes is ran-

domly generated.

Pair-SNP consistency

Let⋈ be a binary operator which provides the concatenation of two variables. For example, if
a and b are two variables with measures ‘0’ and ‘1’, respectively, a⋈ b equals to ‘01’. Given

two variables, c, d 2 {0000, 0010, 0100, 0110} the operator⊕ is defined as follows:

c⨁ d ¼
� 1 if c ¼ d

1 if c 6¼ d

(

ð4Þ

Definition 1 (Pair-SNP consistency). Given matrix XM×N involving the input fragments,

pair-SNP consistency, ωij is defined between si and sj as two arbitrary SNPs which are covered

by fk (k = 1,2, . . .,M) as follows.

oij ¼
1

Tij

X

fk2covðsi ;sjÞ
fkðiÞ ffl fkðjÞ½ �⨁ hcðfkÞðiÞ ffl hcðfkÞðjÞ

h i
ð5Þ

Where Tij is the number of fragments covering both SNPs si and sj. By applying this measure,

ωij is normalized such that its value ranges between -1 and +1 (i.e., −1� ωij� +1). Moreover,

Fig 2. The workflow of proposed method.

https://doi.org/10.1371/journal.pone.0241291.g002
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cov(si, sj) includes the fragments which cover the SNPs si and sj. Finally, as mentioned above,

c(fk) identifies the origin of fk.
The Pair-SNP consistency metric is used to evaluate the compatibility between each pair of

SNPs with the current haplotypeHt. The intuition behind the Eq 5 is as follows. For given

SNPs si and sj, ωij describes the amount of similarity between the pair SNPs and their corre-

sponding measures inHt. This measure equals to -1 if the current haplotype is entirely identi-

cal with the covered fragments in columns i and j. On the other hand, it takes 1 if they are

completely different in those columns. Otherwise, ωij equals to 0, when the SNPs are not cov-

ered by any fragment. It is noticeable that, for high measures of ωij, it is expected that the

SNPs, si and sj, are considered to belong to different clusters upon partitioning. The complexity

of this step is O(MN2), whereM and N are the number of fragments and SNPs, respectively.

Hypergraph construction

To construct the weighted hypergraph based on the achieved ωmatrix, for each SNP si, its K

nearest neighbors is found using the following Eq.:

KNNðsiÞ ¼ fsjji 6¼ j;oij � oilg ð6Þ

Where l is index of the Kth nearest SNP of si. KNN(si) is a set containing the index of K nearest

neighbors of si. More specifically, each set represents the K SNPs, which have the most consis-

tent relationship with si. In this case, each hyperedge can connect more than two vertices.

Applying K nearest neighbors is a common approach to determine the hyperedges. However,

it is necessary to specify the hyperedges more precisely due to the existing noise and sparsity of

the SNP matrix. Therefore, the connectivity of vertices is defined by finding frequent itemsets.

In other words, the hyperedges are determined as the shared K nearest neighbors, which can

be defined as follows:

SKNNðEÞ ¼ \e2E KNNðeÞ ð7Þ

In Eq 7, E contains several SNPs, and SKNN(E) provides a set of SNPs which are shared

between all nearest neighbors of E. If the number of shared KNNs is more than a predefined

threshold, called minimum support count (sc), then E can be defined as a frequent itemset. In

the proposed model, each frequent itemset is defined as a specified hyperedge ei, and the num-

ber of shared KNN is assigned as its weight measure wi. Among the existing methods, frequent

pattern (FP)-growth [39] has been gaining much attention due to the ability to find frequent

itemsets. FP-growth is a tree-based method which uses a depth-first strategy to mine frequent

itemsets. Accordingly, the database is modeled as a prefix tree, and the depth-first search is

recursively applied to generate all maximal frequent itemsets. The runtime of this algorithm

increases linearly, and it depends on the number of SNPs [40].

Improving Ht by partitioning the hypergraph

As can be seen in Fig 3, in the constructed hypergraph, the SNPs correspond with vertices, and

each hyperedge equals with an obtained frequent itemset. In other words, it contains a set of

SNPs that has more consistency with the corresponding position inHt. It is noteworthy that

hyperedges with higher weights indicate the higher similarity between the constituent’s SNPs

and their relevant positions inHt. The vertices can be divided into two clusters via partitioning

the hypergraph. The objective of the partitioning is to minimize the sum of the weights of the

hyperedges located between the clusters. To this end, hmetis as a popular algorithm was used.

