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When a child shows signs of potential motor developmental disorders, early diagnosis

of central nervous system (CNS) impairment is beneficial. Known as the first CNS-

controlled mobility for most of infants, mobility during crawling usually has been used

in clinical assessments to identify motor development disorders. The current clinical

scales of motor development during crawling stage are relatively subjective. Objective

and quantitative measures of infant crawling afford the possibilities to identify those

infants who might benefit from early intervention, as well as the evaluation of intervention

progress. Thus, increasing researchers have explored objective measurements of

infant crawling in typical and atypical developing infants. However, there is a lack of

comprehensive review on infant-crawling measurement and analysis toward bridging

the gap between research crawling analysis and potential clinical applications. In this

narrative review, we provide a practical overview of the most relevant measurements

in human infant crawling, including acquisition techniques, data processing methods,

features extraction, and the potential value in objective assessment of motor function in

infancy; meanwhile, the possibilities to develop crawling training as early intervention to

promote the locomotor function for infants with locomotor delays are also discussed.

Keywords: infant crawling, measurement, rehabilitation, review, motor development disorders

INTRODUCTION

Crawling is a four-beat gait, known as most infants’ first mobility, and the process of crawling
skill acquisition can be interrupted by developmental disorders such as cerebral palsy (CP) (1).
Infants with CP usually experience delayed or even lack of crawling skill, which greatly affects
the locomotor skill development (2). Based on knowledge of brain plasticity theory (3), with
intervention and training at early ages, better prognosis of motor function can be achieved. The
positive effects of early intervention on motor development have been verified by a few studies
[reviewed by Blauw-Hospers and Hadders-Algra (4)]. In particular, recently developed robotic
assistants showed a promising effect in promoting crawling in infancy (5, 6). Furthermore, the
motor dysfunctions of infants with CP are due to the neurological injury, affecting its ability to
regulate the organization of muscle activity, resulting in abnormal muscle synergistic contractions
and kinematic output (7, 8). Thus, objective and quantitative measures of muscle activity and
kinematic performance during crawling afford the possibilities to identify those infants who might
benefit from early intervention, as well as the evaluation of intervention progress (9, 10), even in
infants who cannot walk yet.
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For those infants without walking ability, traditional
assessment tools used by physical therapist provide a measure
of delay or abnormality. For example, the amount of delay
can be determined by the number of months away from the
normal time of milestone achievement (11), but the control
mechanisms underlying this delay are not always apparent.
Meanwhile, these assessments are relatively subjective and with
poor specificity (12). Thus, increasing studies aim to identify
objective and quantified measures of infant early movements.
For example, quantitative analysis of arm-leg coordination has
been performed in neonates’ stepping and demonstrated a neural
coupling between the arms and legs (13). Then, spontaneous
movements around 2 months have been shown to display some
primitive forms of coordinative behavior between arms and
legs (14). Much later, at approximately the age of 9 months,
infant’s creeping behavior begins with the clumsy attempts
to move forward with the abdomen touching the ground.
Subsequently, arms start to develop to have sufficient muscle
strength to support the abdomen above the support surface.
Then, the typical behavior of hands and knees crawling gradually
appears, using the diagonal coordination of the arms and
legs (15, 16). In addition, infant crawling includes a variety
of atypical crawling postures, such as creeping on the belly,
hand–foot crawling, and kneeling-crawling (17), as shown in
Figure 1.

It should be noted that infant crawling is quite different
from those reported infancy movements, which are either
elicited (e.g., stepping) or involuntary (e.g., spontaneous
movements). Crawling is a self-motivated rhythmic locomotion
that involves the central neural system (CNS)-controlled muscle
contraction serving for movement. Thus, quantifying muscle
contraction and kinematics during crawling appear to be
more likely to uncover the abnormal muscle control strategy
that related to the changes/impairments of the CNS (18).
With the advancements of wearable sensors and motion
capture techniques in recent years, increasing research work
has been carried out on the measurement and analysis of
infant crawling (19–21). However, to the best of the authors’
knowledge, there is still a lack of review work that can
provide an overview of the measurement and analysis of
infant crawling.

