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Objective. Secretion of glucagon-like peptide 1 (GLP-1) and its effect on target organs were impaired in individuals with obesity.
However, its mechanism needs to be further studied. We aim to explore the roles of the receptor of GLP-1 (GLP-1R) involved
in high-fat-diet- (HFD-) induced kidney damage improved by emodin. Methods. Male C57bl/6 mice were fed with HFD diet
and therapied by emodin. NRK-52E cells were cultured and treated with palmitic acid or low-density lipoprotein cholesterol
(LDL-C). Emodin was used to remedy the NRK-52E cell damage. GW9662 was administrated to block the function of peroxisome
proliferator-activated receptor γ (PPAR-γ). GLP-1 in the plasma was measured by ELISA. PPAR-γ and GLP-1R in the kidney and
NRK-52E cells were detected by western blotting. The interaction between PPAR-γ protein and GLP-1R promoter regions was
observed by chromatin immunoprecipitation (ChIP). Results. Postprandial GLP-1 levels in plasma, as well as PPAR-γ and GLP-1R,
decreased in kidney tissue of HFD mice, while they were reserved by emodin treatment. Although PPAR-γ and GLP-1R were not
downregulated by LDL-C, they were suppressed by palmitic acid. Interestingly, GLP-1R mRNA was detected by PCR in the
mixture pulled down with PPAR-γ antibody. Additionally, downregulation of PPAR-γ and GLP-1R by palmitic acid was
remanded by emodin. Moreover, GW9662, an inhibitor of PPAR-γ, abolished the protective effect of emodin. Conclusion. The
kidney damage of HFD mice seems to be alleviated by emodin via the upregulation of GLP-1R in kidney tissue.

1. Introduction

In recent years, the prevalence of obesity [1–3] and diabetes
[4, 5] is increasing. Their damages of target organs (including
kidney) have become urgent problems. Although diabetic
nephropathy is one of the most important causes of end-
stage renal disease [6, 7], relatively few studies have been
done on obesity-related glomerulopathy for its insidious
development [8].

A few studies suggested that obesity damages the kidney
of animals and human beings and even results in end-stage
kidney disease. However, its mechanism remains unclear
[9]. Previous studies have found that the kidney is also rich
insulin receptor [10] except the typical insulin-targeted
organs: fat, muscle, and liver. Recent work found that insulin

resistance is involved in kidney injury in mice induced by
HFD [11].

Emodin is a kind of anthraquinone with biological activity
extracted from the roots and stems of rhubarb and other
Chinese herbal medicines. It has antibacterial, anti-inflamma-
tory, antiulcer, antitumor, regulatory immunity, and antidia-
betes effects [12]. Our previous study found that emodin can
alleviate insulin resistance in KKAy mice with diabetes [13].
The mechanisms of emodin in diabetic nephropathy have
been widely studied. In addition, it has been found that emo-
din can improve insulin resistance of diabetic mice through
PPAR-γ [14, 15]. Moreover, PPAR-γ is one of the most
important targets [16] involved not only in diabetic nephrop-
athy [17] but also in obesity-related glomerulopathy [15].
However, the protective effect of emodin activated PPAR-γ
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involved in obesity-related glomerulopathy still needs to be
further studied.

GLP-1 is a polypeptide secreted by L-type cells of the
intestinal epithelium, which can stimulate insulin secretion
and inhibit glucagon secretion. Therefore, it plays an impor-
tant role in blood glucose homeostasis [18]. GLP-1 works by
binding to GLP-1R on target organs [19, 20]. It has been
found that the expression of GLP-1R decreased in the kidney
of HFD mice [21]. Therefore, we guess that the dysfunction
of GLP-1R signaling pathway may be one of the reasons of
kidney damage in obese mice induced by HFD. Although
PPAR-γ and GLP-1R are both involved in renal injury of
obese or diabetic animal models [22–25], the relationship
between PPAR-γ and GLP-1R is unknown. In other words,
as a nuclear receptor, the regulation effect of PPAR-γ on
the expression of GLP-1R needs to be further explored. Addi-
tionally, emodin may regulate GLP-1R via PPAR-γ.

To confirm our hypothesis, we fed mice with HFD, and
then, emodin treatment was given to detect the regulatory
effect of emodin on GLP-1R and PPAR-γ in the kidney of
mice with HFD. Moreover, NRK-52E cells were cultured
and stimulated by LDL-C or palmitic acid and then remedied
with emodin. Finally, GW9662 administration and ChIP
assays were performed to confirm the role of PPAR-γ
involved in GLP-1R expression.

