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Large-scale neuromorphic hardware platforms, specialized computer systems for energy

efficient simulation of spiking neural networks, are being developed around the world,

for example as part of the European Human Brain Project (HBP). Due to conceptual

differences, a universal performance analysis of these systems in terms of runtime,

accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and

software development. In this paper we describe a scalable benchmark based on a

spiking neural network implementation of the binary neural associative memory. We treat

neuromorphic hardware and software simulators as black-boxes and execute exactly

the same network description across all devices. Experiments on the HBP platforms

under varying configurations of the associative memory show that the presented method

allows to test the quality of the neuron model implementation, and to explain significant

deviations from the expected reference output.

Keywords: neuromorphic hardware, spiking neural networks, benchmark, associative memory

1. INTRODUCTION

Neuromorphic hardware systems promise to simulate large-scale spiking neural networks at or
above biological realtime with a fraction of the energy requirements of supercomputer simulations.
As such, they are important tools for research regarding the computational principles of brain-
like networks (Hasler and Marr, 2013). As part of the Human Brain Project (HBP, Markram
2012), two neuromorphic platforms are being developed: the digital many-core SpiNNaker system
(Furber et al., 2013; Painkras et al., 2013), and the mixed-signal BrainScaleS physical model
system (Schemmel et al., 2010; Petrovici et al., 2014). However, there is no universal, well
assessable measure to characterize the performance of neuromorphic hardware, as it is common for
classical supercomputers, e.g., Feng and Cameron (2007). This can in part be ascribed to the vast
architectural differences between neuromorphic systems. Digital simulators such as SpiNNaker are
theoretically capable of solving any mathematical neuron model with high precision. Mixed-signal
physical models such as BrainScaleS offer emulation of neural networks at several magnitudes
speed-up compared to biological realtime, yet are limited in their adaptability and prone to
deviations caused by the manufacturing process and noise in the analog circuits. Benchmarks for
neuromorphic hardware must not only account for the raw runtime and energy efficiency, but also
for the achieved simulation accuracy under a certain workload.

In this paper we propose the amount of information stored in a regularly structured feed-
forward binary neural associative memory (BiNAM) as a benchmark indicator for neuromorphic
hardware systems. The BiNAM has been studied by Kohonen, Steinbruch, Willshaw, Palm, and
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others since the 1970s as an efficientmethod for patternmapping,
completion, and fault tolerant information retrieval in technical
systems and as a model for associations in biological neural
networks (Steinbuch, 1961; Willshaw et al., 1969; Kohonen, 1977;
Palm, 2013). Furthermore, activity of different neurons belonging
to the same pattern can be seen in the light of Hebb’s theory of
cell assemblies (Hebb, 1949), which can be interpreted asmemory
states (mental objects) in the cortex (Lansner, 2009).

For multiple reasons, the BiNAM is of particular interest
as a neuromorphic hardware benchmark. Foremost, the
theoretical properties of the memory are well understood when
implemented as a network of non-spiking McCulloch-Pitts
neurons (McCulloch and Pitts, 1943). This includes measures
such as the expected storage capacity of the memory (Palm,
1980; Rückert and Surmann, 1991; Schwenker et al., 1996). An
implementation of the threshold function found in McCulloch-
Pitts neurons on a spiking substrate requires careful tuning of
neuronal and synaptic parameters and is susceptible to deviations
in spike timings. The spiking BiNAM correspondingly tests how
well the mathematical neuron model, parameters and spike
timings are reproduced by the target platform. Furthermore,
the binary neural associative memory network is relatively
simple, regularly structured, and arbitrarily scalable. Simplicity,
e.g., the lack of feedback and inhibitory neurons, facilitates
mapping to experimental systems with still incomplete software
stacks and mapping routines, and thus allows to gather results
during their development. The highly regular structure of the
associative memory network potentially allows the localization
of anomalies in the hardware system and to infer the cause
of unexpected deviation from expected behavior. Scalability
is important for full utilization of the target platform, from
single-board dissemination up to large-scale hardware systems.
With these properties, our benchmark is a candidate for low-level
examination and comparison of neuromorphic platforms, and,
by informing about deviations from theoretical neuron models,
an aid to end-users designing networks. Nevertheless, it must be
emphasized that the benchmark is neither intended to replace
tests for specific hardware features, nor does it directly quantify
the ability of a platform to simulate complex, biologically
plausible, and functional neural networks.

So far, neuromorphic hardware benchmarks focus on
individual hardware systems instead of a generic black-box
approach. For example, several benchmarks exist for the
SpiNNaker platform, including an examination of neuron
accuracy (Sharp and Furber, 2013), an in-depth power analysis
of the SpiNNaker chip (Stromatias et al., 2013), as well as an
implementation of the neural engineering framework (Mundy
et al., 2015), and proof of concepts, such as a pre-trained
deep-belief network for the MNIST handwritten digit dataset
(Stromatias et al., 2015). More recent experiments (van Albada
et al., 2016) demonstrate the ability of SpiNNaker to simulate
large-scale biological models such as a cortical microcircuit, while
closely reproducing the results of the NEST software simulator
(Gewaltig and Diesmann, 2007).

Apart from specialized tests aiding the design of internal
software components (Ehrlich et al., 2010), BrainScaleS, its
emulator ESS (Brüderle et al., 2011), and the small-scale

precursor system Spikey (Brüderle, 2009), were evaluated by
analyzing, among others, an attractor network, a synfire chain
and a self-sustained asynchronous irregular activity model
(Brüderle et al., 2011; Pfeil et al., 2013; Petrovici et al., 2014).
In these publications, results are analyzed in great detail and
compared to simulations with pure software simulators. Yet, they
lack benchmark measures or indicators for automatic evaluation
and it is not inherently clear how the different implementations
of the same network model (e.g., the synfire chain) should be
compared.

While the aforementioned studies focus on first proof of
concepts tailored to individual platforms, a benchmark testing
a variety of neuromorphic platforms has been developed in
Diamond et al. (2015). Here, the SpiNNaker, Spikey, and GeNN
(a GPU-based simulator, Yavuz et al. 2016) platforms are
compared with a bio-inspired network of the insect olfactory
system. In contrast to our approach, each implementation is hand
tuned to the individual platform (Schmuker et al., 2014). This
allows to answer the question how well a certain task can possibly
be solved on a given system. In this paper however, we attempt to
assess the quality of the entire hard- and software stack available
to end-users by executing exactly the same network across all
platforms in one set of experiments (Sections 3.3 and 3.4), and
scaling the network to platform-dependent high-workload sizes
in another (Section 3.1).

The remainder of this paper is structured as follows: in
Section 2 we present the BiNAM, its spiking neural network
implementation, describe the target platforms, and outline the
overall benchmark procedure. The actual experiments, consisting
of a benchmark run with high workload, a data parameter sweep,
a neuron parameter sweep, and a power efficiency analysis,
are given in Section 3, followed by a concluding discussion in
Section 4.

2. METHODS

The proposed neuromorphic hardware benchmark is a
translation of a theoretical associative memory model to a
time-dynamic spiking neural network. In this section we review
the theoretical model and the corresponding network topology,
followed by discussions on how information is coded over time,
how neuron parameters are selected, which characteristics of
the target platforms have to be taken into account, and finally,
which experimental protocol is used to analyze the network
performance.

2.1. Binary Neural Associative Memory
(BiNAM)
Associative memories typically possess two modes of operation:
training and recall. In the training phase, the memory stores key-
value pairs Exk 7→ Eyk. Given an arbitrary input vector Ex, the
recall operation for an optimal associative memory is defined as
(Gerstner et al., 2014)

f ∗(Ex) = Eyk where k = argmin
k′

‖Exk′ − Ex‖ . (1)
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In other words, an optimal associative memory returns the
Eyk associated to the Exk best matching the current input Ex.
This function can be interpreted as resilient content-addressed
memory access, or, assuming auto-association (Exk = Eyk) and
incomplete Ex, as pattern completion. Both are considered key
functions of biological brains (Palm, 2013).