To fill this gap, this narrative review aims to give a practical
overview of the most relevant measurements and analysis in
human infant crawling. In Data Acquisition of Human Infant
Crawling, we review most of the researches regarding the
techniques used for crawling monitoring. In Detection and
Segmentation of Crawling Cycle, we explore the data processing
methodology commonly used to analyze crawling. In Features
of Infant-Crawling Analysis, we present the main features
and indices estimated to characterize crawling movement. In
Discussion, the potential values in objective assessment of infant’s
motor development, as well as the possibility to develop crawling
training as early intervention strategy for infants with locomotor
delay, are discussed. As shown in Figure 2.

DATA ACQUISITION OF HUMAN INFANT
CRAWLING

Early articles are usually based on film records and observational
techniques to analyze infant crawling. For instance, early in
1927, two infants were studied using observational techniques
to explore the coordination of limbs and body posture during
crawling (22). In 1967, 12 crawling sequences were analyzed
using graphical methods from six infants, and the differences
on the duration of stance between hands and knees were found
(23). In 1994, observational and kinematic techniques were
used to assess changes of the patterning of the limbs during
infant’s transition to hands-and-knees crawling (six infants)
(16). In 1998, Adolph et al. evaluated infant belly crawling and
hands-and-knees crawling by visually analyzing video images
at each frame (15). It should be noted that these studies
always used visual observation methods and are often anecdotal,
which are limited in scope regarding objective measurement of
infant crawling, Therefore, Table 1 summarizes recent objective
measurement in infant crawling from 2000 to 2021.

Pressure Sensors
A pressure sensor usually acts as a transducer; it generates a

signal as a function of the pressure imposed. Information derived
from such measures is important in gait and posture research

for diagnosing lower limb dysfunctions, footwear design, and
other applications (29, 30). In the study of infant-crawling

measurement, Yozu et al. recruited eight healthy infants to

directly crawl on the force plate, which is embedded withmultiple
single-point pressure sensors. Then the vertical peak ground

force (Vpk) was calculated, and no significant difference of Vpk
between arm and leg was found when infants were crawling on

hands and knees (25). Meanwhile, the pressure data recorded
from the pressure sensor placed on children’s palmwere also used

as a reference to detect crawling cycle (31).

Motion Capture System
With the rapid development of image processing technology
in recent years, motion capture technology has been widely
used in human movement analysis. The basic theory of this
technique is to record the trajectory of the marker attached on
the subjects using multiple cameras, so as to obtain kinematic
parameters such as displacement, velocity, and even joint angle
(32). In the study of infant crawling, Freedland et al. used video
recording and observational techniques to subjectively describe
the coordinated movement between limbs (16). In addition,
Patrick et al. used a motion capture system to further clarify
the prevalence of contralateral coordination of limbs during
infant crawling (17, 24), whereas Righetti et al. demonstrated
the existence of other limb coordination modes in addition to
contralateral coordination pattern in infant crawling and proved
that the interlimb coordination pattern in human crawling is
consistent with that of other quadrupedmammals (26). As shown
in Figure 3.
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FIGURE 1 | Examples of infant crawling style. (A) Hands-and-knees crawling. (B) hands-and-feet crawling. (C) Step–crawl mix, using foot and right knee. (D)

Creeping (17).

FIGURE 2 | Brief research protocol usually used in the study of infant crawling measures.

Surface Electromyography
The surface electromyography (sEMG) is a non-invasive
measurement, which mainly uses electrodes attached to the
belly of target muscle to collect the electromyographic (EMG)
signal that transmitted to the surface (33). Therefore, the
sEMG signal can be used to non-invasively monitor the muscle
activity during infant crawling. Moreover, sEMG from the
triceps brachii, biceps brachii, quadriceps, and hamstring during
crawling has been successfully collected in typical developing
infants (20) and infants with developmental disorders (10, 21).
Specifically, in order to obtainmore comprehensive physiological
information about infant-crawling movements, recently studies

usually combined the aforementioned techniques in the protocol
(17), for example, the simultaneous use of motion capture and
sEMG acquisition protocol in infant crawling (as shown in
Figure 4).

In summary, among the technologies applied to infant-
crawling measurement, many researchers have chosen motion
capture and sEMG to obtain information of joints and
muscle activity. In particular, joint activity measurements are
recommended by placing reflective markers at the major joints
of the extremities such as shoulder, elbow, knee, hip, and
ankle. Meanwhile, the measurements of muscle activity are
recommended by placing electrodes on triceps and biceps of
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TABLE 1 | Overview of measurement techniques to monitor human infant crawling.

