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Abstract

Background: Inadequate placental development is associated with a high incidence of early embryonic lethality and serious
pregnancy disorders in both humans and mice. However, the lack of well-defined trophoblast-specific gene regulatory
elements has hampered investigations regarding the role of specific genes in placental development and fetal growth.

Principal Findings: By random assembly of placental enhancers from two previously characterized genes, trophoblast
specific protein a (Tpbpa) and adenosine deaminase (Ada), we identified a chimeric Tpbpa/Ada enhancer that when
combined with the basal Ada promoter provided the highest luciferase activity in cultured human trophoblast cells, in
comparison with non-trophoblast cell lines. We used this chimeric enhancer arrangement to drive the expression of a Cre
recombinase transgene in the placentas of transgenic mice. Cre transgene expression occurred throughout the placenta but
not in maternal organs examined or in the fetus.

Significance: In conclusion, we have provided both in vitro and in vivo evidence for a novel genetic system to achieve
placental transgene expression by the use of a chimeric Tpbpa/Ada enhancer driven transgene. The availability of this
expression vector provides transgenic opportunities to direct the production of desired proteins to the placenta.
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Introduction

The mammalian placenta is the first organ to be developed

during gestation and carries out multiple functions required for

normal embryonic development in the uterine environment [1].

Impaired placental development is associated with many compli-

cations to both moms and babies during pregnancy, including

preeclampsia, intrauterine growth retardation (IUGR) and fetal

loss [2,3]. Thus, a better understanding of gene function during

placentation could provide new insights regarding normal

placental development and fetal growth, which will in turn help

guide the development of prevention strategies and new therapies

for the treatment of diseases associated with pregnancy, including

fetal abnormalities.

Genetic manipulation of the mouse is a powerful experimental

approach to study the functional role of specific genes by gain of

function or loss of function strategies [4]. However, the disruption

of many genes results in embryonic lethality because of placental

defects, making it difficult to evaluate the potential role the gene

may play in extraplacental tissues [1]. In addition, the embryonic

lethality of these mutant mice prevents their use to assess the role

of specific genes in postnatal physiology and development. Over

the past decade, the Cre/loxP system, utilizing Cre recombinase to

catalyze a deletion event between two DNA fragments containing

the 34 bp loxP recognition site, has been commonly used for

conditional gene deletion strategies to assess biological function of

genes in certain types of cells or tissues in vivo [5]. However, the

lack of a robust placental specific transgene to efficiently and

specifically express desired genes (including Cre recombinase) in

placenta has hampered progress in a number of areas of placental

developmental biology. For example, the inability to disrupt the

expression of specific genes in the placenta has prevented the

analysis of the exact role of these genes in placental development.

In addition, the inability to reliably direct expression of

transgenes to the placenta has prevented the use of transgenic

strategies to correct placental defects, thereby making it possible

to study the role of a specific gene in other (i.e., non-placental)

aspects of embryonic development and/or postnatal develop-

ment. To overcome this limitation, we set out to develop a

mammalian expression vector containing strong placental

enhancers to drive robust placental specific expression of desired

genes.
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To reach this goal, we focused on the placental enhancers from

two genes known to drive the expression of reporter genes in

placenta of transgenic mice. The first enhancer is a 340 bp

regulatory fragment from the 59-flanking region of trophoblast

specific protein a gene, Tpbpa, a gene encoding a putative inhibitor

of placental cathepsins that is specifically expressed in the

trophoblast lineage in mice [6,7,8]. The other is a 1.8 kb fragment

from the 59 flanking region of the gene encoding adenosine

deaminase (ADA), an enzyme present at high levels in trophoblast

cell lineages throughout placental development [9]. Early studies

identified a 1.8 kb fragment in the 59-flanking region of the Ada

gene that is responsible for placenta specific expression [10,11].

However, the characterized placental regulatory elements for Ada

generally provided relatively low placental expression. Therefore,

we attempted to generate a robust placental specific enhancer by

testing combinations of both Tpbpa and Ada enhancers.

Materials and Methods

Reagents
One-step RT-PCR kit, cell culture medium, antibiotics and fetal

bovine serum (FBS) were purchased from Invitrogen (Carlsbad,

CA). pCAG-CATZ and AdMA19 plasmids were a generous gift

from Dr. M.D. Schneider (British Heart Foundation Centre of

Research Excellence, National Heart and Lung Institute, Imperial

College London, London SW7 2AZ, UK)). PKS-Tpbpa plasmid

was a generous gift from Dr. Janet Rossant (University of Toronto,

Toronto, Ontario, M5S 1A1 Canada). Cre recombination-

reporter mice were purchased from Jackson laboratory. HEK-

293, M1, A549, ML12, K562 and HeLa cells were purchased

from the American Type Culture Collection (Manassas, VA).