The algorithm includes three steps: (i) a number of small hypergraphs in several layers are
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built; (ii) the hypergraph in the lowest level is partitioned; (iii) the resulted partitions are

extended to the upper levels through a successive mapping.

The computational complexity of the algorithm is O(|E|), where E is the set of hyperedges.

Suppose that C1 and C2 are two clusters obtained by the hmetis algorithm. As can be seen in

Fig 4,Ht
1

andHt
2

are partial haplotypes originating from the resulting clusters.

In the diploid case, as can be seen in Fig 5 like the HapCUT method, improving Ht is per-

formed as follows. First, C1 or C2 is selected as a CutSet. Next,Ht+1 is obtained fromHt by flip-

ping the measures of the SNPs in the CutSet.

Fig 3. An example of constructing and partitioning the hypergraph. Si corresponds with the ith SNP, and the curves

demonstrate the hyperedges. C1 and C2 denote the clusters which are obtained by hypergraph partitioning.

https://doi.org/10.1371/journal.pone.0241291.g003

Fig 4. Partitioning Ht of a three ploid genome. The yellow parts indicateHt
1

and the green parts demonstrateHt
2
. It

must be pointed out that Ht
1
¼ Ht

1;1
[ Ht

1;2
[ Ht

1;3
.

https://doi.org/10.1371/journal.pone.0241291.g004

Fig 5. An example of updating the current haplotype based on the partitioning of the hypergraph.

https://doi.org/10.1371/journal.pone.0241291.g005
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For polyploid, improving Ht is accomplished based on the algorithm which is shown in Fig

6. In the first step, a partial haplotype (i.e.,Ht
1

orHt
2
) is randomly assigned to CutSet. This set

involves some parts ofHt that should be corrected.

As shown in Fig 7, all combinations of the CutSet are evaluated to find a new set of haplo-

types (Ht
new) with lower MEC score.

Moreover, in order to evaluate more allelic combinations of SNPs, for a predefined percent

of SNPs belonging to the CutSet, in each time two arbitrary SNPs are nominated. Then one of

its various genotype’s combinations is randomly selected, and is replaced at corresponding

positions inHt. This step repeats for a predefined percent of SNPs.

SinceHt has randomly generated, in the early iterations, its MEC score is poor. Therefore,

finding the hyperedges with lower weights is not a difficult task. But, by improving the quality

ofHt and increasing the consistencies between SNPs, MEC measure will be decreased slowly.

Refinement of Ht

Computing confidence score. Upon performing the iterative procedure of the proposed

method, the haplotypeH = {h1, h2, . . ., hp} will be obtained. It is possible to define a confidence

Fig 6. The algorithm of improving Ht.

https://doi.org/10.1371/journal.pone.0241291.g006

Fig 7. Two combinations of six possible combinations of the CutSet in three ploid form.

https://doi.org/10.1371/journal.pone.0241291.g007
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measure for each loci of the reconstructed haplotypes. For diploid case, we used the emission

probability P(Xj |hj, Rj) that has been defined in [41], which is used to identify errors in the

reconstructed haplotype. This measure is calculated for each position j as follows:

PðXjjhj;RjÞ ¼
Y

i:j2POðiÞ
pðxijjhj; fiÞ ð8Þ

Where h is a haplotype sequence belongs toH, hj 2 {0,1} denotes an allele in position j, and

PO(i) contains the columns which have been covered by fi as the i-th fragment. Furthermore,

Rj is a set which includes fragments such as fi covering a position j. Finally, p(xij | hj, fi) is calcu-

lated as follows:

pðxijjhj; fiÞ ¼
Qij if xij 6¼ hjðfiÞ

1 � Qij else

(

ð9Þ

Where Q is anM × Nmatrix; for each element xij 2 X, Qij includes the probability of sequenc-

ing error and hj (fi) as the j-th loci of the reconstructed haplotype is computed based on the fol-

lowing Eq.:

hjðfiÞ ¼
hj if fi 2 C1

hj if fi 2 C2

(

ð10Þ

Where C1 and C2 are the obtained clusters containing similar fragments that indicate the prov-

enance of fi. Eq (10) provides more information in each loci, and is based on the fact that

h1 ¼ h2 . Therefore, the confidence score could be calculated more precisely. On the other

hand, there is no relationship between the haplotype sequences in the polyploid form. Hence,

applying Eq (8) is not applicable. In this case, we used genotype information. Suppose that gi is

the genotype information in position i andHi is the reconstructed measure in this position.