The BiNAM is a particular implementation of an associative
memory (Willshaw et al., 1969; Palm, 1980). As elaborated in
Palm (1980), it stores associations in a binary matrix M ∈ B

m×n

set to a superposition of outer products of Exk and Eyk

M =

N
∨

k=1

Exk · Ey
T
k with Exk ∈ B

m, Eyk ∈ B
n , (2)

where ∨ denotes the logical “or” operator and N the number
of samples. This training operation can be interpreted as
Hebbian learning (Hebb, 1949), where individual synaptic
weights (here: matrix entries (M)ij) grow stronger in the presence
of synchronous pre- and post-synaptic activity (Palm, 2013).
Recall is defined as multiplication of Ex with M followed by a
threshold operation (Heaviside function)

(

Ey ′k
)

i
=
(

f (Ex)
)

i
=

{

1 (ExT ·M)i ≥ ‖Ex‖1

0 otherwise
. (3)

Generally, the recall operation f is not optimal in the sense of
f ∗ in Equation (1): Ey ′

k
may contain additional entries equal to

one not in the trained Eyk (false positives). Mathematically, the
opposite is not possible (there are no false negatives, “ones” in
Eyk missing in Ey ′

k
) (Palm, 1980). Practically, false negatives are

introduced if the recall process is implemented on a substrate
such as a spiking neural network with inappropriate neuron
parameters, or due to stochastic processes in simulators or
neuromorphic hardware.

In order to simplify mathematical analysis of the memory,
we constrain the number of non-zero entries in all input and

output vectors to constant numbers ‖Exk‖1 = c and ‖Eyk‖1 = d.
Assuming statistical independence of all vectors Exk and Eyk, and
given false positive and negative counts αk, βk for each sample k,
the information I in bits recallable from the memory is given as
(Rückert and Surmann, 1991)

I =

N
∑

k=1

log2

(

n

d

)

− log2

(

αk + d − βk

d − βk

)

− log2

(

n− αk − d + βk

βk

)

. (4)

The expected average number of false positives per sample α̃ can
be approximated as (Palm, 1980)

α̃ = (n− d) ·

(

1−

(

1−
c · d

m · n

)N
)c

. (5)

Combining αk = α̃ and βk = 0 with Equation (4) yields an
approximate formula for the information capacity I under
optimal conditions. Maximizing I with respect to the number of
samples allows to approximate the optimal number of samples
that should be stored in the memory. The highest capacity is
reached for sparse data with small c, d which are of the order of
log(n) and log(m), respectively (Palm, 1980).

2.2. Spiking Neural Network
Implementation
The spiking BiNAM topology is a straight-forward translation
of the McCulloch-Pitts network described in Palm (1980).
It consists of a single layer of neurons, in which each
individual neuron represents one output component j. A synaptic
connection between input signal i and neuron j is established if
the corresponding entry in the trained storage matrix (M)ij is set
to one (Figure 1A).

Ones in the input vectors Ex are encoded as a burst of s
spikes with inter-spike interval 1t = 2ms. This 1t is relatively

A B

FIGURE 1 | (A) Implementation of the BiNAM as a neural network. Each output vector component is represented by a single neuron u1, . . . , un (triangles). Synaptic

connections between input and the output (circles) are created according to the trained memory matrix M. (B) Single column of a network with population size ω = 2.

The output components are represented by ω neurons, each receiving ω input signals per set bit in the input vector.
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small, but has been found to be not unusual for small bursts
of 4-5 spikes of pyramidal cells in visual cortex (Gray and
McCormick, 1996). Additionally, Gaussian jitter with standard-
deviation σt = 2ms is added to all spike times, with the same
sequence of random numbers being used for equal experimental
setups. We chose these values to attain an input rate of
approximately 500 s−1 per synapse, resulting in a combined peak
input rate of 2.000 s−1 for c= 4 simultaneously active inputs.
This is a small value compared to the combined input rate
of a cortical neuron, which can be roughly estimated to be
about 104 s−1 (Braitenberg and Schüz, 1998). Correspondingly,
we expect our network to be well realizable on all tested
neuromorphic hardware platforms. To eliminate the risk of inter-
pattern interference, a new input sample Exk is presented to the
network every 100ms, which guarantees the recovery of every
neuron to a resting state. We run our benchmark for two burst
sizes s= 1 and s= 4, where the former describes a burst-less
representation and the latter value is chosen to have maximal
neuron activity only in the first ten milliseconds, to further
assure the recovery to resting potential in the inter-pattern
interval.

Output spike trains are decoded into a binary representation
by counting the number of output spikes for each neuron (or
neuron population of size ω, see below) during each 100ms
sample presentation period. In case the output spike count
of the j-th neuron or neuron population exceeds ω during a
presentation period, the corresponding output vector component
(Ey ′

k
)i is set to one, otherwise it is set to zero.
To increase the network robustness on platforms which

encounter spike loss, we alternatively replace each neuron
with a small neuron population of size ω. Each input and
output component is represented by ω independent signals.
Connections are performed using an all-to-all connector,
resulting in ω2 synaptic connections for each one-entry in M
(Figure 1B). This representation allows to compensate for the
loss of input spikes and variability in the neuron parameters,

as the information carried in a single spike is reduced.
Furthermore, and as elaborated in Section 2.3, the use of neuron
populations widens the potential space of neuron parameters
which implement the desired neuronal threshold behavior. Note
that this procedure requiresmore neurons per output component
and therefore decreases the overall memory capacity achievable
on a fixed-size network.

In order to use the entire Spikey system, ω is restricted to
common divisors of 256 and 384 (e.g., 2, 4, 8, 16; see Section
2.4). To balance between a reasonable memory size and a high
multiplicity, we select both ω = 1 (no neuron multiplicity) and
ω = 4.

As our neuron model we choose a linear integrate-and-fire
point neuron with conductance-based synapses with exponential
decay (IfCondExp). This decision is based on our intent
to execute the same network on all target platforms, which
limits neuron model and parameter selection to the smallest
common denominator, in our case the Spikey neuromorphic
system (Section 2.4). With the exception of a single experiment,
our selected neuron parameters fall into the parameter range
supported by Spikey (see also Table 1).

2.3. Parameter Selection
A common goal of neuron parameter optimization in
neuroscience is to fit a model response to electrophysiological
measurements (Brillinger, 1988; Bhalla and Bower, 1993;
Gerstner, 2008; Gerstner et al., 2014). Techniques—with varying
degrees of applicability—include parameter space exploration,
gradient descent, bifurcation analysis, and evolutionary
algorithms (Prinz, 2007).

Parameter optimization in the case of the spiking binary
neural associative memory differs from common neuroscientific
approaches insofar as we do not fit the neuron response to a
given spike train, but optimize the number of output spikes in
response to a certain stimulus. Precise output spike timings are
of secondary concern. Correspondingly, we assess the quality of

TABLE 1 | Neuron parameter sets I–III used in this paper.

Neuron parameters

Parameter Default parameters Spikey* parameters Spikey range

Name Symbol Unit I II III I II III

Resting potential Vrest [mV] −80.0 −80.0 −80.0 −70.0 −75.0 −80.0 −80.0 to −55.0

Threshold potential Vth [mV] −57.0 −64.7 −62.0 −59.0 −55.0 −55.0 −80.0 to −55.0

Reset potential Vreset [mV] −80.0 −80.0 −80.0 −80.0 −80.0 −80.0 −80.0 to −55.0

Refractory timeb τref [ms] 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Leak conductance gleak [nS] 20.0 20.0 89.0 39.0 37.0 40.0 20.0 to 40.0

Membrane cap.b Cm [nF] 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Weightc w [nS] 10.0 1.0 1.0 6.0 3.0 1.0 0.0 to 15.0

Reversal potentialb Eexc [mV] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Time constanta,b τexc [ms] 2.0 2.0 2.0 5.0 5.0 5.0 2.0

Parameter set I for s = 1, ω = 1; II for s = 1, ω = 4 and s = 4, ω = 1; III for s = 4, ω = 4. Spikey parameters adapted form (Brüderle, 2009) and corresponding source code. See

Section 2.4 regarding Spikey parameter fitting.
aSpikey range is experimentally determined; bNot user-definable on Spikey via PyNN; cSynaptic weights discretized with 4 bit resolution on Spikey.
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neuron and synapse parameters θ in terms of a joint probability

P
(

n(I1) = ñ1, . . . , n(Iℓ) = ñℓ | I1, . . . , Iℓ, θ
)

=

ℓ
∏

i=1

P(n(Ii) = ñi | Ii, θ) , (6)

where P(n(Ii) = ñi | Ii,θ) is the likelihood of a neuron to
produce ñi output spikes given a time- and membrane potential-
dependent input current Ii(t, u). In our particular setup the input
current is generated by a spike train arriving at a conductance
based synapse with exponential decay.