References Participants Measurement techniques Placement of marker/electrode Data collected

Patrick et al. (24) Healthy infants (n = 26) Motion capture,

Electrogoniometer sEMG

Markers: shoulder, elbow, wrist, trunk,

hip, ankle

Electrogoniometers: hip, knee,

shoulder

sEMG electrodes: triceps brachii,

quadriceps, and hamstrings

Kinematic, joint angle,

sEMG

Patrick et al. (17) Healthy infants (n = 22)

Yozu et al. (25) Healthy infants (n = 8) Force plate (pressure

sensor)

N/A Vertical peak force

Righetti Ludovic et al. (26) Healthy infants (n = 7) Motion capture system Markers: shoulder, elbow, hip, knee,

neck, thoracic, lumbar

Kinematic

Ghazi et al. (27) Not presented Motion capture Markers: wrist, ankle, hip, upper back Kinematic

Xiong et al. (20) Healthy infants (n = 20) Motion capture system,

sEMG

Markers: shoulder, elbow, wrist, hip,

knee, ankle, trunk

sEMG electrode: triceps brachii,

biceps brachii, quadriceps,

and hamstrings

Kinematic, sEMG

Xiong et al. (10) Healthy infants (n = 20)

Infants with developmental

delayed (n = 47)

Gao et al. (21) Healthy infants (n = 17)

Infants with CP (n = 12)

Motion capture system,

sEMG

Markers: shoulder, elbow, wrist, hip,

knee, ankle, trunk

EMG electrode: triceps brachii,

biceps brachii

sEMG oscillations features

Forma et al. (28) Newborns (n = 60) Motion capture system Markers: shoulder, pelvis, knees,

elbow, wrist, head

Kinematic

Kawashima et al. (19) Healthy infants (n = 16) Video cameras N/A Video-based image

FIGURE 3 | (A) Illustration of the measured joint angles in sagittal plane. The shoulder, elbow, hip, and knee joints are measured. (B) Snapshot of a crawling infant

together with the position of the markers that were used to calculate the different angles (26).

the upper extremities, as well as quadriceps and hamstrings of
the lower extremities, as these muscles are the major flexion-
extension muscles of upper and lower extremities, and the
muscle size is big enough to measure in infant subjects. It
should be noted that in human locomotion, many muscles are
involved, making movement complex and smooth. Therefore,
protocol can be improved by recruiting more skeletal muscles
such as gluteus maximus. On the other hand, motion capture
system and sEMG techniques are required to attach markers
or electrodes to the subject’s body. For adults and school-aged

children, this procedure of data acquisition may be acceptable to
the subjects, but for those infants with brain impairment, such
as CP infants, the subjects often have emotional abnormalities or
lack of voluntary control. The attachment of sensors and markers
may cause uncomfortable for the subjects, which may reduce
their compliance with the data acquisition process or even refuse
to wear the sensors. Moreover, infant crawling is characterized
by a high level of natural movement, which is quite different
from passive guided crawling in adults (31, 34, 35) or school-
aged children (36, 37), who can already walk independently. The

Frontiers in Neurology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 731374

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xiong et al. Review on Infant Crawling Measurement

FIGURE 4 | Schematic of crawling measurement based on sEMG and motion

capture system.

attachment of sensors or markers may hinder the most “natural”
crawling behavior at both the “physical” and “mental” aspects.

Computer vision technology uses essentially computers and
cameras instead of the human eye to recognize, track, and
measure target objects and to obtain limb motion information
without placing markers on the target object. This technique has
been studied extensively in the field of gait analysis (38, 39),
but the application of this technology in the field of crawling
motion detection is sparse. Recently, Kawashima et al. verified
the possibility of using computer vision–based technology to
distinguish different crawling postures from video images for the
first time (19). The features of infant crawling were extracted
from the recorded video images based on image processing, and
then evaluation indices based on video images are calculated
for the movement feature extraction and analysis, as shown
in Figure 5. The application of this technique can be expected
to solve the problem of detecting and analyzing the “natural”
crawling mobility of infant subjects.