The sorted measure of gi andHi are compared, and the position i will be selected for refine-

ment if the two sets are not equivalent.

Applying chaos game representation. Chaos game representation (CGR) is a graphical

tool which maps an arbitrary sequence to a 2-dimensional form.

This map is reversible and all the information of the sequence is preserved. Moreover, it

depicts the hidden dependencies among the letters. CGR was initially introduced by Barnsley

[42] to evaluate random sequences. Afterwards, Jeffrey [43] developed the method for visualiz-

ing genomic sequences. For this aim, according to the number of distinct letters constructing

the input sequence, a regular polygon can be considered. For example since DNA sequences

are constructed from four nucleotides ‘a’, ‘t’, ‘c’, and ‘g’, a square with unit length is considered

and each distinct letter is assigned to one vertex. Each letter of the given sequence is iteratively

mapped as a point inside the square. The process is started by locating the first point half-way

between the center of the square and the corner related to the occurrence of the first letter. The

method continues such that the i-th point is placed half-way between the previous point and

the vertex related to the i-th letter. Using this procedure, many attempts have been made with

the purpose of extracting novel features from biological sequences by exploiting CGR [44–48].

Recently, CGR was used to reveal the chaotic properties of haplotypes [37]. Since haplo-

types are represented in binary form, the achieved map will be a dotted line which its vertices

are named by 0 and 1, respectively. In this step, in order to improve the reconstructed haplo-

types, CGR is utilized as follows.

For loci’s which their qualities are less than θ, as a predefined threshold, their measures may

be disrupted by noise or missing information. Therefore, it is refined based on the existing

dependencies between SNPs. For this purpose each hi 2 H is mapped to a line by applying
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CGR. The places assigned to each point construct a coordinate series, namely csi. The route of

chaos helps to refine the ambiguous measures in the low-quality positions. To this end, the

points in csi that are correspond with the alleles with low confidences, are shown by ‘-‘. Then,

the measure of ambiguous positions can be determined by applying a local projection (LP)

method. After filling the removed measures based on the LP method, the refined coordinate

series called bcsi, are transformed into the final haplotype known as bhi. It must be indicated that

extracting the cs and applying the LP method are accomplished in linear time. The conversion

is calculated according to Eq 11:

bhiðjÞ ¼

0 if hiðjÞ ¼ ¼0� 0 and bcsiðjÞ � 0:5;

1 if hiðjÞ ¼ ¼0� 0 and bcsiðjÞ > 0:5;

hiðjÞ Otherwise

8
><

>:
ð11Þ

Results

In the following section, the performance of the proposed method is compared with several

state-of-the-art approaches in diploid and polyploid forms. The method was implemented in

MATLAB, and all the results were obtained on a Windows 10 PC with 3.6 GHz CPU and 16 G

Ram. The parameters of the algorithm are defined as t = 100, k = 5, sc = 2, and nc = 20%.

Reconstruction rate (RR) [4] as a conventional metric was used to evaluate the quality of the

obtained haplotypes. In diploid case, RR is defined as follows:

RR ¼ 1 �
1

2� N
minðHDðh1;

bh1Þ þHDðh2;
bh2Þ;HDðh1;

bh2Þ þHDðh2;
bh1ÞÞ

� �
ð12Þ

Here,HD denotes hamming distance between hi and bhj which are the target and the recon-

structed haplotype, respectively and i, j = 1,2. For polyploid case, this formula is written in the

form of Eq 13:

RR ¼ 1 �
1

N � P
minM

XP

i¼1

XN

j¼1
dðMðbHÞij;HijÞ

� �
ð13Þ

Where M is a one-to-one mapping from the set of reconstructed haplotypes to the set of target

haplotypes.

Diploid case

The experiments have been carried out on two widely used and well-known datasets including

Geraci’s dataset [49] and a dataset from the 1000 genome project that are prime examples of

the simulated and experimental datasets, respectively.