As elaborated above in Sections 2.1 and 2.2, each neuron in
the spiking BiNAM implementation must implement a threshold
function. Such a function can be specified in terms of the above
framework with ℓ = 4 objectives. For both I1 = 0 and an input
I2 modeling s ·ω · (c−1) input spikes, the neuron should produce
ñ1, 2 = 0 output spikes. In contrast, for stimuli I3, 4 modeling
s · ω · c and s · ω · (c+ 1) input spikes, the neuron should output
a single burst consisting of ñ3, 4 = s output spikes. Input spike
times are selected according to the constraints laid out in Section
2.2.

An empirical approach to estimating the probabilities in
Equation (6) is to sample noisy stimuli Ii and measure the actual
output spike counts for each sampled input. Then, P(n(Ii) = ñi |
Ii, θ) is given as the fraction of trials in which the desired output
spike count is produced. This method is particularly useful for
manual parameter fine-tuning. It is less suited for automated
parameter optimization, since the joint probability is zero in large
portions of the parameter space, providing neither a gradient
for gradient descent, nor potential for random improvement
in evolutionary algorithms. Furthermore, this approach requires
hundreds of trials to provide good estimates and is thus relatively
slow (Stöckel, 2015).

An alternative approach to the estimation of the above
probabilities is the fractional spike countmeasure q. This measure
describes both the number of output spikes (integral part) and
the likelihood of an additional output spike being produced p

(fractional part). p is defined in terms of a one-dimensional
bifurcation analysis with respect to a perturbation current j,
which either increases or decreases the output spike count. Let
j+ denote the minimal excitatory current which increases the
number of output spikes relative to the unperturbed simulation

j+(I | θ) = min{j | n(I + j | θ) > n(I | θ)} . (7)

For n(I | θ) > 0, the current j− is the minimal inhibitory current
which decreases the output spike count

j−(I | θ) = min{j | n(I − j | θ) < n(I | θ)} . (8)

In case n(I | θ) = 0, the current i− is defined as the minimal
inhibitory current which suppresses all neuronal activity to a
point where the membrane potential u(t, I | θ) does not exceed
the resting potential vrest at any point in time

j−(I | θ) = min{j | u(t, I − j | θ) ≤ vrest ∀t} . (9)

Given these perturbation currents, p is defined as

p(I | θ) =
j−(I | θ)

j+(I | θ)+ j−(I | θ)
. (10)

Assuming a monotonic change in spike counts with respect to j,
this measure can be calculated to high precision with a binary
search. As shown in Figure 2, the method results in a smooth
gradient when varying neuron parameters, which facilitates
gradient-based optimization even for more detailed synapse and
neuron models as those used in the remainder of this paper. We
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FIGURE 2 | Examples depicting the fractional spike count in Equation (10) as a one dimensional function over a neuron/synapse parameter for two different neuron

models. (A) Adaptive Exponential neuron, Brette and Gerstner (2005). (B) Hodgkin-Huxley type neuron model with kinetics as fitted by Traub and Miles (1991). Both

neurons possess a single conductance based synapse with alpha-function shaped dynamics. The fractional spike count smoothly interpolates between the

corner-points of the spike count function, facilitating gradient based parameter optimization.
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derive the probabilities in Equation (6) by replacing the random
variables n(Ii) with q(Ii)−

1
2 and assuming a heavy-tailed Student’s

t distribution. We then optimize Equation (6) with respect to
the threshold-function objectives introduced above using the
Nelder-Mead method with random restart (Nelder and Mead,
1965; Press et al., 2007). Since this approach only results in an
approximation of the goal function in Equation (6), we manually
fine-tune the resulting neuron parameter estimate according to
themore accurate, yet slow, empirical probability estimate.1 Final
optimized parameters as used in the experiments are shown in
Table 1.

2.4. Target Platforms
As a reference platform we use the NEST software simulator in
version 2.10 (Gewaltig and Diesmann, 2007; Bos et al., 2015).
Individual network simulations were performed single-threaded
on an Intel Core i7-4710MQ processor. The IfCondExp model
used in our experiments is solved by NEST with an adaptive
fourth order Runge-Kutta-Fehlberg integrator with fifth order
error estimate and 10−3 absolute target error. Spike propagation
and threshold handling are synchronously performed with a
user-defined time-step of 0.1ms. For a small set of experiments
we manually patched the NEST source code to implement a naïve
Euler integrator2, which allows to analyze possible discrepancies
to SpiNNaker simulations (see below). However, note that our
integrator does not implement any of the optimizations present
in SpiNNaker (Rast et al., 2010).

The SpiNNaker system (Furber et al., 2013) is a digital many-
core architecture which integrates 18 general-purpose processors
on a single chip, along with multi-link routers for inter- and
intra-chip spike event propagation. Depending on the network
topology and neuron model, up to one thousand neurons can
be simulated on a single core at one thousand update steps
per second (Painkras et al., 2013). The IfCondExp model as
implemented in the sPyNNaker software package in version
2016.001 uses a 32-bit fixed-point state space representation and
an Euler integrator to solve the model equations (Rast et al.,
2010). We benchmark the system performance at biological
real-time with a time step of 1.0ms. This mode is of special
importance, as it allows SpiNNaker to be used as a platform for
realtime neuro-robotics. A possible bottleneck of the SpiNNaker
platform is network congestion caused by limited connection
bandwidth and routing table entries. This may result in spike
events being dropped or delivered too late to the target neuron.
For our experiments we use a four-chip stand-alone SpiNNaker
board.

The BrainScaleS physical model system (Schemmel et al.,
2010; Petrovici et al., 2014) implements the Adaptive Exponential
(AdEx) neuron model (Brette and Gerstner, 2005) as an analog
VLSI circuit. The system integrates entire silicon wafers of
HICANN chips, each containing two blocks of 256 analog AdEx
neurons. The model runs at a speed-up factor of 104 compared to

1A graphical tool for neuron and synapse parameter space exploration is provided

at https://github.com/hbp-unibi/adexpsim.
2Source code is available at https://github.com/hbp-unibi/nest-simulator/tree/

iaf_cond_exp_euler

biological real-time. In order to emulate the simpler IfCondExp
neuron model, parts of the AdEx model can be deactivated. Each
neuron possesses 224 synapse circuits3, and up to 64 neuron
circuits can be combined into a single logical neuron with
improved stability and increased input count. Synaptic weights
are discretized to 4-bit resolution and neuron parameters are
stored with an effective 10-bit resolution. In our experiments we
use a logical neuron size of four neuron circuits. Spike events
are transferred between synapse circuits, individual HICANNs,
and across wafer boundaries via a digital interconnect (Fieres
et al., 2008; Scholze et al., 2011), leading to similar restrictions
as for the SpiNNaker platform. In addition, possible deficiencies
may include an imperfect realization of the mathematical neuron
model, neuron-to-neuron variations, trial-to-trail variations
(due to analog reconfiguration), as well as non-deterministic
fluctuations in the model state and parameters during emulation.
At the time of writing, the hardware system itself could not
be used for our experiments. Instead, we run our simulations
on the BrainScaleS-ESS4 (executable system specification, short
ESS), which simulates the digital communication infrastructure
(including bandwidth constraints and limitations on spike
processing) in addition to the actual hardware neuron (with
discrete parameters, range restrictions, and the option to impose
noise on synaptic weights). The simulator and the hardware
system share the same software-frontend and processing steps
such as the conversion from biological to hardware parameters as
well as the mapping algorithm (Petrovici et al., 2014). Compared
to the real hardware, we expect the benchmark results to be
slightly better in simulation, since not all potential sources
of noise and variability present in the actual physical system
are modeled. However, since the communication infrastructure
and mapping are implemented in high detail, the ESS is an
excellent tool to analyze digital communication bottlenecks and
discrepancies between the user-defined network and its hardware
realization, such as the omission of synaptic connections due to
hardware constraints.