2. Methods

2.1. Experimental Animal Housing and Treatment. Healthy
C57BL/J mice (male, age 7 weeks, n = 40) were purchased
from HFK Bioscience Co., Ltd. (Beijing, China). All mice
were housed in the specified pathogens free for 1 week before
experiments. Animals were randomly divided into 4 groups
according to their diets and treatments: normal chow group
(NC, n = 10), HFD group (HFD, n = 10), emodin treatment
group (EM, n = 10), and HFD group with emodin (EM-
HFD, n = 10). 2 animals in the HFD group and 1 in the
HFD-EM group were detected with hyperglycemia. Addi-

tionally, 1 mouse in the HFD-EM group died in the intragas-
tric administration. So, we excluded 4 mice in the NC group
(2 mice) and EM group (2 mice). After 12 weeks of feeding
with normal chow or HFD diet, mice were administrated
with emodin (in DMSO) (50mg/kg) [13] (cat no. 518-82-1;
Solarbio Science & Technology Co., Ltd., Beijing, China) or
bacteria-free water of the same frequency and the same vol-
ume every other day for 6 weeks (Figure 1(a)). Body weights
were measured weekly. All experiments were performed
according to the guidance of the Ethics Committee for
Experimental Research from the First Affiliated Hospital of
Jinzhou Medical University.

2.2. Assays on Blood and Urine. At the end of the experiment,
mice were sacrificed by cervical dislocation. Blood samples
were collected to measure the levels of fasting plasma glucose
(FPG), fasting serum insulin (FSI), serum creatinine (Scr),
blood urea nitrogen (BUN), total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), and free fatty
acids (FFA).

2.3. Measurement of Serum GLP-1. After 8 hours of fasting
and 30 minutes of glucose gavage (2 g/kg), blood samples
were taken from the heart, centrifuged at 1200 rpm (4°C)
for 5min. After the supernatant was obtained, the level of
GLP-1 in serum was detected by an ELISA kit (intraassay
precisions CV% < 8% and CV% < 10%) form CUSABIO
Technology LLC (CUSABIO, Wuhan, China, Catalogue
No.: CSB-E08118m).

2.4. NRK-52E Cell Culture and Treatment. The NRK-52E
cells were obtained from American Type Culture Collection
(Manassas, VA, USA). Cells were cultured in Dulbecco’s
modified Eagle’s medium F-12 supplemented with 10% fetal
bovine serum, penicillin (100U/ml), and streptomycin
(100μg/ml) in an incubator at 37°C with 5% CO2. NRK-
52E cells were treated with LDL-C (100 or 200μg/ml) [26]
or palmitic acid (150μM) [27] for 24h. And then, NRK-52E
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Figure 1: Treatment and body weight changes. (a) Diets and treatments of mice at different time points. (b) “∗” shows different body weights
of mice with HFD vs. those with NC before emodin was treated, p < 0:05; “#” shows different body weights of mice with HFD and emodin vs.
those with HFD but without emodin, p < 0:05; “&” shows different body weights of mice with NC and emodin vs. those with HFD but without
emodin, p < 0:05. n = 8 in each group.
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cells with 150μM palmitic acid were treated with emodin
(50μM) [12, 28] and GW9662 (25μM) [29] at the time point
of palmitic acid treatment.

2.5. Masson Staining. Tissues from the upper pole of the kid-
ney were collected from freshly sacrificed mice and fixed with
4% paraformaldehyde for 72 h before paraffin sections (5μm)
were obtained. Masson staining was conducted according to
the manufacturer’s protocol (Wanlei Biotechnology Co.
Ltd, Shenyang, China, Catalogue No.: WLA045) similar to
our previous study [30].

2.6. Western Blotting. Western blotting was carried out
according to our previously described protocol [31] and
described briefly as follows. Kidney tissue or NRK-52E cells
were extracted by radioimmunoprecipitation (RIPA) (Wanlei
Biotechnology Co. Ltd, Shenyang, China, Catalogue No.:
WLA016a) and measured by a BCA assay according to the
manufacturer’s instructions (Wanlei Biotechnology Co. Ltd,
Shenyang, China, Catalogue No.: WLA004b). Proteins were

separated in SDS-PAGE gels and transferred to polyvinylidene
fluoride (PVDF)membranes. Rabbit-anti-mouse primary anti-
bodies were used to bind target proteins including PPAR-γ
(Santa Cruz Biotechnology, Inc., Dallas, Texas, USA, Catalogue
No.: sc-390740), GLP-1R (Bioss, Beijing, China, Catalogue
No.: bs-1559R), and β-actin (Wanlei biotechnology co. Ltd,
Shenyang, China, Catalogue No.: WL01845) at 4°C overnight.
And then, goat-anti-rabbit secondary antibody conjugated with
HRP (Wanlei Biotechnology Co. Ltd, Shenyang, China,
Catalogue No.:WLA023a) incubation was performed for bind-
ing primary antibodies. The ECL kit (Wanlei Biotechnology
Co. Ltd, Shenyang, China, Catalogue No.: WLA006a) was
utilized before exposure to detect the protein levels.