Simulated data. The Geraci’s dataset involves three parameters: Coverage c = {3,5,8,10},

length of haplotypes l = {100,350,700}, and error rate e = {0,0.1,0.2,0.3}. For each combination

of these parameters, there are 100 samples. The output of the proposed method was compared

with a set of state-of-the-art and well-known methods including; SCGD [36], H-pop [34],

ARO [24], HG [33], FCM [25], FastHap [26], DGS [50], SHR [51], MLF [52], HapCut [27], 2d

[22], Fast [53], and SPH [54]. All of these methods were run with their default parameter set-

tings. In accordance with the existing methods, the reconstruction rate (RR) was also used to

assess the result of the current method. Tables 1–3 comparatively show the reconstruction rate

of the proposed method with those described for haplotype blocks with length 100, 350, and

700. Note that in the last column of each table, the highest measures are boldfaced. Moreover,
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the second-highest measures are highlighted. The results, demonstrate that current method

has an acceptable level of performance and outperforms in most of the cases.

The performance of the refinement phase has been considered in Table 4. Since evaluating

the chaotic feature is limited to the long coordinate series, this phase can only be performed

for sequences with length 700. For this purpose, the LP method is applied for each coordinate

series with embedding dimensions (em) equal to 1 and 2, individually. It should be noted that

the first column demonstrates the quality of the obtained haplotypes after terminating the first

phase. The next two columns involve the rate of reconstruction for em equals to 1 and 2,

Table 1. Average of reconstruction rate for haplotypes with length 100.

e C SCGD H-pop SPH Fast 2d Cut MLF SHR DGS Fasthap FCM HG ARO HRCH

0% 3 1.000 1.000 0.999 0.999 0.990 1.000 0.973 0.816 1.000 0.916 1.000 0.999 0.992 1.000

5 0.999 1.000 1.000 0.999 0.997 1.000 0.992 0.861 1.000 0.953 1.000 1.000 1.000 0.999

8 0.999 1.000 1.000 1.000 1.000 1.000 0.997 0.912 1.000 0.956 1.000 1.000 1.000 0.999

10 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.944 1.000 1.000 1.000 1.000 1.000 0.997

10% 3 0.918 0.921 0.895 0.913 0.911 0.928 0.889 0.696 0.930 0.823 0.882 0.941 0.844 0.957

5 0.944 0.919 0.967 0.964 0.951 0.920 0.969 0.738 0.985 0.917 0.948 0.989 0.922 0.987

8 0.948 0.900 0.989 0.993 0.983 0.901 0.985 0.758 0.989 0.955 0.971 0.994 0.945 0.991

10 0.959 0.892 0.990 0.998 0.988 0.892 0.995 0.762 0.997 0.926 0.972 0.997 0.920 0.995

20% 3 0.806 0.836 0.623 0.715 0.738 0.782 0.725 0.615 0.725 0.806 0.739 0.752 0.711 0.851

5 0.825 0.865 0.799 0.797 0.793 0.838 0.836 0.655 0.813 0.834 0.772 0.899 0.736 0.926

8 0.861 0.873 0.852 0.881 0.873 0.864 0.918 0.681 0.878 0.849 0.793 0.966 0.760 0.941

10 0.886 0.878 0.865 0.915 0.894 0.871 0.938 0.699 0.917 0.899 0.835 0.981 0.788 0.956

30% 3 0.671 0.717 0.480 0.617 0.623 0.602 0.618 0.557 0.611 0.578 0.629 0.621 0.627 0.695

5 0.676 0.784 0.637 0.639 0.640 0.629 0.653 0.599 0.647 0.711 0.648 0.698 0.638 0.798

8 0.740 0.835 0.667 0.661 0.675 0.673 0.697 0.632 0.663 0.700 0.664 0.790 0.649 0.861

10 0.798 0.855 0.676 0.675 0.678 0.709 0.715 0.632 0.688 0.732 0.675 0.856 0.653 0.881

https://doi.org/10.1371/journal.pone.0241291.t001

Table 2. Average of reconstruction rate for haplotypes with length 350.

e C SCGD H-pop SPH Fast 2d Cut MLF SHR DGS Fasthap FCM HG ARO HRCH

0% 3 0.999 1.000 0.999 0.989 0.965 1.000 0.864 0.830 1.000 0.985 1.000 0.996 0.999 0.999

5 0.999 1.000 1.000 0.999 0.993 1.000 0.929 0.829 1.000 0.983 1.000 0.997 1.000 0.999

8 1.000 1.000 1.000 1.000 0.998 1.000 0.969 0.895 1.000 0.983 1.000 0.998 1.000 0.996