The Spikey5 single chip system (Pfeil et al., 2013) contains
a predecessor of the HICANN chip used in BrainScaleS and
implements a physical VLSI model of the IfCondExp model with
limited flexibility in neuron and synapse parameters (Table 1).
The Spikey chip contains 384 neuron circuits with 256 synapses
each. As with BrainScaleS, simulations are executed at 104 times
biological realtime and synaptic weights discretized to four bits.
Due to the analog nature of the system, membrane and synapse
circuits only provide an approximation of the mathematical
neuron model along with fluctuations in parameters and state.
This results in a non-deterministic behavior of single neurons,
and in consequence the entire network, if not specifically
designed to compensate for such deviations (Bill et al., 2010).
Note that the excitatory synaptic time constant τexc is not
exposed to users via PyNN, and thus treated as constant in

3This refers to the HICANNv2, which is simulated by the ESS. The waferscale

system uses HICANNv4, which features 220 synapses per neuron.
4The ESS software used in our experiments is dated June 7, 2017. Simulations are

executed on a server maintained by the developers.
5The Spikey system used in our experiments has the serial number 506.
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this study. Its actual value depends on various factors, including
the system calibration and the particular network connectivity
and parameters (Brüderle, 2009). Since the mathematical neuron
model used in the parameter optimization process requires an
estimate of τexc, we experimentally measured a typical excitatory
post-synaptic potential (EPSP) produced by Spikey and fitted
the response of the mathematical neuron model with varying
degrees of freedom. Consistently, lowest approximation errors
were achieved for τexc ≈ 2ms. See supplemental material for
details.

2.5. Benchmark Procedure
Given data parameters m, n, c, d (Section 2.1), we generate
N independent and uniformly distributed random (yet
reproducible) heteroassociative training data pairs Exk 7→ Eyk. The
data generator additionally imposes uniqueness on the vectors
and ensures minimum variance across the entries of the sum of
the first N′ vectors for any N′ ≤ N. This guarantees a balanced
workload, yet technically violates sample independence assumed
to derive Equation (4). In practice, any dependence caused by
these additional constraints is small as long as reasonably large
m, n are selected. Subsequently, we calculate the matrix M,
the theoretical information baseline Ith, and the average false
positives per sample ᾱth according to Equations (2) to (4).

The network and input spike trains are constructed as
described in Section 2.2 and subsequently executed on the
target platform. In the special case of parameter sweeps on
SpiNNaker, multiple independent networks are multiplexed and
executed in parallel. In addition, networks are executed in
random order to minimize correlations between individual runs
on the Spikey system. The number of networks simulated in
parallel depends on the available hardware resources. In case of
software simulations, the networks are simulated in independent
processes. We measure the execution time t including platform
specific setup/teardown. The neuronal output is recorded and
then decoded into the binary memory response Ey ′

k
, resulting in

the actual retrievable information I and average false positive and
negative counts ᾱ, β̄ . Comparison with the theoretical baseline
yields a set of normalized measures

In = I/Ith , β̄n = β̄/d ,

ᾱn =

{

ᾱ/ᾱth − 1 , if ᾱ ≤ ᾱth

(ᾱ − ᾱth)/(n− d − ᾱth) otherwise .

(11)

Here, values In = 1, ᾱn = 0, and β̄n = 0 correspond to a
perfect reproduction of the theoretical model. The false positive
count ᾱn is scaled to [−1, 1], with positive and negative
values corresponding to a shortage or surplus in false positives
compared to the expected values. Note that In is not the amount
of recallable information relative to the number of bits in the
storage matrix M, which has a theoretical maximum at ln(2) ≈
69% (Palm, 1980). Instead, the normalized information In is
relative to the theoretically expected recallable information Ith
for each individual dataset. It should be regarded as the relevant
benchmark indicator, the other values are auxiliary measures.
However, note that the achievable In does not only depend on
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FIGURE 3 | Overview of the software stack used to execute the benchmark

experiments. For all platforms, the same network description and input data is

passed to the Cypress C++ library, which controls the various target platforms

using PyNN and platform- and API-version dependent wrapper code.

the quality of the simulator, but also on the selected neuron
parameters, mandating to ensure that Ith can actually be reached
for the chosen parameter set in a reference simulator.

Note that In is only meaningful as a benchmark metric as
long as the memory matrix M is not saturated with one-entries.
Otherwise, vectors recalled from a random memory matrix—
or equivalently, a badly behaved target platform—may lead to
information values I larger than the theoretical optimum Ith.
Assume a random memory matrix M with P

(

(M)ij = 1
)

= 0.5.

The average false-positive ᾱrand and false-negative β̄rand counts
in a vector Ey ′ recalled from such a random matrix can be
estimated as

℘ = P
(

(Ey ′)i = 1
)

≈

m
∑

k= cth

B
(

k;m,
c

2 ·m

)

,

ᾱrand =
(

n− d
)

· (1− ℘) , β̄rand = d · ℘ ,

(12)

where B(k; n, p) is the probability mass function of a binomial
distribution, and cth is the threshold value encoded in the
network (in most cases cth = c). Given ᾱrand and β̄rand, the
random information baseline Irand can be calculated according to
Equation (4).We generally selected parameters in such a way that
Irand is close to zero. However, for a number of parameter sweeps
exploring the behavior of the BrainScaleS-ESS this condition is
violated. We indicate whenever this is the case.

All platforms are accessed through our self-developed Cypress
library, which acts as a C++ wrapper and compatibility layer for
the PyNN spiking neural network description language (Davison
et al., 2009). It allows to test the platforms, including their entire
hard- and software stack, as black-boxes, which receive a network
description and, once execution is complete, return recorded
spike train data (Figure 3). Both Cypress and our benchmarking
software are available online.6

6https://github.com/hbp-unibi/cypress; https://github.com/hbp-unibi/cppnam
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3. EXPERIMENTS AND RESULTS

In this section we describe three independent benchmark
experiments. In the first experiment we concentrate on
benchmark sets which test the performance of the target
platforms in scenarios with high workload, complemented
by a series of follow-up experiments focusing on optimizing
individual platform performance. In the second and third
experiment we perform one and two-dimensional parameter
sweeps, which test the platform at different levels of utilization
and highlight differences in the neuron parameter mapping. To
evaluate the efficiency of the systems, we propose an efficiency
measure and present power measurements. We then give a short
summary of the results.

3.1. Benchmark Experiments for
High-Workload Scenarios
In this experiment we analyze the performance of the
target platforms for high-workload configurations. Here, high-
workload refers to the usage of a maximal number of neurons
per platform and maximal number of synapses per neuron.
Spikey and the ESS are tested at full system/single chip neuron
utilization (384 neurons for Spikey and 128 neurons consisting of
4 neuron circuits each for ESS). SpiNNaker is analyzed with two
different input vector sizes and 1,600 neurons, which comfortably
map onto a single chip. Experiments are executed with and
without neuron populations and bursts, resulting in four modes
of operation (a) to (d). To mitigate stochastic effects, Spikey
experiments are repeated ten times (with exactly the same input)
and the results are averaged. This approach is not necessary for
digital simulators, which are either deterministic (NEST, ESS) or
do not exhibit variance across results (SpiNNaker). The sample
count N is chosen as the sample count with the maximum
amount of information stored in the memory. This value can be
estimated by combining Equations (4, 5) and maximizing for I.
The results, as well as data and neuron parameters are given in
Table 2 and discussed in the following.

3.1.1. NEST
The NEST reference simulations yield near-optimal performance
ratings in almost all cases. This is unsurprising since the neuron
parameters are tuned in such a way, that the mathematical
neuron model implemented in NEST reproduces the behavior of
a theoretical McCulloch-Pitts cell, which in turn is the neuron
type underpinning the theoretical model (compare Section 2.3).
In practice, In is slightly smaller than one due to the additive
spike-time noise in the input (Section 2.2).