Plasmid construction
The Tpbpa enhancer fragment was generated by Pfu DNA

polymerase-based PCR using PKS-Tpbpa plasmid [6] and paired

primers flanked with KpnI sequence, 59 primer, TAGGTACCG-

TAGACTGTTCCTCAGTAGA; 39 primer, TAGGTACCCTC-

GAGAGAGAA AGACACTT. PCRs were performed with an initial

denaturation at 95uC, 2 min. PCR cycling conditions were 30 cycles

of denaturation at 95uC for 30 sec, annealing at 60uC for 30 sec,

extension at 72uC, 60 sec, and final extension at 72uC for 10 min.

The PCR product of the Tpbpa enhancer was digested with KpnI and

subcloned into KpnI restriction site of pGL3-basic luciferase vector to

generate pTpbpa-Luc. In addition, the Tpbpa PCR fragment was

blunted and subcloned into pAda-Luc vector containing the 0.8 kb

basal Ada promoter (AdaP) or Ada enhancer/AdaP containing the

1.8 kb Ada enhancer and 0.8 kb basal Ada promoter to generate

pTpbpa-AdaP-Luc and pTpbpa/Ada-AdaP-Luc vector in reverse or

forward direction (pTpbpar/Adaf-AdaP-Luc and pTpbpaf/Adaf-AdaP-

Luc). Finally, a second copy of Tpbpa was further subcloned into

pTpbpaf-AdaP-Luc or pTpbpar/Adaf-AdaP-Luc constructs to generate

pTpbpaf-Tpbpaf/AdaP-Luc and pTpbpaf-Tpbpar/Adaf-AdaP-Luc.

To generate Tpbpar/Adaf-AdaP-Cre vector, a Cre DNA recom-

binase fragment (1.9 kb) containing a nuclear localization

sequence (NLS) was released from paMHC-Cre plasmid by

digestion with KpnI, subsequently blunted with T7 DNA

polymerase and then cut with Hind III. This fragment was

subcloned into pTpbpar/Adaf-AdaP-Luc construct with replacement

of luciferase fragment by digestion with XbaI, blunted with T7

DNA polymerase and then cut with Hind III. The accuracy of all

construct sequences was confirmed by DNA sequencing.

Transient Transfection and luciferase activity
Human trophoblast cell line HTR-8/SVneo (HTR) [12] and

non-trophoblast cell lines HEK-293 (human embryonic kidney),

HeLa (human cervical carcinoma), M1 (renal tubular epithelial),

A529 (human lung epithelial), ML12 (mouse lung epithelial)and

K562 (human leukemia)were plated on 6-well plates at 1.06105

cells/well with RPMI1640 medium supplemented with 10% FBS

and 1% antimycotic for overnight. Cells were transfected with

various constructs using Fugene 6. A Renilla luciferase construct

was used as a transfection efficiency control. After 24 hours,

cellular extracts were isolated and luciferase activity measured

using a dual luciferase assay kit as described (Promega, Madison,

WI) [3,13].

PCR analysis of Cre recombinase activity in vitro
To determine Cre-mediated DNA recombination after transient

transfection, PCR analysis was conducted as described [14].

Briefly, HTR cells were cotranfected with the Cre-dependent

reporter gene, CAG-CATZ, with or without CMV-Cre or

different amounts of Tpbpar/Adaf-AdaP-Cre construct, respectively.

CAG-CATZ harbors a CAT gene flanked by loxP sites and driven

by the chicken b-actin promoter. Downstream of CAT is E coli b-

galactosidase (lacZ). DNA was isolated 48 h after transfection and

PCR analysis was performed using oligonucleotides synthesized

corresponding to the 39end of the chicken b-actin promoter (59-

CTGCTAACCATGTTCATGCC-39; AG2) and 59 end of the

LacZ gene (59-GGCCTCTTCGCTATTACG-39; Z3). In addi-

tion, additional oligonucleotides synthesized corresponding to the

39end of the CAT gene (59-CAGTCAGTTGCTCAATGTACC-

39; CAT2) and 59 end of the CAT gene (59-ACTGGTGAAACT-

CACCCA-39; CAT3) were used as an internal control for

transfection efficiency and resulted in a 320 bp PCR fragment.

Using AG2 and Z3 primers, in the absence of Cre, only the

2100 bp precursor PCR fragment was detected. However, in the

presence of Cre, both 2100 bp (precursor) and 690 bp (product)

PCR fragments were detected. Any cells transfected with the Cre

reporter were screened by PCR using primer pair CAT2 and

CAT3 which give a 320 bp PCR product.

Luciferase analysis of Cre recombinase activity in vitro
Similar to PCR analysis of Cre recombinase activity, HTR cells

were transfected with AdMA19 luciferase construct containing a

spacer interposed between two loxP sites precluding efficient

lucifearse expression in the absence of Cre recombinase. Forty-

eight hr after transfection, cellular extracts were collected and

luciferase activity was measured as described [3,13,15].