10 1.000 1.000 1.000 1.000 0.999 1.000 0.981 0.878 1.000 0.998 1.000 1.000 1.000 0.999

10% 3 0.941 0.921 0.819 0.871 0.839 0.930 0.752 0.682 0.926 0.872 0.873 0.939 0.844 0.939

5 0.945 0.912 0.959 0.945 0.913 0.913 0.858 0.724 0.978 0.927 0.919 0.979 0.892 0.983

8 0.950 0.896 0.984 0.985 0.964 0.896 0.933 0.742 0.996 0.977 0.934 0.988 0.908 0.991

10 0.952 0.889 0.984 0.995 0.978 0.888 0.962 0.728 0.998 0.947 0.935 0.995 0.910 0.994

20% 3 0.813 0.813 0.439 0.684 0.675 0.771 0.642 0.591 0.691 0.763 0.671 0.712 0.659 0.813

5 0.817 0.860 0.729 0.746 0.728 0.831 0.728 0.632 0.769 0.811 0.719 0.905 0.691 0.897

8 0.832 0.871 0.825 0.853 0.791 0.862 0.798 0.670 0.842 0.912 0.728 0.899 0.709 0.922

10 0.838 0.873 0.855 0.877 0.817 0.867 0.831 0.668 0.878 0.923 0.733 0.907 0.719 0.937

30% 3 0.637 0.629 0.251 0.590 0.593 0.565 0.581 0.548 0.578 0.575 0.597 0.602 0.595 0.640

5 0.661 0.744 0.578 0.602 0.606 0.582 0.606 0.557 0.609 0.720 0.614 0.632 0.609 0.737

8 0.690 0.830 0.629 0.626 0.623 0.621 0.634 0.604 0.628 0.790 0.626 0.675 0.628 0.788

10 0.700 0.850 0.638 0.644 0.634 0.664 0.641 0.619 0.641 0.833 0.631 0.742 0.635 0.821

https://doi.org/10.1371/journal.pone.0241291.t002
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respectively. The obtained results demonstrate that the inclusion of the chaotic nature of hap-

lotype sequences can significantly improve the reconstruction rate.

Experimental dataset. The second dataset which is used for evaluation of the proposed

algorithm involves experimental data which was provided by 1000 genome project. The gath-

ered data belongs to an individual NA12878 which often is used to analyze the performance of

the existing haplotype assembly methods. The sample was provided by using 454 sequencing

method. According to the overlapping of the obtained fragments, they are represented in mul-

tiple matrices. In this experiment, for each chromosome, the first 500 matrices have been

selected. In each matrix, the length of each row is ~90 in average and cover the genome at a

depth of ~ × 3. Furthermore, the trio-phased variant calls from the GATK resource bundle

[55] was used as the target haplotypes. The obtained reconstruction rates of the proposed

method are compared to those of H-pop [34], SCGD [36], HG [33], ARO [24], and FCM [25]

Table 3. Average of reconstruction rate for haplotypes with length 700.

e C SCGD H-pop SPH Fast 2d Cut MLF SHR DGS Fasthap FCM HG ARO HRCH

0% 3 1.000 1.000 0.999 0.988 0.946 1.000 0.782 0.781 1.000 0.992 1.000 0.983 1.000 0.986

5 1.000 1.000 1.000 0.999 0.976 1.000 0.854 0.832 1.000 0.993 1.000 0.989 1.000 0.999

8 1.000 1.000 1.000 1.000 0.992 1.000 0.919 0.868 1.000 0.994 1.000 0.994 1.000 0.999

10 1.000 1.000 1.000 0.999 0.997 1.000 0.933 0.898 1.000 0.991 1.000 1.000 1.000 1.000

10% 3 0.934 0.919 0.705 0.829 0.786 0.927 0.698 0.668 0.931 0.917 0.834 0.934 0.801 0.928

5 0.951 0.923 0.947 0.941 0.880 0.916 0.809 0.716 0.977 0.872 0.881 0.990 0.862 0.972

8 0.956 0.945 0.985 0.986 0.948 0.896 0.863 0.743 0.987 0.945 0.883 0.987 0.899 0.983

10 0.973 0.951 0.986 0.995 0.965 0.889 0.884 0.726 0.997 0.983 0.996 0.997 0.912 0.992