3.1.2. SpiNNaker
The SpiNNaker platform produces results close to NEST. Some
larger deviations are visible in experiment (d). Here, a relatively
high false negative rate indicates that spikes might have been
lost. Interestingly, the issue does not occur for an increased
input count, pointing at a potential software problem.7 Another

7There is a known software problem causing Spike loss in the used software

version. A newer software release exists which has more severe problems with four

potential reason may be the limited accuracy of the numerical
solver, which we analyze in Section 3.2.

3.1.3. Spikey
In most cases, Spikey reaches about one quarter of the
theoretically possible recallable information. An exception is
experiment (b) with enabled neuron populations. This increases
the information to In = 39%. Additional activation of bursts
in experiment (d) results in a performance decrease, since
the corresponding neuron parameters cannot be mapped to
the hardware (compare Table 1). We were not able to find
parameters which at the same time fulfill the threshold condition
(Sections 2.2 and 2.3) and fall into the Spikey parameter range.
In general, log files produced by the Spikey software report
discarded input spikes, yet provide no quantitative information
regarding lost output spikes. In setup (a) a warning regarding
potential output spike loss is triggered (“event buffer half full”).
We would expect spike loss to result in an elevated level of false
negatives, however, this is not the case and we observe a high
number of false positives instead, causing the warning in the first
place. Thus, we conclude that spike loss is not a problem in our
Spikey experiments.

3.1.4. BrainScaleS-ESS
The BrainScaleS-ESS reaches In ≈ 94% for setup (a) with only
a small amount of false positives and negatives. Setups (b) and
(c) reach lower In ≈ 74% and In ≈ 86%, respectively, caused
by an increased number of false negatives β̄n ≈ 28% and β̄n ≈
14%. These can be explained with provenance data recorded
by the simulator, which tracks input spikes lost in off-wafer
communication networks, as well as spike loss at the on-wafer
output spike encoders. Note that experiments expanding on the
following assertions are presented in Section 3.2.

Setup (a) results in input spike loss below 1%, which
on average does not significantly influence the result. For
(b) about 6% of all input spikes and 4% (54 spikes) of
all output spikes are discarded, which roughly accounts for
the number of false negatives observed. For (c) about 3%
of all input spikes—0.5 spikes per sample—are discarded,
which again corresponds to the average β̄n · d ≈ 0.55 false
negatives per sample. The additional output spike loss in (b)
compared to (c) is likely caused by the population coding, which
triggers several spikes in different neurons at the same time,
resulting in high bandwidth requirements in the output spike
encoders.

For the last setup (d) we observe no output spikes at all.
Note that in population coding incoming spikes are packed more
densely, since the input spikes are triggered at approximately
the same moment in time. In conjunction with input bursts,
this temporarily results in a high peak network load, causing
40% loss on the way to the wafer, which corresponds to s ·
ω · c · 0.4≈ 25 lost spikes per sample. Remember that neuron
parameters were optimized in such a way that a single output
spike is produced for about s · ω · (c − 1) + 1= 49 input

node SpiNNaker boards, which is why, at time of writing, we are not able to analyze

this issue.
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TABLE 2 | Benchmark results on various platforms.

Hardware Data parameters Results Reference (NEST)

m n N In ᾱn β̄n t/N [ms] In ᾱn β̄n t/N [ms]

(A) SINGLE SPIKE, SINGLE NEURON (s = 1,ω = 1;Vth = −57mV,gleak = 20nS,w = 10nS)

ESS 112 128 735 0.933 0.008 0.029 2,526.30 0.974 −0.014 0.023 39.56

Spikey 256 384 4619 0.255 0.487 0.004 0.31 0.979 −0.014 0.020 121.22

SpiNNaker 1,600 1,600 1,136,48 0.917 −0.012 0.069 100.81 0.981 −0.014 0.018 1,106.43

SpiNNaker 10,000 1,600 7,102,99 0.948 −0.030 0.048 102.97 0.965 −0.033 0.034 2,106.28

(B) SINGLE SPIKE, POPULATION (s = 1,ω = 4;Vth = −64.7mV,gleak = 20nS,w = 1nS)

ESS 28 32 54 0.738 −0.380 0.278 3,142.96 1.000 0.000 0.000 44.89

Spikey 64 96 324 0.393 0.287 0.084 2.69 1.000 0.000 0.000 113.24

SpiNNaker 400 400 7,499 1.000 0.000 0.000 102.89 1.000 0.000 0.000 1,454.17

SpiNNaker 2,500 400 46,866 0.999 0.000 0.000 106.86 1.000 0.000 0.000 3,010.11

(C) BURST, SINGLE NEURON (s = 4,ω = 1;Vth = −64.7mV,gleak = 20nS,w = 1nS)

ESS 112 128 735 0.858 −0.131 0.138 2,507.62 0.981 −0.019 0.019 39.56

Spikey 256 384 4,619 0.250 0.112 0.488 0.34 0.980 −0.021 0.021 112.09

SpiNNaker 1, 600 1, 600 1,136,48 0.979 −0.021 0.021 102.40 0.981 −0.019 0.019 1,220.60

SpiNNaker 10, 000 1, 600 7,102,99 0.985 −0.015 0.015 118.32 0.982 −0.018 0.018 1,598.37

(D) BURST, POPULATION (s = 4,ω = 4;Vth = −62mV,gleak = 89nS,w = 1nS)

ESS 28 32 54 0.000 −1.000 1.000 3,145.00 0.909 −0.011 0.074 45.20

Spikey† 64 96 324 (0.240) ( 0.519) ( 0.038) (3.00) 0.936 0.002 0.046 169.78

SpiNNaker 400 400 7, 499 0.776 −0.119 0.204 103.85 0.935 0.001 0.049 1,473.98

SpiNNaker 2, 500 400 46, 866 0.980 0.001 0.015 108.46 0.976 −0.016 0.022 3,121.54

Symbols: m input size, n output size, N number of samples, In normalized information, ᾱn normalized average false positives, β̄n normalized average false negatives, t/N simulation time

per sample, s burst spike count, ω population size. For all experiments c = 4 (number of ones in the input Exk ) and d = 4 (number of ones in the output Eyk ). Refer to Table 1 for neuron

parameters. Darker colors indicate suboptimal results.
†
gleak is outside of the supported range for Spikey. Results are not valid and only included for reference. See text.

spikes. Therefore, it is highly unlikely that a sufficient number
of spikes arrives at a single neuron, explaining the lack of output
spikes.

3.2. Optimizing Platform Performance for
High-Workload Scenarios
Experiments in the previous section 3.1 focused on the
comparison of networks with exactly the same neuron
parameters. Furthermore, common platform configurations
encountered by end-users were used. Nevertheless, the above
experiments may be rightfully criticized for not fully exploiting
the capabilities of each specific target platforms. In the following,
we investigate in how far the benchmark results can be improved
when specifically tailoring the experiments to the target
platform.

3.2.1. SpiNNaker and NEST
As described in Section 2.4, the SpiNNaker system uses an
Euler integrator with a a default time step of 1ms to solve
neuron and synapse dynamics. In contrast, our reference NEST
simulations use an adaptive Runge-Kutta-Fehlberg integrator
and a maximum timestep of 0.1ms. In the following, we compare
SpiNNaker results to NEST simulations using an Euler integrator
with consistent 0.1 and 1ms timesteps on both platforms.

Results for these experiments are shown in Table 3. For
a 0.1ms timestep there is virtually no difference between

results for the NEST and SpiNNaker simulations, with the
SpiNNaker simulation being slightly better. For both platforms,
a 1ms timestep reduces the overall performance in most
cases, although the SpiNNaker Euler integrator performs far
better (with In between 91% and 100%) than our NEST Euler
implementation, where performance is reduced tremendously
to information levels as low as 52%. These results confirm that
the SpiNNaker integrator is more robust than a naïve Euler
integrator implementation. Furthermore, for this experiment,
there are no hardware-specific bottlenecks causing a reduction in
the network performance. However, it should be noted that our
single-threaded NEST simulations are about ten times faster for
a network of 1600 neurons filling a single SpiNNaker chip.