Generation of transgenic mice
All animal manipulations in this study were reviewed and

approved by the Animal Welfare Committee, University of Texas

Houston Health Science Center (Protocol# HSC-AWC-09-159).

The 5 kb Tpbpar/Adaf-AdaP-Cre gene containing the Tpbpar/Adaf-

AdaP chimeric enhancer Ada promoter and Cre recombinase

transgene was excised from Tpbpar/Adaf-AdaP-Cre plasmid vector

backbone using NotI and HpaI. Linear Tpbpar/Adaf-AdaP-Cre DNA

fragment was separated by electrophoresis through 1% agrose gel

and purified using Qiaex II reagents (QIAGEN Inc., Chatsworth,

CA). The linear Tpbpar/Adaf-AdaP-Cre gene was microinjected into

the pronuclei of FVB zygotes [6,16] at a concentration of 2 ng/ml

in 10 mM Tris-HCl (pH 7.4), 0.1 M EDTA and injected embryos

were transferred to pseudopregnant FVB females.

RNA isolation, quantification of real time PCR (RT-qPCR)
and semi-quantitative RT-PCR

Trizol reagent was used for the isolation of total RNA. The

reverse transcriptase-polymerase chain reaction (RT-PCR) was
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performed according to the manufacturer’s recommended protocol

(Invitrogen, Carlsbad, CA). 1 mg of RNA was used per reaction and

single strand cDNA was synthesized at 55uC for 30 minutes. The

annealing temperature of PCR for Cre and GFP is 50uC. PCR

conditions were as described [15]. Cre primer sequences were: sense

primer, 59-CCCTGTTTCACTATCCAGGT, and antisense prim-

er, 59-GGGTAACTAAACTGGTCGAG. GFP primer sequences

were: reverse, 59-GGCCATGATATAGACGTT; forward, 39- AA-

GTTCATCTGCACCACCG. b-actin was used as an internal

control and primer sequences were: reverse, 59-CCACCGATC-

CACACAGAGTAC and forward, 59-GCTCTGGCTCCTAG-

CACCAT. RT-PCR products were revealed on 2% agarose gels.

RT-qPCR was performed using SYBR green JumpStart Taq

ReadyMix (Sigma) on an Applied Biosystem 7000 under the

following conditions: 95uC, 2 min; 95uC, 15 s; 50uC, 15 s; 72uC,

30 s; 40 cycles. Each cDNA sample was run in triplicate. Relative

Cre expression was calculated following normalization to b-actin.

Genomic DNA isolation, genotyping by PCR and gene
copy number analysis

Genomic DNA was isolated using a DNeasy tissue kit (Qiagen,

Valencia, CA). Presence of Tpbpar/Adaf-AdaP-Cre transgenes in

founders was assessed by amplification of genomic DNA from tail

samples [6,16], using a sense primer at the 59 end and anti-sense

primer for the Cre cDNA, respectively (59-CGGTCTCTGA-

GAGCCATC-39 and 59- CCCTGAACATGTCCATCA-39) and

resulting in a 340 bp band. To determine the genotype of

placentas from pregnant F1 offspring, genomic DNA was isolated

from embryos. Cre recombinase transgene gene copy number was

determined by qPCR as described [17]. qPCR was performed

with 200 ng of DNA in duplicate using green JumpStart Taq

ReadyMix (Sigma) on an Applied Biosystem 7000. Endogenous

mouse b-actin was used as an internal control for DNA input. The

quantitative standard curve was generated using a series of

standard samples containing 1, 2, 4, 8, 16 copies of the Cre gene

respectively, which were prepared by mixing wild type DNA from

FVB mice with the Tpbpar/Adaf-AdaP-Cre vector. Standard curve

was drawn by plotting CtCre against the log of Cre gene copies of

corresponding standard samples. Cre was amplified from genomic

DNA extract from transgenic mouse tissues and the gene copy

number was obtained by using the standard curve with the given

sample CtCre.

Cre recombinase and ADA immunostaining
Mouse tissues were fixed in 10% formalin overnight, dehydrat-

ed, paraffin embedded and cut at 4 mm thickness. Slides were

stained using standard methods. Briefly, slides were stained with

either sheep anti-mouse ADA (1:400 dilution) [18] or rabbit anti-

Cre (1:1000 dilution, EMD4 Bioscience, Gibbstown, NJ) at 4uC
overnight. Signal was detected with either anti-sheep or anti-rabbit

IgG horseradish peroxidase kit (ABC kit, Vector Laboratory,

Burlingame, CA). Counterstaining is hemotoxylin.