20% 3 0.796 0.811 0.199 0.652 0.647 0.753 0.624 0.591 0.669 0.703 0.652 0.677 0.644 0.797

5 0.829 0.854 0.681 0.712 0.697 0.825 0.682 0.617 0.741 0.681 0.672 0.910 0.662 0.869

8 0.832 0.868 0.801 0.808 0.751 0.856 0.747 0.653 0.818 0.916 0.686 0.884 0.695 0.885

10 0.86 0.869 0.813 0.872 0.778 0.861 0.765 0.675 0.861 0.896 0.746 0.894 0.698 0.900

30% 3 0.652 0.600 0.095 0.581 0.583 0.552 0.570 0.536 0.573 0.627 0.592 0.592 0.588 0.602

5 0.659 0.733 0.523 0.591 0.596 0.555 0.594 0.562 0.595 0.682 0.599 0.621 0.598 0.699

8 0.662 0.804 0.616 0.615 0.613 0.597 0.614 0.611 0.614 0.741 0.606 0.646 0.613 0.729

10 0.714 0.844 0.627 0.616 0.622 0.645 0.625 0.625 0.622 0.805 0.606 0.696 0.618 0.759

https://doi.org/10.1371/journal.pone.0241291.t003

Table 4. The effect of refinement phase for haplotypes with length 700 in diploid case.

E C Hypergraph em = 1 em = 2

10% 3 0.916 0.918 0.928

5 0.966 0.968 0.972

8 0.980 0.981 0.983

10 0.989 0.991 0.992

20% 3 0.786 0.787 0.797

5 0.854 0.857 0.869

8 0.870 0.880 0.885

10 0.886 0.896 0.900

30% 3 0.600 0.601 0.602

5 0.688 0.689 0.699

8 0.716 0.720 0.729

10 0.748 0.754 0.759

https://doi.org/10.1371/journal.pone.0241291.t004
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approaches. The results for all 22 homologous chromosomes are listed in Table 5. The results

show that in most cases the proposed method achieved higher reconstruction rates compared

to the others. The last row of the table demonstrates the mean of RR values of the comparing

methods for all of the chromosomes. According to the obtained results, it can be concluded

that this method completely outperforms the other approaches.

Polyploid case

Here, the proposed method is compared with three recent approaches that have been devel-

oped to solve haplotype assembly in polyploid form including Althap [23], H-POP [34] and

SCGD [36]. The source codes of all comparing methods are available. To investigate the quality

of reconstructed haplotypes, reconstruction rate (RR), and MEC measure of the methods have

compared.

Indeed, the benchmark dataset is provided by simulation. For this aim, we have used the

source code, which is available upon request by [23]. Its input parameters are coverage (c),
error rate (e), and length of haplotypes (l). In this experiment, we defined c 2 {5,10,15,20},

e 2 {0.1,0.2,0.3} and l 2 {100,350,700}. For each combination of those parameters 10 samples

have generated. Each sample contains an SNP matrix with a huge amount of gaps. As can be

seen in Tables 6–8 the proposed method is compared with RR and MEC-based algorithms.

The results demonstrate that the proposed method outperforms the other approaches in

most cases considering both RR and MEC parameters. Similar to the previous section, to

Table 5. The reconstruction rate and running time for the proposed method, H-pop, SCGD, HG, ARO and FCM applied to the experimental dataset NA12878 data-

set provided by 1000 genome project.

Chr H-pop SCGD HG ARO FCM HRCH

RR t(sec) RR t(sec) RR t(sec) RR t(sec) RR t(sec) RR t(sec)