2.7. ChIP. The ChIP assay was conducted according to the
protocol from the manufacturer (Wanlei Biotechnology Co.
Ltd, Shenyang, China, Catalogue No.: WLA122). NRK-52E
cells were cross-linked by 1% formaldehyde for 10min at
room temperature. After ultrasonic splintering, chromatin
solutions were incubated with 4μg of anti-PPAR-γ antibody
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Figure 2: Indexes of glucose or lipid metabolism and renal function of mice. (a–h) “∗” shows indexes of the HFD group or EM group vs. the
NC group, p < 0:05; “#” shows indexes of EM-HFD group vs. HFD group, p < 0:05. n = 8 in each group.
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or with IgG and rotated overnight at 4°C. Complexes were
collected with protein A Sepharose beads for 1 h at 4°C. To
purify the immunoprecipitated DNA, beads were treated
with DNase-free RNase A and proteinase K. And then,
DNA was resuspended in distilled water. To amplify the
GLP-1R promoter regions containing PPAR-γ, 5′-CAAG
TCCACGCTGACACTC-3′ and 5′-GCTCTGTAAACAGC
TTGATGAA-3′ were used as forward and reverse primers,
respectively [32]. After amplification, PCR products were
analyzed on a 2% agarose gel. For quantification of the ChIP
assay, input genomic DNA and immunoprecipitated DNA
were amplified by real-time PCR.

2.8. Statistical Analysis. All data were described as mean ±
standard deviation. Statistical differences were determined
by using Student’s t-test and one-way ANOVA followed by
LSD for multiple comparison test. Data were analysis by SPSS
22.0 (SPSS Inc., Chicago, IL, USA). p < 0:05 was considered a
significant difference.

3. Results

3.1. Effect of Emodin on BodyWeights. To explore the effect of
emodin on body weight of mice with HFD, all mice (8 weeks
old) were fed with common chow or HFD for 12 weeks. And
then, part mice with common chow or HFD were treated

with emodin for 6 weeks (Figure 1(a)). Compared to mice
with common chow, body weights of mice increased
24.89% after 12 weeks feeding with HFD. At that time,
emodin was used to treat HFD-induced mice with obesity.
Interestingly, compared to mice without emodin, emodin
prevented body weights increasing from HFD by 8.70% after
6 weeks of emodin treatment (Figure 1(b)).

3.2. Effect of Emodin on Biochemical Indexes of Blood and
Urine. In order to detect the effect of emodin on homeostasis
of glucose and lipid metabolism, FPG, FSI, TC, LDL-C, and
FFA were measured. Amazingly, emodin not only decreased
the levels of FPG and FSI increased by HFD but also
decreased the levels of TC, LDL-C, and FFA elevated in
HFD feeding mice (Figures 2(a)–2(e)). For the best explora-
tion of kidney damage alleviated by emodin, Scr, BUN, and
urine albumin/creatinine were measured. Although Scr and
BUN levels were not increased by HFD, BUN levels were
decreased by emodin in mice with or without HFD
(Figures 2(f) and 2(g)). Moreover, HFD elevated the levels
of albumin/creatinine, while they were decreased by emodin
(Figure 2(h)).

3.3. Effect of Emodin on GLP-1 in Serum and Pathology in the
Kidney. Although no significant change of fasting GLP-1 was
detected in mice with or with HFD (Figure 3(a)), compared
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Figure 3: GLP-1 in serum and pathology in the kidney of mice. Results in (a) show no difference of GLP-1 levels among the NC group, HFD
group, EM group, and EM-HFD group. (b) “∗” shows decreased postprandial GLP-1 levels in HFD mice vs. mice of NC group, p < 0:05; “#”
shows increased postprandial GLP-1 levels in mice of EM-HFD group vs. mice of HFD group, p < 0:05. Results in (c) show more collagen
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mice. n = 8 in each group.
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with mice administrated with sterile water, the levels of GLP-
1 in mice with common chow increased more than 2-folds
after glucose intragastric administration for 30 minutes.
Additionally, GLP-1 levels after glucose intragastric adminis-
tration in mice with common chow are lower than those with
HFD. However, they were improved by emodin administra-
tion (Figure 3(b)). In Masson stain of renal tissue, more col-
lagen fibers were deposited in the glomeruli of mice fed with
HFD. Interestingly, the deposited collagen was decreased by
emodin (Figure 3(c)).