3.2.2. Spikey
As described in Section 2.4, we measured an excitatory time
constant of τexc = 2ms on our Spikey system and optimized
the neuron parameters for this value accordingly. To verify that
this assumption does not decrease performance, we evaluated a
second set of benchmarks with τexc = 5ms, which is the internal
target value of the calibration routine for the Spikey system.

In contrast to the previous experiments, we were not able to
find optimal parameters in this regime of the parameter space
for all scenarios, which is reflected in the reduced In for the
NEST reference simulation in scenario (d). Results for NEST and
Spikey with τexc = 5ms are both given in Table 4. In comparison
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to the previous experiments, Spikey performance is significantly
better in experiments (a) and (b). Especially in the latter setting
performance increased from roughly 40% to 65%. Interestingly,
and exactly as before, performance is worse in experiment (c)
with an increased false negative count, although the same neuron
parameters have been used. The same phenomenon can be
observed when comparing (b) and (d), suggesting that the switch
to burst coding triggers this problem. Analogous to Section 3.1,
spike loss has not explicitly been reported for these experiments.
Therefore, we assume that deviations are caused by imprecise
neuron parameter translation and noise.

3.2.3. BrainScaleS-ESS
As elaborated in the previous section, provenance data show
that a part of the false negatives observed in our benchmark
are related to loss of input spikes on their way to the virtual
wafer. The standard mapping algorithm inserts spikes from
external neurons into HICANNs that are physically close to
their target neurons (Jeltsch, 2014). This results in all input
spike trains being routed via few HICANNs with limited input
bandwidth (Thanasoulis et al., 2014). This bandwidth is most
likely to be exceeded in scenarios (b)-(d), where spike bursts or

neuron populations produce relatively high peak spike rates. To
address this problem, the current software allows to consider
the firing rate of external neurons and the input bandwidth
for the distribution of inputs to HICANNs, providing a larger
number of physical paths for the spike data. We executed the
same experiments from Table 2 with this option to test whether
this enhances performance.

The results in Table 5 show minor improvements in scenarios
(a) and (b). In setup (b) false negatives are mainly caused by
output spike loss, which is unchanged compared to previous
experiments. Relatively large improvements are visible for setups
(c) and (d). In setup (c) the input spike loss is reduced to below
1%, yielding results similar to (a). In setup (d) input spike loss
is reduced to about 2%, with an additional output spike loss of
about 7%. However, these spike loss figures do not fully account
for the still high average false negative count of β̄n = 0.43. As
indicated by the relatively low performance of the reference
simulation, this experimental setup is particularly sensitive with
respect to noise in neuron and synapse parameters as well as
spike timing. This suggests that neuron and synapse parameter
discretization alongwith potential spike time jitter in the ESSmay
be responsible for the remaining error.

TABLE 3 | Benchmark results on SpiNNaker compared to a naïve Euler-integrator implemented in NEST with different timesteps for the integrator.

Time step Data Parameters SpiNNaker NEST-Euler

1t [ms] m n N In ᾱn β̄n t/N [ms] In ᾱn β̄n t/N [ms]

(A) SINGLE SPIKE, SINGLE NEURON

0.1 1,600 1,600 113,648 0.973 −0.013 0.024 1, 003.19 0.981 −0.012 0.018 121.80

1.0 1,600 1,600 113,648 0.917 −0.012 0.069 100.81 0.557 0.188 0.001 11.24

(B) SINGLE SPIKE, POPULATION

0.1 400 400 7,499 0.998 0.000 0.001 1, 008.23 0.985 0.005 0.000 104.70

1.0 400 400 7,499 1.000 0.000 0.000 102.89 0.529 0.220 0.000 10.84

(C) BURST, SINGLE NEURON

0.1 400 400 7,499 0.978 −0.022 0.022 1, 009.84 0.958 −0.015 0.015 109.84

1.0 400 400 7,499 0.979 −0.021 0.021 102.40 0.933 0.022 0.002 11.34

(D) BURST, POPULATION

0.1 400 400 7,499 0.926 0.001 0.057 1, 013.192 0.929 0.004 0.047 113.68

1.0 400 400 7,499 0.776 −0.119 0.204 103.85 0.764 0.095 0.006 12.72

Darker colors indicate suboptimal results.

TABLE 4 | Benchmark results on Spikey with assumed τexc = 5ms.

Data Parameters Spikey Reference (NEST)

m n N In ᾱn β̄n t/N [ms] In ᾱn β̄n t/N [ms]

(A) SINGLE SPIKE, SINGLE NEURON

256 384 4,619 0.469 0.201 0.069 0.23 0.990 −0.008 0.010 122.84

(B) SINGLE SPIKE, POPULATION

64 96 324 0.643 0.117 0.066 2.52 0.909 0.037 0.000 117.30

(C) BURST, SINGLE NEURON

256 384 4,619 0.336 −0.318 0.608 0.26 0.995 −0.001 0.004 117.86

(D) BURST, POPULATION

64 96 324 0.291 −0.736 0.737 2.67 1.000 0.000 0.000 124.23

Refer to the Spikey* neuron parameters in Table 1. Darker colors indicate suboptimal results.
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TABLE 5 | Simulation results for the BrainScaleS-ESS using an increased bandwidth for spike insertion.

Data Parameters ESS NEST

m n N In ᾱn β̄n t/N [ms] In ᾱn β̄n t/N [ms]

(A) SINGLE SPIKE, SINGLE NEURON

112 128 735 0.936 0.008 0.026 3, 219.65 0.974 −0.014 0.023 39.56

(B) SINGLE SPIKE, POPULATION

28 32 54 0.782 −0.275 0.222 4, 480.50 1.000 0.000 0.000 44.89

(C) BURST, SINGLE NEURON

112 128 735 0.925 −0.052 0.069 3, 575.77 0.981 −0.019 0.019 39.56

(D) BURST, POPULATION

28 32 64 0.564 −0.421 0.431 11, 277.93 0.909 −0.011 0.074 45.20

Neuron parameters in Table 1. Darker colors indicate suboptimal results.

3.3. One-Dimensional Data Parameter
Sweeps
Here we conduct one-dimensional sweeps of the data parameters
m, n, c, d (Section 2.1). See Figure 1 for graphs of the normalized
information In, and the supplemental material for ᾱn and β̄n.

For a constant sample count N, the parameter m controls
the number of possible synapses per neuron, whereas n controls
the number of neurons. In the optimal case, the normalized
information measure would stay at 100% regardless of the
values for m and n. This behavior is observed for the NEST,
SpiNNaker, and BrainScaleS-ESS simulations. As in previous
benchmarks, the performance of Spikey ranges from 20% to 65%
of the theoretical performance, with an almost linear increase
in information capacity for both sweeps over m and n. A
discontinuity is visible at n= 192, the number of neurons in
a single Spikey block.8 A possible explanation for the increase
of performance with growing m, n is analog crosstalk. As
the network is scaled up, P((M)ij = 1) decreases, reducing
the number of neurons which spike or are driven to high
subthreshold regimes without spiking. Since more neurons are
in low membrane potential states, fluctuations caused by activity
in neighboring neuron and synapse circuits is less likely to
trigger false-positive spikes. This is visible as a decrease in false
positives ᾱn.

The sweep over the parameter c, the number of ones in the
input patterns, should cause a peak in In at c= 4, since the neuron
parameters have been tuned to this value (Section 2.2). Here,
NEST, ESS, SpiNNaker, and Spikey∗ (referring to the second
set of parameters, Section 3.2) behave as expected. A similar
peak is visible for Spikey with the first set of parameters at a
lower number of bits, demonstrating that the chosen parameters
would be better suited for simulating a BiNAM with c = 3 and
highlighting the parameter mismatch. In the case of the the ESS
experiment—which uses smaller m and n to reduce simulation
times—the random information baseline Irand is significantly
greater than zero for large c. As spike losses in the ESS suppress a

8The standard mapping of logical neurons to hardware is linear on Spikey, causing

the first 192 neurons to be situated on the first block of the system, whereas

consecutive neurons are located on the second block. Simulations with random

mapping do not show this discontinuity.

large number of false positives predicted by the theoretical model,
the normalized information capacity In surpasses its theoretical
maximum value of one. As discussed in Section 2.5, these
results highlight that Irand ≈ 0 must be ensured when performing
benchmark experiments.