1 0.957 5.22 0.925 3.62 0.937 1.54 0.935 20.28 0.913 1.09 0.954 10.40

2 0.956 5.65 0.926 4.41 0.929 1.30 0.943 18.03 0.908 1.04 0.943 12.34

3 0.912 6.99 0.919 3.40 0.928 1.17 0.940 18.45 0.913 1.91 0.944 12.75

4 0.970 5.24 0.927 5.47 0.923 1.20 0.949 18.06 0.923 1.68 0.960 13.07

5 0.966 4.67 0.939 3.54 0.932 1.24 0.942 15.09 0.912 1.27 0.952 14.98

6 0.952 4.93 0.930 8.70 0.935 1.22 0.948 15.60 0.929 1.04 0.958 13.58

7 0.924 4.24 0.935 3.95 0.925 1.26 0.951 16.34 0.904 1.03 0.954 12.53

8 0.947 4.14 0.907 2.18 0.906 1.25 0.934 16.62 0.903 1.07 0.949 13.03

9 0.910 3.36 0.971 2.94 0.901 1.30 0.966 15.25 0.937 1.04 0.921 12.63

10 0.945 3.67 0.926 2.56 0.940 1.21 0.945 15.73 0.913 1.28 0.954 13.14

11 0.915 3.71 0.932 2.95 0.939 1.17 0.942 14.34 0.923 1.18 0.963 10.46

12 0.903 3.46 0.923 2.03 0.945 1.19 0.935 14.26 0.908 1.14 0.954 11.33

13 0.941 2.89 0.970 3.31 0.930 1.22 0.935 15.72 0.925 1.43 0.946 14.12

14 0.971 2.54 0.911 1.36 0.917 1.52 0.934 15.42 0.932 1.11 0.949 14.03

15 0.974 2.40 0.991 1.21 0.920 1.02 0.937 16.65 0.905 1.04 0.951 12.24

16 0.935 2.47 0.930 1.79 0.932 1.11 0.946 15.27 0.924 1.35 0.962 11.01

17 0.911 1.98 0.967 2.61 0.931 1.25 0.951 15.86 0.920 1.11 0.963 11.35

18 0.976 2.51 0.903 1.16 0.924 1.86 0.949 15.66 0.919 1.01 0.954 13.02

19 0.978 1.82 0.972 3.25 0.949 1.60 0.942 14.58 0.923 1.40 0.960 10.46

20 0.950 2.00 0.968 1.38 0.945 1.90 0.946 15.49 0.922 1.12 0.957 11.31

21 0.970 1.70 0.943 0.63 0.933 1.52 0.941 15.12 0.915 1.08 0.960 12.77

22 0.983 1.44 0.941 0.74 0.951 1.16 0.941 14.34 0.914 1.33 0.964 9.64

Mean 0.948 3.50 0.939 2.87 0.931 1.33 0.943 16.00 0.918 1.22 0.953 12.28

https://doi.org/10.1371/journal.pone.0241291.t005
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Table 6. Average of reconstruction rate for haplotypes with length 100.

e C SCGD H-pop AltHap HRCH

RR MEC RR MEC RR MEC RR MEC

10% 5 0.609 1289 0.745 269 0.736 315 0.830 260

10 0.567 2917 0.813 534 0.783 598 0.846 523

15 0.567 4282 0.828 805 0.754 1095 0.859 773

20 0.564 5846 0.844 1004 0.747 1864 0.839 1020

20% 5 0.596 1367 0.667 467 0.657 478 0.717 447

10 0.548 2862 0.692 1009 0.730 1050 0.768 942

15 0.549 3047 0.706 1539 0.666 2241 0.797 1443

20 0.547 5894 0.740 2016 0.631 3559 0.781 1920

30% 5 0.587 1373 0.596 554 0.630 548 0.661 538

10 0.550 2857 0.599 1244 0.633 1338 0.689 1190

15 0.548 4267 0.619 1916 0.596 2640 0.730 1849

20 0.550 5916 0.633 2591 0.572 4051 0.730 2512

https://doi.org/10.1371/journal.pone.0241291.t006

Table 7. Average of reconstruction rate for haplotypes with length 350.

e C SCGD H-pop AltHap HRCH

RR MEC RR MEC RR MEC RR MEC

10% 5 0.585 4925 0.596 1236 0.746 1016 0.737 1048

10 0.559 10059 0.698 2225 0.835 2055 0.809 2146

15 0.546 15717 0.670 3611 0.724 6583 0.844 2922

20 0.547 19824 0.727 4381 0.686 11103 0.786 4307

20% 5 0.576 4819 0.517 1771 0.656 1716 0.661 1700

10 0.552 10159 0.565 3784 0.651 5344 0.696 3450

15 0.539 15078 0.588 5776 0.602 9952 0.751 5201

20 0.538 20874 0.589 7801 0.592 14345 0.755 6962

30% 5 0.555 4845 0.470 2020 0.588 2016 0.631 1998

10 0.542 10108 0.508 4455 0.560 6208 0.646 4317

15 0.540 15164 0.511 6891 0.558 10841 0.665 6631

20 0.538 21403 0.518 9330 0.546 15422 0.658 8946

https://doi.org/10.1371/journal.pone.0241291.t007

Table 8. Average of reconstruction rate for haplotypes with length 700.