LacZ staining and quantificaiton
Mouse placentas were bisected. Half of each placenta was

frozen with liquid nitrogen and half was mounted in freezing

medium and then frozen with liquid nitrogen. Sets of 4–6 mm

cryostat sections were obtained and fixed in 4% formaldehyde for

10 min. 59-bromo-4-chloro-3-indolyl- b-D galactopyranoside (X-

gal) staining was performed as described [6]. The counterstain was

nuclear fast red. Quantification of the LacZ staining was

performed using the Image-Pro Plus software. The density of

each zone of blue staining (positive for LacZ) was measured. The

average densities of each zone of placentas were averaged and the

SEM is indicated.

Statistical analysis
All data are expressed as the mean 6 SEM. Statistical

significance of the differences between the mean values of multiple

groups was tested by one-way ANOVA, followed by Tukey-

Kramer post-tests. Data were analyzed for statistical significance

using GraphPad Prism 4 software (GraphPad Software, San

Diego, CA). A value of P,0.05 was considered significant.

Results

Random assembly of Tpbpa and Ada placental enhancers
upstream of the Ada basal promoter to drive expression
of a luciferase reporter gene

Tpbpa and Ada placental enhancers are among the few

enhancers known to confer placenta-specific gene expression in

vivo. However, the utility of these enhancers has been limited by

low expression levels. Thus, to generate a potentially stronger

placental expression vector we chose to randomly assemble

placental enhancers from the Tpbpa and Ada genes in front of

the Ada basal promoter (for details see Methods and Materials

section). To quantify the expression of these chimeric enhancer

promoter combinations, a luciferease reporter vector was used as

shown in Figure 1A.

Screening for expression constructs with trophoblast
specific transcriptional activity

The various constructs were analyzed by transfection into the

human trophoblast cell line (HTR) followed by the measurement

of luciferase activity in cell extracts. All of the constructs

exhibited enhanced luciferase expression in the trophoblast cell

line except the enhancerless basal luciferase vector and a

construct lacking the Ada basal promoter (Figure 1B). Among

all of the constructs tested, a particular construct in which the

Ada enhancer was in the forward orientation and the Tpbpa

enhancer was in the reverse orientation (Tpbpar/Adaf-AdaP)

showed the highest luciferase activity in the trophoblast cell line

(Figure 1B). We also tested this construct for luciferase

expression in a variety of non-trophoblast cells, including

HEK293 (renal cell), Hela (cervical carcinoma), M1 (renal

tubular epithelial cell), A529 (human lung epithelial cell), ML12

(mouse lung epithelial cell) and K562 (human leukemia cell).

Notably, the luciferase activity driven by the double enhancer

construct, Tpbpar/Adaf-AdaP, was significantly higher in tropho-

blast cells (HTR) than in non-trophoblast cells (Figure 1C),

suggesting that this construct is capable of enhanced expression

in trophoblast cells. Thus, the Tpbpar/Adaf enhancer combina-

tion provoked the highest transcriptional activity among the

constructs tested and provided gene expression that was

restricted to trophoblast cells.

Tpbpa/Ada enhancer construct drives Cre-mediated
recombination in cultured trophoblast cells

The Cre/loxP system provides a powerful investigative strategy

to study gene function in specific types of cells or tissues. To

achieve trophoblast-restricted expression of Cre recombinase, we

modified the Tpbpar/Adaf-AdaP expression construct by replace-

ment of the luciferase reporter gene with cDNA encoding Cre

recombinase equipped with a nuclear localization signal (NLS)

(Figure 2A). Next, the ability of the Tpbpar/Adaf-AdaP-Cre

construct to direct the synthesis of Cre recombinase in trophoblast

Placental Specific Gene Expression
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cells was determined by a loxP site specific recombination assay as

described previously [14]. HTR cells were co-tranfected with Cre-

dependent reporter genes, CAG-CATZ for PCR analysis or

AdMA19 for luciferase bioassay, together with CMV-Cre or

different amounts of Tpbpar/Adaf-AdaP-Cre transgene (Figure 2 B

& D). The CAG-CATZ plasmid harbors a CAT gene flanked by

loxP sites and driven by the chicken b-actin promoter. Down-

stream of CAT is the E coli b-galactosidase gene (lacZ) (Figure 2B).

The AdMA19 reporter gene contains a CMV promoter driving a

luciferase transgene. However, efficient expression of the luciferase

reporter depends on a Cre-mediated loxP recombinational event

that removes of a spacer region separating the CMV promoter

from the luciferase coding region (Figure 2D). A 320-bp band was

detected by PCR (using internal control primers, CAT2 and

Figure 1. Random assembly of placental specific enhancers and in vitro analysis of their ability to activate the basal promoter of the
Ada gene in multiple cell types. (A) Schematic illustrations of the constructs. (B) Luciferase activity in human trophoblast (HTR) cells transfected
with each construct. (C) Luciferase activity driven by Tpbpar/Adaf-AdaP chimeric enhancer in multiple cell lines. Data are expressed as mean 6 SEM.
n = 4–6. * P,0.05 versus cells transfected with Adaf-AdaP construct.
doi:10.1371/journal.pone.0029236.g001
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CAT3) from all cells transfected with CAG-CATZ. A 690 bp PCR

product (representing recombination between the two loxP sites)

was detected by primers AG and Z3 when using DNA isolated

from cells cotransfected with either CMV-Cre or Tpbpar/Adaf-

AdaP-Cre construct and loxP construct (CAG-CATZ). Only the

2100 bp PCR product, representing the original unrecombined

DNA sequence, was detected when cells were transfected with

CAG-CATZ alone (Figure 2C).