DETECTION AND SEGMENTATION OF
CRAWLING CYCLE

In order to have comparable data for a steady state of crawling,
only the crawling sequences in which the infant was crawling
straight toward a goal without stopping were selected, and only
complete crawling cycle sequences were considered for feature
extraction analysis. A complete crawling cycle was detected from
the contact of one limb on the ground to the next contact of
the same limb (begins with the onset of swing/stance and ends
with the next onset of swing/stance). As the displacement of the
wrist in the vertical direction shows rhythmic raising and falling
during crawling (as shown in Figure 6A), stance and swing of
crawling were usually determined by computing the squared time
derivative of the positions (squared of velocity) of the wrist (26).
Then, a threshold at 0.5 (m2/s2) proposed by Righette et al. was
used to decide when the limb was initially moving or stopping
(20). In a study on school-aged children’s crawling measurement,
the stance and swing phase were also determined by the pressure

threshold, which was identified by the baseline of the pressure
signal collected from the sensor placed on the palm, that is,
greater than the pressure threshold for the stance phase and less
than the pressure threshold for the swing phase, as shown in
Figure 6B.

FEATURES OF INFANT-CRAWLING
ANALYSIS

Kinematic Features
The analysis of infant crawling in the last century focused
on the crawling kinematic performance, especially wondering
how the limbs coordinate with each other during crawling. To
address this issue, Burnside (22) was the first to report that the
coordination pattern is between a walking trot and a lateral-
sequence walk during crawling on hands and knees. However,
there is no clear definition or specific quantification of these
interlimb coordination patterns. Then, Hildebrand proposed
“the percentage of the step length of the front foot to the step
length of the hind ipsilateral” to define interlimb coordination
patterns during quadruple locomotion (23, 40). In addition,
Patrick et al. studied infant crawling in various conditions
(treadmill and normal ground) and proposed the ipsilateral phase
lag (IPL) to quantify the coordination of limbs during crawling
(24). That is, the relative timing of the right upper limb contact
was expressed as a percentage of the crawling cycle determined
by consecutive right foot contacts:

IPL =

(

b

a

)

× 100% (1)

where b is interval of time between right foot and right hand
touchdown events, and a is cycle duration (Figure 7). This
coordination pattern between the upper and lower limbs may
be due to sustained neural connections between the cervical
and lumbosacral pattern generators (41, 42). Such connections
between the upper and lower limb neural controllers have been
verified in human movement by studying the modulation of
EMG and reflex activity of upper limbs muscles during rhythmic
activity of lower limbs and vice versa (42, 43).

In addition to the interlimb coordination during crawling,
other kinematic and gait characteristics, such as velocity,
duration, and joint angle during crawling, are also of interest.
For example, Righetti et al. found a strong correlation between
stance duration and crawling velocity when infants were crawling
on hands and knees (26). Sparrow et al. further proposed that
the duration of the support or swing phase can be quantified by
y = a • x • b (where a and b are a constant, x denotes
the crawling velocity, and y denotes the duration of the support
or swing phase, respectively) (44, 45). Moreover, Gallagher et
al. found that the overall movement durations of the upper and
lower limbs during crawling were the same, while the swing phase
duration of the upper limbwas smaller than that of the lower limb
during crawling (46).
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FIGURE 5 | Overview of the computer vision-based measurement system proposed by Kawashima et al. (19).

FIGURE 6 | (A) Example of stance and swing determined by the trajectory of

the wrist (upper graph, the lower line is the vertical direction, whereas the

middle and upper one are, respectively, the horizontal and lateral directions).

Vertical dashed lines separate swing (gray) and stance (white) phases (26). (B)

Example of stance and swing determined by pressure threshold. Greater than

the pressure threshold for the stance phase and less than the pressure

threshold for the swing phase (37).

sEMG Features
Crawling movement has been implemented by the CNS-
controlled synergistic muscle contraction serving for rhythm
limb flexion and extension, and the relevant muscle activities

during infant crawling reflect the development status of motor
function (18). Possibly due to ethical and technical reasons,
quantitative data concerning muscle activities in human infant
crawling are limited. In the following section, a few sEMG data
collected from children and adults crawling studies were included
as well.