e C SCGD H-pop AltHap HRCH

RR MEC RR MEC RR MEC RR MEC

10% 5 0.641 9259 0.702 2549 0.772 2282 0.720 2392

10 0.582 20313 0.736 5438 0.924 3971 0.751 4850

15 0.514 30996 0.795 8062 0.948 6086 0.823 6860

20 0.514 41555 0.817 10205 0.889 10257 0.870 8389

20% 5 0.614 8987 0.634 3488 0.656 3409 0.698 3281

10 0.520 20500 0.650 7781 0.722 7280 0.711 7107

15 0.511 30936 0.659 11785 0.788 13672 0.763 10705

20 0.517 40781 0.701 15833 0.768 23738 0.764 14509

30% 5 0.578 9547 0.594 3882 0.600 3864 0.681 3813

10 0.523 20494 0.600 8770 0.607 8680 0.679 8442

15 0.514 31211 0.614 13737 0.566 17385 0.692 15393

20 0.514 41155 0.611 18620 0.545 27813 0.699 17841

https://doi.org/10.1371/journal.pone.0241291.t008

PLOS ONE A chaotic method to solve haplotype assembly

PLOS ONE | https://doi.org/10.1371/journal.pone.0241291 October 29, 2020 15 / 19

https://doi.org/10.1371/journal.pone.0241291.t006
https://doi.org/10.1371/journal.pone.0241291.t007
https://doi.org/10.1371/journal.pone.0241291.t008
https://doi.org/10.1371/journal.pone.0241291


emphasize the efficiency of the refinement phase, the RRs of haplotypes with length 700 have

been considered, as provided in Table 9. Similar to the diploid case, the improvement of RRs

reveals the role of chaotic viewpoint to efficiently decrease the amount of remaining noise in

the constructed haplotypes. Obviously, the proposed method is slower than the competitors,

because it starts from a random measure and is iterative. However, it can solve the problem in

a reasonable amount of time.

Since sequencing coverage of the used benchmark datasets were relatively low, we further

evaluated the performance of HRCH by dealing with high coverage data. For this aim, by

using the provided source code in [23], for diploid and polyploid cases, several samples were

generated individually. For each combination of l = 500, e = 0.3, and c = {30,40,50}, 10 samples

were generated. As shown in Fig 8, the reconstruction rates of the proposed method are com-

pared to those of AltHap [23], SCGD [36], and H-pop [34]. The obtained results demonstrate

that HRCH provides encouraging accuracy as compared to the competing schemes in diploid

and polyploid forms.

Conclusion

The high amounts of noise, as well as existing gaps in the input fragments, are the main chal-

lenges in solving the SIH problem. In this study, we established a sampling-based method that

starts from an initial set of haplotypes and iteratively proceeds to improve the input data by

correcting the SNPs with wrong measures. The proposed method involves two main steps.

First, it utilizes the hypergraph model to conquer the sparsity and high amount of noise, and

Table 9. The effect of refinement phase for haplotypes with length 700 in polyploid case.

e C Hypergraph em = 1 em = 2

10% 5 0.712 0.715 0.720

10 0.749 0.750 0.751

15 0.823 0.823 0.823

20 0.870 0.870 0.870

20% 5 0.678 0.687 0.698

10 0.705 0.708 0.711

15 0.762 0.763 0.763

20 0.763 0.764 0.764

30% 5 0.643 0.662 0.681

10 0.664 0.672 0.679

15 0.681 0.688 0.692

20 0.692 0.697 0.699

https://doi.org/10.1371/journal.pone.0241291.t009

Fig 8. Comparison of reconstruction rate of the methods over high coverage data a) Diploid b) Polyploid.

https://doi.org/10.1371/journal.pone.0241291.g008
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reconstructs haplotypes iteratively. Positions with low confidence are then rectified by map-

ping haplotype sequences to the coordinate series and applying a chaotic viewpoint. The pro-

posed method has the capability to manipulate genomic data of both diploid and polyploid

organisms. The promising results for diploid and polyploid data highlight that the method is

comparable with the existing approaches, and they have complementary roles to each other.

Finally, the source code of the proposed method is available at https://github.com/mholyaee/

HRCH.
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