Similarly, luciferase activity was only observed in the cells

transfected with either CMV-Cre or Tpbpar/Adaf-AdaP-Cre and

AdMA19 but not AdMA19 alone (Figure 2D). Thus, both assays

indicated that Cre recombinase functions in a dosage-dependent

manner to promote loxP-dependent DNA recombination. Notably,

the lucifearse activity mediated by the Cre recombinase in human

trophoblast cells transfected with the Tpbpar/Adaf-AdaP double

enhancer construct was even higher than that achieved by

Figure 2. Generation of Tpbpar/Adaf-AdaP-Cre chimeric expression vector and in vitro analysis of its Cre recombinase activity in
human trophoblast cells. (A) Structure of pTpbpar/Adaf-AdaP-Cre construct. Tpbpar/Adaf chimeric enhancer and Ada basal promoter (AdaP) were
ligated to the sequence encoding Cre cDNA containing a nuclear localization signal (NLS). (B) Schematic representation of pCAG-CATZ vector. The
PCR primers, primer pair 1 (AG and Z3) were used to monitor Cre-mediated loxP-dependent DNA recombination (2100 bp for parental DNA, 690 bp
for the recombined DNA). Primer pair 2 (CAT2 and CAT3) were internal primers used to detect pCAG-CATZ. (C) PCR analysis: pCAG-CATZ was
transfected alone or together with CMV-Cre or different amounts of Tpbpar/Adaf-AdaP-Cre into human trophoblast cells (HTR). DNA was isolated 48 h
after transfection and assayed for the presence of the recombination-dependent 690 bp fragment. In the absence of Cre, only the 2100 bp precursor
PCR fragment was observed. However, in the presence of Cre, both the 2100 bp precursorand the 690 bp product PCR fragments were detected. The
amount of 690 bp PCR fragment observed increased with additional Tpbpar/Adaf-AdaP-Cre transfected to the cells. The 320 bp PCR fragment was
used to determine that pCAG-CATZ was transfected into the cells. (D) Schematic representation of AdMA19 vector. Spacer interposed between the
loxP sites precludes efficient lucifearse expression in the absence of the Cre recombinase. (E) Luciferase analysis. AdMA19 vector was transfected with
CMV-Cre (CMV-Cre/AdMA19,1:1), different amounts of Tpbpar/Adaf-AdaP-Cre (Tpbpar/Adaf-AdaP-Cre/AdMA19,1:1 or 5:1) or alone. Cellular extracts were
isolated 48 h after transfection and luciferase activity was measured. All data are expressed as mean 6 SEM. n = 6. * P,0.05 versus cells transfected
with AdMA19 construct only. **P,0.05 versus Tpbpar/Adaf-AdaP-Cre/AdMA19,1:1.
doi:10.1371/journal.pone.0029236.g002
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transfection with the CMV promoter driven Cre. Thus, these

findings demonstrate the Tpbpar/Adaf-AdaP expression vector

drives enhanced expression of Cre recombinase in human

trophoblast cells.

Tpbpar/Adaf-AdaP-Cre transgene directs placental-
restricted expression in mice

To determine whether the chimeric Tpbpar/Adaf-AdaP construct

drives placenta-specific Cre recombinase expression, the construct

was used to generate transgenic mice. Live births were genotyped

for the Cre transgene. Seventeen Tpbpar/Adaf-AdaP-Cre transgenic

mice were identified from 40 pups by PCR using primers specific

for the chimeric Tpbpar/Adaf-AdaP construct. Eight transgenic

lines were further characterized. Six out of eight transgenic lines

(75%) showed the placental-restricted expression. As shown in

Figure 3A, Tg 1 and Tg6 showed relatively lower copies of Cre

transgenes than those of Tg 5 as judged by analysis of genomic

DNA from tails using real time PCR. Real time PCR (qPCR) data

indicated that Tg5 contains 8 copies of Tpbpar/Adaf-AdaP

transgene.

Next, to determine whether Tpbpar/Adaf-AdaP transgenes were

only expressed in the placenta we mated females from all six

Tpbpar/Adaf-AdaP-Cre transgenic lines with wild type FVB males.