Muscle Activation Level
The initial interest in muscle activity during crawling is the
activation of single muscle, and the parameters such as power,
root mean square, and mean absolute value of sEMG signals can
well-reflect the activation level of muscle activity. During infant
crawling, muscle activation of limbs has been briefly described
as triceps brachii is activated throughout the stance phase of
the arm during crawling, whereas quadriceps femoris is mainly
activated during swing phase of the leg (17, 20). In the study of
adult crawling, Maclellan et al. collected the sEMG signals from
26 unilateral upper and lower extremity muscles during adult
crawling and found that the activation level of upper extremity
muscles was significantly higher than that of lower extremity
muscles. Meanwhile, the activation level of lower extremity
plantar flexors during crawling was significantly lower compared
to upright walking (35). Moreover, the activation levels of the
lower quadriceps and tibialis anterior muscles increase with the
crawling velocity. Activation level of the triceps and posterior
deltoid muscles in the upper limb decreased with the increase of
the tilt angle of the crawling plane, whereas the activation level
of the gastrocnemius and flounder muscles in the lower limb
increased gradually (26). Gallagher et al. compared the muscle
activation level of lower extremities when adults were crawling
and walking in a constrained space, and they found that the
activation level of thighmuscles during crawling was significantly
higher than upright walking (46). These findings can be helpful
to understand the evolutionary process of the transition from
quadrupedal to bipedal walking.

Muscle Co-activation
It is well-established that an appropriate level of coactivation
between flexor and extensor muscles around joint is required
during joint flexion–extension (47). For example, the contraction
and stretching of the active muscles make the joints turn in one
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FIGURE 7 | Schematic diagram of interlimb coordination during crawling illustrated with the periods of stance (solid lines) and swing (spaces) (24).

direction (e.g., flexion), whereas the contraction of the antagonist
muscles makes the joints turn in the opposite direction (e.g.,
extension). The level of muscle coactivation usually been
measured by sEMG as the following data preprocessing steps: the
raw sEMG data are commonly filtered, demeaned, and rectified,
and then the EMG envelope is usually extracted by moving
window averaging or low-pass filtering (20). In addition, the
coactivation level between antagonistic muscles can be quantified
by the coactivation index (CI), which commonly uses the
interrelationship between the extracted sEMG envelopes, such as
(1) the area of the overlapping region of the envelope curves (48);
(2) the area of the product of the envelope curves (20); and (3)
the average value of the overlapping region of the envelope curves
(49). In the study of infant crawling, Xiong et al. measured sEMG
data in 20 healthy infants and demonstrated that characteristics
ofmotor development in infant-crawling stage, for example, non-
synchronous development of limbs and rapid reinforcement of
the leg, can be manifested by underlying muscle coactivation
between flexor and extensor of limbs (20).

Muscle Synergy
The generation of coordinated movements of the limbs during
humanmovement requires the participation of multiple muscles,
and the aforementioned coactivation of antagonistic muscles
can only describe the synergistic activity between two muscles.
For the quantification of synergistic contractions across multiple
muscles, muscle synergy analysis based on sEMG is a valid
tool to explore the coordination across multiple muscles during
locomotion (50). It is believed that the CNS might generate
motor commands through a liner combination of set of muscle
synergies (51), which are the building blocks of synergisticmuscle
activations coordinated by the CNS to simplify construction of
motor behaviors (52).

Specifically, in muscle synergy theory, the data matrix (M)
composed of EMG signals from multiple muscle surfaces is
often decomposed into a matrix of activation coefficients (C)
from the CNS and a matrix of intrinsic muscle synergistic
structures (W) present at the spinal cord level (53). Such
matrix decomposition is commonly achieved by the non-negative

matrix decomposition algorithm, and themost significant feature
of this decomposition algorithm is that it can guarantee the
non-negativity of the decomposition result, thus assigning the
corresponding physiological significance to the decomposed
results. The key of the algorithm is to decompose a non-negative
matrix M of arbitrary size to obtain two non-negative matricesW
and C by iteration, as shown in Equation (2).

Vm×t ∼= Wm×rCr×t (2)

where the matrix V denotes the original matrix withm rows and
t columns, and W denotes the decomposed obtained synergistic
matrix with m rows and r columns in size (usually r < m); each
column in this matrix represents a set of linear combinations
(corresponding to the weights of m muscles, respectively); c
denotes the decomposed coefficient matrix, and each row in
this matrix represents the activation coefficients corresponding
to the above linear combinations. In the past few years, muscle
synergy during hands and knees crawling has been studied
in healthy infants, young children, and adults. For example,
Chen and her colleagues extracted two alternative intralimb
muscle synergies from bilaterally limb-related muscles during
adult crawling, with one related to the stance phase and the
other related to the swing phase. Meanwhile, the structure of
synergy was found to be consistent across various crawling speeds
(31, 36). In the study of infant crawling, two alternating interlimb
muscle synergy patterns were also extracted from eight muscles
(bilateral triceps brachii, biceps brachii, quadriceps femoris,
and hamstrings) in healthy infants (10). The above findings of
muscle synergies extracted from infant and adult crawlers might
be suggested as the evidence that there may be two inherent
locomotor pattern generators (or neural circuits) that regulate
the contractile activity of multiple muscles in infancy locomotor
movement from neonates stepping to independent walking (54).
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DISCUSSION