Theoretically, variation of the number of active bits in the
output pattern d should not have any effect on In, as is the case
for the NEST and SpiNNaker simulations. As before, both show
normalized information values near In = 100%. For Spikey, the
measure decreases along with a higher overall network activity,
pointing at the aforementioned crosstalk problems, which is
further supported by the increasing number of false positives (see
Supplemental Material). The ESS behaves similarly as in the last
experiment. For larger values of d, the performance decreases as
spikes are lost on the way to and from the neurons. However, as
d increases even further, the random information baseline Irand
becomes much greater than zero. Correspondingly, the loss of a
significant amount of false positives seemingly causes an increase
in performance.

3.4. Two-Dimensional Neuron Parameter
Sweep
As already mentioned, a possible explanation for the inferior
results for Spikey is an incorrect translation of the neuron
model parameters to the analog hardware parameters. In
this experiment we explore the parameter space with a two
dimensional sweep over the threshold potential Vth and
the synaptic weight w. These parameters are in an easily
understandable relationship: given a parameter set for which the
memory works perfectly, an increase in the threshold potential
Vth requires larger w for the neuron to produce output spikes.
Results for In are depicted in Figure 5, results for ᾱn and β̄n

can be found in the supplemental material. Note that Irand
is significantly larger than zero in the ESS experiments (cf.
Figure 4). Correspondingly, the reported values for In should not
be understood as an absolute performance measure, but solely as
a means to characterize the ESS parameter space.

Both NEST and SpiNNaker reach the perfect normalized
information In = 1 in a large region of the parameter space.
Here, an increase in Vth must be met with an almost
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linear increase in w. Furthermore, for larger Vth the range
of synaptic weights w which produce a perfectly working
memory becomes larger, allowing for a more robust memory
with respect to parameter noise. Slight differences between
NEST and SpiNNaker, as well as the slightly noisier results
in SpiNNaker can be attributed to the lower precision of the
numerical Euler integrator (Section 2.4). The BrainScaleS-ESS
can reproduce the general parameter dependencies, while slight
deviations are caused by limited resolution of neuron parameters
and limited network bandwidth in areas with relatively large
weights and small threshold (as discussed above). Results for
Spikey differ significantly from those in NEST. No set of
parameters surpasses In = 60%, and the region with passable
results is broader, smoother, and shifted toward higher threshold
potentials and smaller weights (compared to NEST), indicating a
sub-optimal translation of neuron parameters. We also evaluated

a second set of parameters on the Spikey system, as with
our previous experiments. However, there are no significant
differences to the results shown here, although gleak was
significantly changed from 20 nS to 39 nS. For reference, the
results for the second sweep are included in the supplemental
material.

3.5. Power-Efficiency
In this section we compare the power consumption of the
Spikey and SpiNNaker neuromorphic hardware systems. We
did not analyze the ESS, since the power consumption of
the simulation is unrelated to the consumption of the actual
hardware system. For a more comprehensive analysis of the
setup times of networks in PyNN refer to (Diamond et al.,
2015). Note that we deliberately decided not to include common
power measures such as energy per synaptic event, as individual

A B

C D

FIGURE 4 | One dimensional sweeps over the input and output (A,B) vector size m, n, and the number of ones in the input and output (C,D) patterns c,d. Standard

network size of all sweeps is n = 256, m = 384, c = 4, d = 4, and N = 1, 000. The results for Spikey∗ refer to an alternative parameter set generated under the

assumption that τexc = 5ms. All simulations were averaged over five runs with different random seeds for the data generation. For the ESS we only evaluated single

simulations with standard parameters of m = 112, n = 128, and N = 735 and reduced resolution to decrease simulation times. The normalized random information

baseline is calculated according to Equation (12) with cth = 4. Of the two graphs in each subfigure, the one reaching larger In is based on the reduced matrix size in

the ESS experiment.
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A B

C D

FIGURE 5 | Sweep over the two neuron parameters Vth and w for NEST (A), SpiNNaker (B), Spikey (C), and BrainScaleS-ESS (D). Neuron parameters are set to

n = 256, m = 384, c = 4, d = 21, and N = 1, 000 (optimum), for the ESS these are changed to n = 112, m = 128, c = 4, d = 4, and N = 735 (again at optimal

storage capacity). Shown is the normalized information In. For Spikey results are averaged over five runs (C). The value of d was set to a higher number to reduce the

number of samples and with it the simulation time. Note that the sweep resolution is small for the ESS (D), resulting in aliasing artifacts.

neurons are either in or relaxing toward their resting state
most of the time, which would heavily bias a per-spike
power measure toward the static energy consumption of the
system.

Power measurements have been conducted directly in the
5V supply line during network simulation and platform-specific
setup for both hardware systems. For the four chip SpiNNaker
board we measured 220mA at 5.09V during simulation9,
resulting in a power-consumption of (1.12± 0.05)W. Spikey
consumes 1.11A at 5.28V, equaling (5.84± 0.06)W. Even
though power consumption of a NEST simulation highly
depends on the computer hardware being used, we at least
try to provide a rough estimate for the laptop computer
with Intel Core i7-4710MQ processor used for the presented

9All measurements±10mV and±10mA respectively.

benchmarks. The power consumption of the system idling
is approximately 11W, and approximately 29W while
NEST simulations are running.10 We calculate efficiency
based on the difference of 18W to exclude static power
consumption of peripheral devices such as the display from our
calculations.

As ameasure for energy efficiency Eeff, we propose the number
of samples that can be recalled per joule, scaled by the normalized
information In

Eeff =
In · N

E
=

In · N

P · t
. (13)

Table 6 shows the energy requirements of both hardware
platforms for a selected set of experiments from Section 3.1.

10Measurements performed with the powertop utility while the laptop was

powered by battery.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2017 | Volume 11 | Article 71

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Stöckel et al. Neuromorphic Hardware Benchmark

TABLE 6 | Energy consumption and efficiency of SpiNNaker (smaller benchmarks) and Spikey according to Equation (13).

Platform Hardware system NEST NEST-Euler

E/N [mJ] Eeff [1/J] E/N [mJ] Eeff [1/J] E/N [mJ] Eeff [1/J]

(A) SINGLE SPIKE, SINGLE NEURON

SpiNNaker 112.9± 5.04 8.1± 0.4 21,000 0.05 200 2.75

Spikey 1.8± 0.01 141.5± 1.5 23,000 0.42 38 14.66

(B) BURST, SINGLE NEURON

SpiNNaker 114.7± 5.12 8.5± 0.4 23,000 0.04 200 4.57

Spikey 2.0± 0.02 125.5± 1.2 23,000 0.42 38 24.40

Experiment parameters listed in Table 2. Power consumption for NEST and NEST-Euler simulations are only a rough estimate (see text). NEST-Euler refers to the trivial Euler integrator

with 1ms timestep discussed in Section 3.2.