On gestation day 16.5 the Tpbpar/Adaf-AdaP-Cre transgenic

females were sacrificed and placentas, fetuses and multiple

maternal organs were collected. We found that Cre mRNA was

expressed in approximately half of the placentas and was not

detected in any of the maternal organs tested or in fetuses of

Tpbpar/Adaf-AdaP-Cre transgenic pregnant mice. All six transgenic

lines showed very similar transgene expression patterns. The

expression pattern observed for one transgenic female (line 5, with

the highest copy-number of the transgenes) is presented in

Figure 3C and 3D. Notably, we confirmed that all placentas

positive for Cre mRNA also contained the Tpbpar/Adaf-AdaP-Cre

transgenes, while the placentas negative for Cre mRNA were also

negative for the transgene (Figure 3B &C). Although the

genotyping analysis by PCR showed fetuses contained the

Tpbpar/Adaf-AdaP-Cre transgene, no Cre mRNA was detected in

those fetuses (Figure 3D & E). Thus, Tpbpar/Adaf-AdaP-Cre

constructs appear to confer placental specific Cre mRNA

expression.

To validate our RT-qPCR results, we used immunochemical

analysis to determine the expression profile of Cre recombinase in

the placenta and multiple other organs obtained from pregnant

Tpbpar/Adaf-AdaP-Cre transgenic mice. Immunochemistry staining

by anti-Cre antibody confirmed that Cre recombinase was not

observed in the liver, kidneys, heart or spleens of pregnant female

transgenic mice (Figure 3G). However, Cre recombinase was

observed in placentas containing Tpbpar/Adaf-AdaP-Cre transgenes

(Cr+(Tg)) but not in those lacking this trangene (Cre2) (Figure 3F).

ADA (adenosine deaminase), a well-known trophoblast marker, is

used to identify trophoblast cells in placenta. Consistent with

previous studies, ADA was expressed throughout the placenta but

with significantly higher expression in spongiotrophoblast region

(Figure 3F). In placentas showing Cre mRNA expression, we found

that Cre protein was present in giant cells (indicated by long

arrow), spongiotrophoblast cells (indicated by short arrow) and

cells in labyrinthine zone (indicated by arrow head), with highest

expression in the spongiotrophoblast zone (Figure 3F). Of

particular note, Cre recombinase was observed inside of the

nuclei of trophoblast cells (Figure 3F, inset). Overall, our studies

provide in vivo evidence that Tpbpar/Adaf-AdaP chimeric constructs

drive the expression of Cre recombinase in placentas of transgenic

mice.

Characterization of Tpbpar/Adaf-AdaP-Cre transgene
through pregnancy

Next, we determined Tpbpar/Adaf-AdaP-Cre transgene expres-

sion at multiple time points of pregnancy., We observed Cre

transgene expression in placentas as early as E9.5, with expression

increasing through E14.5 and E16.5 (Figure 4 A–B). Thus,

transgene expression appears to display a pattern of increasing

expression from E9.5 through E16.5 and presumably reflects an

increase in trophoblast cell number.

Assessment of Cre recombinase activity in Tpbpar/Adaf-
AdaP-Cre transgenic mice

To evaluate the Cre-dependent DNA recombination in Tpbpar/

Adaf-AdaP-Cre transgenic mice, female transgenic mice were mated

with Z/EG male mice, a double reporter mouse line that expresses

enhanced GFP upon Cre-mediated excision of lacZ (Figure 5A).

Pregnant mice were sacrificed at E16.5, placentas and multiple

maternal organs were collected for gene expression analysis and

histological studies. The results showed (Figure 5C) Cre mRNA was

detected in approximately half of the placentas where it was

correlated with the presence of the Tpbpar/Adaf-AdaP-Cre genotype

(Figure 5B). However, Cre mRNA in other maternal organs was

not detected (data not shown). These results provide additional

evidence that Tpbpar/Adaf-Ada transgenes induce placental specific

Cre expression in transgenic mice. Because Cre-mediated excision

of the lacZ gene allows expression of the GFP reporter, GFP mRNA

was only detected in the placentas that carried both Tpbpar/Adaf-

AdaP-Cre and lacZ-GFP transgenes (Figure 5B, D lanes 6 and 9),

while the placentas carrying only the lacZ-GFP transgenes or the

Tpbpar/Adaf-AdaP-Cre trangene (LacZ2/Cre+) were negative for

GFP mRNA (Figure 5B, D). This finding demonstrates that the in

vivo placenta-specific expression of Cre recombinase results in loxP-

dependent DNA recombination.

Next, histochemical staining for lacZ was used to determine

Cre-mediated loxP-dependent DNA recombination at the cellular

level. Consistent with our RT-PCR analysis, lacZ staining showed

that constitutive expression of the lacZ reporter (blue staining) was

significantly decreased in the spongiotroblast zone of placentas

with lacZ+/Cre+ genotype (Figure 5E) compared with placentas

having only the lacZ+ transgene alone. Because of high expression

of Cre in spongiotrophoblast cells layer seen in Tpbpar/Adaf-AdaP-

Cre transgenic mice (Figure 3F), lacZ quantification showed the

greatest decrease in these cells (Figure 5E). Quantification of lacZ

staining in spongiotrophoblast cell layer was showed as Figure 5F.