Quadrupedal Nature of Human Bipedal
Locomotion
The same diagonal coupling between the upper and lower
limbs during human quadrupedal crawling and walking has
been highlighted as evidence that the functional spinal neuronal
networks underlying bipedal locomotion have a quadrupedal
organization (55, 56). Furthermore, it has been suggested
that such arm–leg coordination is due to similar organization
of the locomotor pattern generators [usually called central
pattern generators (CPGs)] (34, 57–59). Such locomotor
networks are operational early in development and exist
from neonates to adults. In particular, a recent crawling
study on the newborns demonstrated that locomotor CPG
network underlying quadrupedal locomotion develops during
fetal life (28). Patrick et al. investigated the coordinated
pattern of interlimb during crawling in adults and infants,
and demonstrated the existence of the CPG network in the
intact mature human CNS (24). This abundant evidence of
locomotor CPG in humans and the quadrupedal nature of human
locomotion raise a question in clinical rehabilitation: To what
extent are these locomotor neural networks during quadrupedal
locomotion available or reserved after CNS injuries? And, if
so, can they be used to promote bipedal walking for those
infants with locomotor delayed, such as CP? We briefly discuss
these below.

Crawling Intervention to Promote the
Locomotor Function in Early Infancy
The motor dysfunction of CP is one of the most common causes
of disability in infants, of which the injury of the developing brain
affects multiple networks of the CNS, including corticospinal
tract (60) and the physiological state of the spinal cord (61, 62).
In particular, if damage to the spinal cord neural network occurs
during development, then this can lead to changes in the control
of the descending motor pathways and further to change the
structure of the spinal cord circuits (63, 64). In addition, most
spinal cord synapses are in an inhibitory state (65), and damage
to areas such as the cerebral cortex that project to spinal cord
interneurons leads to the emergence of an inhibitory–excitatory
imbalance in the spinal circuitry, which has been suggested to
be a major cause of enhanced segmental reflexes with abnormal
radiation of stretch reflexes to other muscles in CP (66, 67).

It is reported that the critical period of maturation of
the corticospinal tract is before the age of 2 years (68, 69),
Friel et al. even proposed that the neural circuits may be
the first to mature in early infancy (3–5 months of age),
and once this window is missed, then full recovery of motor
function is not possible (62, 64). Thus, early intervention for
children with or at risk of CP is critical. It is worth noting
that available evidence for early accurate diagnosis of CP
can now be made before 6 months’ corrected age (70); it is
promising to intervene before 6 months in CP. Taking the
above considerations for a quadrupedal organization underlying
bipedal gait and the idea of critical developmental, we argue that
early quadrupedal/crawling training may enhance interventions

designed to promote locomotor function for those infants with
neurological injuries.

The theoretical justification for quadrupedal training is that
using the four-beat gait (i.e., crawling) to elicit walking practice
is task-specific for walking, and it incorporates many of the
principles of neuroplasticity (71). It addresses the principles of
“use it or lose it” and “use it and improve it,” can be implemented
with prelocomotor infants, and may affect skill development
beyond walking through the principle of transference (72). In
developing infant, crawling activates and integrates the different
parts of the brain, through crawling, neural connections, and
pathways established in the brain. Moreover, the evidence for
diagonal coupling in newborn crawling provides additional
support for the idea that training crawling at an early age might
contribute to the development of upright walking (28). Last
but not least, it is worth noting that improvements in gait do
not necessarily mean that coordination (or circuitry) necessarily
improved, and interventions that increase muscle length or
strength can also improve gait without changing underlying
coordination (62). For example, the lack of extensor strength
due to immature muscle cells is reported as one of the major
reasons why human infants cannot walk sooner (62, 73); an
important benefit of crawling movement is the enhancement
of core musculature, overall strength, and balance in the upper
and lower extremities (74). An increase in fine motor skills after
a crawling intervention has been found in the subjects with
autism spectrum disorder, and younger participants in the study
showed the most improvement in their fine motor skills (75).
Overall, it is plausible to use crawling intervention as an early
rehabilitation technique.