Spikey is about 15 times more efficient than SpiNNaker, even
though it only allows to retrieve a quarter of the theoretically
expected information. Clearly, the reason for this discrepancy is
the speed-up of the physical system by a factor of 104 compared to
biological realtime, while the SpiNNaker system is set to realtime.
Nevertheless, these values should be interpreted with care. We
used approximately one quarter of the resources available on
a four-node SpiNNaker board, but measured its total energy
consumption. In addition, the sample presentation time was set
to 100ms, preventing interference between the sample recalls,
although values up to three times smaller are realizable on
SpiNNaker, greatly improving the energy efficiency. On Spikey
simulation times are already extremely short (e.g., for 4,619
samples simulation itself takes 46.19ms, while the total execution
time is 1.4 s). Hence, the energy consumption on this platform
is dominated by setup and teardown processes executed on the
host computer, e.g., neuron mapping. These are also included
in SpiNNaker and NEST simulations, but require a smaller
relative timespan. This is the main reason for the comparatively
small differences in efficiency: a speed-up factor of 104 at a
quarter of the normalized information and a factor of five in
power consumption would amount to much larger differences
in theory. The NEST simulations, when executed on a system
with an Intel Core i7-4710MQ processor, aiming at accuracy
instead of efficiency, are far off concerning energy consumption.
However, while our naïve implementation of the Euler-integrator
in NEST—running on a more modern chip fabricated in a
smaller semiconductor technology—consumes more energy than
SpiNNaker, energy efficiency is in the same order of magnitude.
Further potential for improvement exists, since our NEST-
Euler implementation is not as rigorously optimized as the
SpiNNaker implementation. To summarize, the analog Spikey
system is considerably more efficient than both SpiNNaker
and simulations on standard computer hardware. Tests with
far larger networks are required to asses the true potential of
SpiNNaker.

3.6. Summary
In all experiments presented above, only minuscule deviations
between SpiNNaker results and NEST simulations are visible,
whereas Spikey and the BrainScaleS-ESS deviate from the
reference behavior. Neuron parameter optimization specifically

for the Spikey analog neuromorphic hardware system yields a
normalized information value of up to In ≈ 64%. The presented
data parameter sweeps point at interference between neighboring
neuron circuits as a possible source for this discrepancy, as
well as not perfectly calibrated neuron parameters. For the
BrainScaleS-ESS, its internal book keeping of spikes lost during
simulation allows to interpret its behavior in terms of limited
available bandwidth on the on-wafer communication network.
The maximal information value achieved was about In ≈
94%. Due to extremely long emulation runtimes, which render
large-scale experiments rather cumbersome, experiments with
the actual hardware are necessary to reliably characterize the
performance of the BrainScaleS system, especially since the
actual BrainScaleS hardware may suffer from similar analog
interference and neuron parameter mismatch problems similar
to those observed in Spikey. Our proposed energy efficiency
measure suggests that Spikey is at least one order of magnitude
more efficient than SpiNNaker. More detailed experiments are
required to support this claim.

4. DISCUSSION

We introduced the binary neural associative memory (BiNAM)
as a benchmark for neuromorphic hardware systems and
conducted tests on SpiNNaker, Spikey, and the BrainScaleS-ESS
platforms with the software simulator NEST as a reference. We
successfully demonstrated that the regular, well-interpretable,
and arbitrarily scalable structure of the benchmark implicitly
tests the realization of the mathematical neuron model. In
conjunction with recorded provenance data the benchmark can
be used to obtain information about possible networking or
buffer bottlenecks, deficiencies in the neuron parameter mapping
process, and analog signal crosstalk.

Furthermore, we proposed a simple efficiency measure, which
takes time, power consumption, and quality of information
retrieval into account. We concluded that Spikey, even though
inferior in quality, is at least one order of magnitude more
efficient than SpiNNaker. We expect, that the Spikey system
will be even more energy efficient for longer runtimes, as in
our experiments the energy consumption was dominated by
setup and teardown processes. However, the SpiNNaker system
is undoubtedly more energy efficient than a workstation running
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NEST, yet reaches a similar simulation quality. Significantly larger
networks or a higher workload are necessary to reach the limits
of SpiNNaker.

Our experiments with a modified NEST with Euler integrator
suggest that—at least for small networks—mobile consumer
computer hardware reaches similar magnitudes of efficiency as
SpiNNaker. However, for large networks, it is to be expected that
the asynchronous computing architecture underlying SpiNNaker
will be significantly more efficient as soon as the network spans
a large number of chips. Conversely, our experiments suggest
that a faster integrator such as the optimized 32-bit fixed-point
Euler integrator implemented in SpiNNaker (Rast et al., 2010)
may cause a significant speed-up for NEST simulations, without
significantly reducing the accuracy of the simulator in some
cases.

With respect to its suitability as a benchmark, the BiNAM has
several clear advantages over other possible associative memory
networks, such as Hopfield attractor networks (Hopfield, 1982).
Not only is it non-trival to implement spiking attractor
networks (e.g., with respect to neuron parameter selection), it is
similarly hard to characterize their time-dynamics on a single-
spike level under the influence of noise. This unnecessarily
complicates reasoning about potential sources of errors in
the underlying hardware, which we think is an important
property of low-level benchmarks. In contrast, it is trivial to
reason about the network behavior on an individual spike level
in the context of the BiNAM. Furthermore, the evaluation
of attractor network outputs is only possible as soon as
the network has settled to its final state, making evaluation
potentially slow, whereas the feed-forward BiNAM architecture
allows to produce outputs at a very high rate. Even when
considering other potential neural networks that could be
used as a hardware benchmark, the BiNAM might be the
simplest—and thus most assessable—neural network which can
be directly translated to a spiking substrate while being a
functional model of an important building block of biological
brains.

Of course, it should be kept in mind that our benchmark
cannot judge the suitability of the platform for bio-inspired
models which are intrinsically capable of functioning even with
diverse noise sources and stochastic neurons. Therefore, our
conclusion from the presented data is that applications which
need pre-defined and well behaving neurons, should definitely
run on SpiNNaker. If the simulation needs the speed-up of
Spikey, or the HICANN hardware system, we recommend tuning
the behavior of the neurons with the hardware in the loop, to
accommodate for the discrepancies between the physical model
system and the mathematical neuron model (see for example
Schmuker et al. 2014; Schmitt et al. 2017).

This necessity for parameter tuning with respect to the
hardware the network is running on, is demonstrated by
our Spikey experiments. Some of the neuron parameters
opaquely depend on a variety of hardware parameters and
may thus not be controllable by end users. Even an educated
guess for one of these parameters might have been derived
under circumstances which are not representative of the final
network.

To implement such a hardware-in-the-loop parameter
selection for the BiNAM, the optimization technique presented
in Section 2.3 can be easily extended in such a way that the
neuron simulations are not executed as numerical simulations,
but directly run on the target system. A challenge that needs to be
overcome is the high setup time for individual experimental trials
on neuromorphic hardware, which quickly dominates the total
runtime during batch processing. Alternatively, it is possible to
multiplex several trials into a single experiment run, yet caremust
be taken to sample across all available physical neurons. However,
and as already pointed out in Diamond et al. (2015), we think
that the hardware developers should invest in reducing setup
times—caused by both mapping processes on the host computer
and the actual data transfer to the machine—and thus facilitate
the execution of many short experiments.

To counter the fact that network connectivity itself may
influence the neuron parameters (such as the synaptic weight w
influencing the synaptic time constant τexc on Spikey, Brüderle
2009), it would be interesting to optimize the neuron parameters
along with the entire network, e.g., by directly targeting the
benchmark indicator In in the optimization process. However,
this mandates a high throughput of individual experiments,
which—as mentioned above—is infeasible with the current
software stack provided by the hardware developers. A highly
interesting direction for future research would be to execute the
full feedback-driven optimization loop directly on the hardware,
yet this requires thorough knowledge of the hardware system
in question. For example, a future revision of the HICANN
chip will include a plasticity processor intended for biologically
plausible learning rules, which allows to update neuron and
synapse parameters while the network is simulated (Friedmann
et al., 2017).

The importance of detailed provenance data is highlighted
in our BrainScaleS-ESS experiments, where we were able to
significantly improve the performance of the system by analyzing
both benchmark and provenance data, followed by subsequent
adaptation of the experiment setup. To simplify this process for
future end-users, we urge the hardware developers to provide
tools which facilitate the analysis of the provenance data.

Future variants of our BiNAM benchmark could include
additional recurrent connections, as proposed in one of the
original BiNAM publications (Palm, 1980). This would allow to
test the hardware under higher load conditions while improving
the maximum memory capacity. Another promising benchmark
could be an implementation of the Spike Counter Model
(Knoblauch, 2003), an extension of a spiking BiNAM with
additional auto-associative recurrent and inhibitory neurons
acting as clean-up memories suppressing false-positives in
the output. Of course, these alterations introduce additional
complexity which—as discussed above—might not be desirable
for low-level benchmarks.
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