Taken together, these data provide in vivo evidence that Tpbpar/

Adaf-AdaP-Cre transgenic mice with placenta specific expression of

Cre recombinase are capable of conducting loxP mediated DNA

recombination in vivo.

Discussion

Here we report the development and characterization of a

Tpbpa/Ada-AdaP chimeric enhancer transgene that confers a high

level of trophoblast specific expression in cultured cells and in

transgenic mice. Using this double enhancer construct to drive the

expression of Cre recombinase, we demonstrated Cre-mediated

loxP-dependent DNA recombination in the placenta but not in the

maternal organs tested or in fetuses of transgenic mice. This

double enhancer construct should be a useful genetic tool to

manipulate placental gene expression in mice. This placenta

expression vector should provide investigative opportunities to

understand the functional role of specific genes in placental

development and placenta-related pregnancy disorders.
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Figure 3. Placenta-restricted gene expression in Tpbpar/Adaf-AdaP-Cre transgenic mice. Pregnant mice were sacrificed on gestation day
16.5 and placentas, multiple organs and embryos were collected. (A) Copy number of transgenes was determined by qPCR analysis in Tpbpar/Adaf-
AdaP-Cre transgenic founders. Genotyping analysis (B, D) of Tpbpar/Adaf-AdaP-Cre transgenes by PCR and expression pattern of Cre mRNA (C, E)
analyzed by RT-qPCR in placenta, fetus and multiple maternal organs from female transgenic mice (derived from Tg 5 founder) mated with wild type
FVB male mice. b-actin was used as an internal control. Tg placental RNA is used as positive control. nd, not detectable; P, Positive control; N,
Negative control. (F) Immunochemistry staining of Cre recombinase using anti-Cre antibody in the placentas of pregnant Tpbpar/Adaf-AdaP-Cre
females mated with wild type FVB males. Placentas with Tpbpar/Adaf-AdaP-Cre transgenes (Cr+(Tg)) expressed Cre protein in giant cells (indicated by
long arrow), spongiotrophoblast cells (indicated by short arrow) and cells in the labyrinthine zone (indiated by arrow head)of placentas, with highest
expression in the spongiotrophoblast zone. Panel F (inset) showed nuclear localization of Cre in trophoblast cells. Placentas lacking Tpbpar/Adaf-
AdaP-Cre transgenes (Cre2, panel F) and multiple organs from pregnant transgenic dams (G) showed no Cre immunostaining. Endogenous ADA
immunostaining was performed in placentas with or without Tpbpar/Adaf-AdaP-Cre transgenes using anti-ADA antibody (panel F). Scale bar, 100 mm
(placenta) or 50 mm (inset) and 500 mm for maternal organs.
doi:10.1371/journal.pone.0029236.g003
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Figure 4. Characterization of Tpbpar/Adaf-AdaP-Cre transgene expression at different times during pregnancy. Pregnant mice were
sacrificed on days E9.5, E14.5 and E16.5 and placentas were collected. (A) RT-PCR was used to analyze the expression levels of Cre and b-
actin mRNA in the placentas. Representative expression patterns of Cre and b-actin mRNA in placentas (lane 1 and 2) are shown. N, negative control
placenta without transgenic Cre mRNA. (B) The presence of the Cre transgene was assessed by PCR analysis of Tpbpar/Adaf-AdaP-Cre DNA in
placentas of pregnant mice. b-actin DNA was used as an internal control.
doi:10.1371/journal.pone.0029236.g004

Figure 5. Placental-restricted DNA recombination in female Tpbpar/Adaf-AdaP-Cre transgenic mice mated with male Z/EG double-
reporter transgenic mice. (A) Schematic representation of Tpbpar/Adaf-AdaP-Cre female mating with Z/EG transgenic male, double reporter mice.
(B) Tpbpar/Adaf-AdaP-Cre female transgenic mice were mated with Z/EG transgenic mice. On gestation E16.5, pregnant Tpbpar/Adaf-AdaP-Cre mice
were sacrificed and embryos and placentas were isolated. To define the genotype of each placenta, embryonic DNA was analyzed for the presence of
Tpbpar/Adaf-AdaP-Cre and Z/EG by PCR. b-actin was used as an internal control. (C, D) Expression patterns of Cre mRNA and GFP mRNA analyzed by
RT-qPCR. nd, not detectable. (E) X-gal staining of multiple placentas from Tpbpar/Adaf-AdaP-Cre pregnant transgenic mice. Nuclear fast red was used
for counterstaining. Large arrows indicate the junctional zone and small arrows indicate giant cells. Scale bar: 1 mm. (F) Quantification of LacZ
staining in spongiotrophoblast cell layer (sp layer). de, decidual cells; sp, spongiotrophoblast cells; gi, giant cells, la, labyrinth zone.
doi:10.1371/journal.pone.0029236.g005
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Numerous earlier reports have attempted to identify and