It is relevant to note here that the development of this
new rehabilitation strategy is exciting; the supporting scientific
evidence for improving gait after crawling intervention remains
limited. Nevertheless, several approaches are already reported
for implementing early quadrupedal training to hasten the onset
of independent walking in children with CP. For instance, a
kind of crawling training device was designed to assist children
with CP to carry out crawling training (76), as shown in
Figure 8. Forma et al. used a skateboard device to elect the
newborn crawling behavior (28), and they proved that locomotor
circuitry underlying quadrupedal locomotion develops during
fetal life, which provides a basis for initiating training in crawling
as early as birth. Graessle et al. reported an infant-crawling
orthosis to strengthen a neurologically impaired upper extremity
(77). Cardenas et al. designed a crawl and gait stimulator that
was tested with infants with Down syndrome or CP, and the
intervention can significantly shorten the time to complete the
path sequence for those infants with motor disorders (78). Some
other recent technological assistive solutions for implementing
early crawling intervention in children with CP were well-
reviewed by Cappellini et al. (62).

Crawling Measurement as Early
Identification of Motor Function in Early
Infancy
In addition to early intervention, research is also required to
explore motor function changes in response to the intervention,
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FIGURE 8 | Schematic diagram of crawling training device designed by Jiang et al. (76).

especially given the capacity for the evaluation of intervention
progress. For instance, the measurement and quantified metrics
of muscle activity during crawling can help to determine whether
patients suffer from muscle fatigue and overtraining during
quadrupedal training, and kinematic and locomotor metrics can
be used to evaluate the effectiveness of crawling intervention on
motor function improvement in the long term. As we mentioned
in the introduction, objective assessment of motor function
during walking can be conducted by gait analysis, which has been
widely used in clinics and typically provides quantified metrics
of kinematic and muscle activities (79–83). For those infants
without walking ability, movement abnormalities are usually
assessed by scores obtained on screening tests or visual analysis
of their movement quality (84–86), which are relatively subjective
and with poor specificity. Thus, measurement of infant crawling
after neurological lesions is highly relevant for early interventions
in infants at risk of developmental delays (10).

Our previous studies on infant crawling first demonstrated
that the sEMG and kinematic parameters such as CI, crawling
velocity, and stance phase time during crawling correlated with
clinical scale of motor function and thus may be useful in
building effective assessment of infant’s motor developmental
status (20). In addition, the following studies of crawling
analysis in infants with developmental disorders supported the
hypotheses that muscle synergy indices and kinematic output
presented significant differences between infants with confirmed
developmental delay and typical developing (TD) infants,
whereas the same variables did not show a significant difference
between TD infants and infants at risk of development delay (10).
Meanwhile, Zhang et al. conducted a preliminary investigation
on the difference of interlimb joint synergy metrics during
crawling between healthy infants and infants with developmental
delay (87), Wu et al. demonstrated the feasibility of using the CIs
of biceps, triceps, latissimus dorsi, and triceps during crawling

to quantify the relative activation levels in children with CP.
Furthermore, they clarified that such CI could be used to evaluate
the impairments of bilateral limbs during crawling in children
with CP (88). Similarly, Gao et al. proposed that time-varying
coefficient curve of sEMG oscillation synergies during infant
crawling is a potential index to evaluate the abnormal muscle
activities affected by CP disorders (21). Li et al. further explicitly
proposed a deviation index integrating sEMG and kinematic
features of crawling movements, which was mainly based on
the eigenvector ratio to quantitatively assess abnormal crawling
functions in children with CP (37). These studies imply a
different control strategy during crawling for those infants with
different severity of developmental delay, which could be useful
to develop more specific, patient-tailored rehabilitation strategy.

In conclusion, two key strengths of the current review are
that it (a) provides an overview on human infant-crawling
measurement and analysis for the first time and (b) suggests
crawling intervention strategies for improving gait in children
with motor developmental disorders. We hope that this article
will encourage further thorough investigations performed by the
experts from the area of researchers, clinics, and engineering
to develop crawling-based intervention strategies/device for
improving gait in infants with motor developmental disorders.
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