characterize placental gene regulatory elements. Several groups

[19,20,21,22] have used transgenic mouse approaches to show

that a 5.4,6.0-kb promoter and 59-flanking sequence of HLA-G

contains trophoblast-restricted regulatory elements. However, the

level of reporter gene expression in transgenic placentas at day

12.5 was relatively low and 450 times less than endogenous b-

actin. Analysis of the murine Ada gene by Shi et al [10] showed that

a placenta regulatory element resided within a 1.8 kb segment of

DNA in the 59 flanking region and that this element provided

consistent but variable placenta-specific expression. A trophoblast

specific enhancer derived from the 59 flanking region of the Tpbpa

gene was also inconsistent in driving placenta specific expression in

transgenic mice. Calzonetti et al [6] showed that a 340 bp

fragment provided placenta specific expression of a lacZ reporter

gene in only 5 of 16 transgenic lines (31.2%) examined. In recent

years, gene transfer strategies, aimed at targeting genes to the

trophoblast lineages, have been used in efforts to overcome this

limitation. For example, direct injection of gene-therapy vectors

into placentas results in limited levels of gene expression in the

placenta, but also results in serious injury and patchy expression

[23,24]. Trophoblast-specific gene manipulation using lentivirus-

based vectors has recently been developed and used in mice and

rats [25,26]. However, the lentivirus-based vector mediated

trophoblast-specific gene expression requires blastocyst isolation,

incubation with lentivirus vectors and the microinjection of

transduced blastocysts into pseudopregnant mice [25,26]. This

approach is expensive, time consuming and inconvenient for

general laboratory use. Thus, development of efficient, noninva-

sive and convenient genetic tools to specifically manipulate gene

expression in placenta is desperately needed and would greatly

facilitate efforts to understand placental formation and fetal

development.

In order to construct a more robust and reliable placenta

specific expression construct, we assembled a chimeric placental

expression vector using placental enhancer elements from two

genes, Tpbpa and Ada. Each of these genes has been previously

characterized by prenatal expression in the placenta, with highest

expression occurring in the spongiotrophoblast layer. Using this

combinatorial strategy, we identified a novel enhancer combina-

tion containing Tpbpa and Ada regulatory elements driving

transcription from the Ada-basal promoter. We prepared trans-

genes using a combination of Tpbpa and Ada enhancer elements.

From seventeen transgenic mice were identified eight transgenic

lines were developed by mating with nontransgenic FVB mice. Six

of eight transgenic lines (75%) revealed Cre expression in placenta

specifically. Thus this chimeric Tpbpar/Adaf-AdaP construct

showed more robust and reliable placenta specific transcription

activity in transgenic mice.

We assembled a chimeric placental expression vector using

placental enhancer elements from the Tpbpa and Ada genes. We

have used the newly characterized expression construct to achieve

placenta specific loxP-dependent DNA recombination mediated by

a Tpbpa/Ada chimeric enhancer transgene encoding Cre recombi-

nase. Notably, this chimeric enhancer construct is capable of

driving cre gene expression in the placenta as early as E9.5, and

continued expression through 16.5. Cre recombinase was

observed in giant cells, spongiotrophoblasts and labyrinthine

region in Tpbpar/Adaf-AdaP-Cre transgenic mice. However, highest

expression was observed in the spongiotrophoblast layer, in

agreement with earlier studies of the Tpbpa and Ada placental

regulatory elements.

Inadequate placenta development is associated with a high

incidence of early embryonic lethality [1] and serious pregnancy

disorders, such as preeclampsia [3,27], fetal defects, fetal loss and

IUGR [2,13,28]. Thus, for some mutant mice it is difficult to

determine whether a prenatal lethal phenotype is caused by

placental defects, fetal defects, or both. In addition, many gene

disruptions result in embryonic lethality because of abnormal

placental development and thereby prevent research opportunities

to study the role of that gene in other organs prenatally and

postnatally. Thus, the use of placenta specific expression constructs

to drive the expression of a gene of interest in the placenta allows

us to differentiate the causative factors of knockout phenotypes.

For example, genetically restoring ADA enzymatic activity to

placentas of Ada-deficient fetuses corrected most of the prenatal

purine metabolic disturbances, prevented serious fetal liver

damage, and rescued ADA-deficient fetuses from perinatal

lethality [16]. Therefore, the placental-specific expression vector

reported here is likely to provide novel possibilities to genetically

restore placental expression of a gene of interest and thereby

rescue embryonic lethality of mutant mice caused by placental

defects.
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