3.4. Effects of Emodin on GLP-1R and PPAR-γ in Renal of
Mice with HFD. Owing to the levels of GLP-1 levels after
administrated with glucose were decreased by HFD and
increased by emodin, GLP-1R levels of mice with or without
HFD (emodin) were measured. Kidney tissue of mice with
HFD showed downregulated GLP-1R levels, compared with
those of mice with common chow. Moreover, GLP-1R
levels were upregulated by emodin (Figure 4(b)). In addi-
tion, PPAR-γ, one of the most important targets of emo-
din, was detected. Undoubtedly, PPAR-γ levels decreased
in the kidney of mice with HFD and increased by emodin
(Figure 4(a)).

3.5. LDL-C Did Not Influence the Levels of GLP-1R or PPAR-γ
in NRK-52E Cells. To further explore the mechanism of kid-
ney damages, especially for the damage of renal tubules,
NRK-52E cells were cultured and treated with LDL-C or
palmitic acid. Although LDL-C levels are significantly
increased in mice with HFD, in this present study, LDL-
C treatment did not change the levels of GLP-1R or
PPAR-γ in NRK-52E cells at the concentration of
100μg/ml or 200μg/ml (Figures 4(c) and 4(d)).

3.6. Effects on GLP-1R or PPAR-γ in NRK-52E Cells of
Palmitic Acid and Emodin. Although LDL-C did not
suppress the levels of GLP-1R or PPAR-γ in NRK-52E
cells, palmitic acid significantly downregulated the levels
of GLP-1R or PPAR-γ in NRK-52E cells at the concen-
tration of 150μM (Figures 5(a) and 5(b)). However, the
downregulation of GLP-1R or PPAR-γ was restored by
emodin at the concentration of 50μM (Figures 5(c)
and 5(d)).

3.7. Interactions between PPAR-γ and GLP-1R. The expres-
sion of GLP-1R needs the transcription and translation of
GLP-1R gene. To uncover the interaction between PPAR-γ
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Figure 4: GLP-1R and PPAR-γ in the kidney of mice and NRK-52E cells with or without LDL-C. (a, b) “∗” shows decreased PPAR-γ and
GLP-1R levels in HFD mice, compared with NC mice, p < 0:05; “#” shows increased PPAR-γ and GLP-1R levels in EM-HFD mice,
compared with HFD mice, p < 0:05. Results in (c, d) did not show different PPAR-γ or GLP-1R levels among NRK-52E cells with different
concentrations of LDL-C. All results were repeated at least 3 times.
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and GLP-1R, ChIP assay was carried out. GLP-1R promoter
sequence was observed by real-time PCR in the immunopre-
cipitated DNA (Figure 5(e)). To further explore the regula-
tion of PPAR-γ to GLP-1R, GW9662, a specific PPAR-γ
inhibitor, was used to treat NRK-52E cells with palmitic acid
and emodin. Interestingly, elevated GLP-1R levels were sup-
pressed by GW9662 (Figure 5(f)).

4. Discussion

The renal damage is one of the most important target organ
injury in obesity individuals [8, 33–36] for the prevalence of
obese patients [3]. Although it could even result in end-
stage kidney diseases and contribute to kidney failure [37],
only a few attentions were drawn from researchers and
patients for its hidden process. Here, not only impaired glu-
cose metabolism but also increased urine albumin/creatinine
was measured in mice with HFD. GLP-1 level in the serum
after glucose intragastric administration was decreased in
HFD feeding mice. It showed that systemic GLP-1 secretions
were impaired in mice with HFD. Similar findings insisted

that GLP-1 analog prevents obesity-related glomerulopathy
by inhibiting excessive autophagy [24]. Mice with HFD
exhibited downregulated GLP-1R in the kidney. This is
consistent with previous research [21]. Additionally, liraglu-
tide, a kind of GLP-1 analog, improved the outcomes of
diabetic nephropathy with similar mechanism of obesity-
related glomerulopathy.

Downregulated PPAR-γ levels in renal tissue were mea-
sured in this present study. Owning to emodin is one of the
ligands of PPAR-γ [38] and showed antidiabetic nephropa-
thy effect in previous studies [39, 40]. Additionally, PPAR
signaling pathway is involved in the process of obesity-
related glomerulopathy [11]. So, we hypothesized that
emodin may exhibit protective effect on obesity-related
glomerulopathy. As far as we know, there is no report
about emodin and obesity-related glomerulopathy. There-
fore, emodin was used to remedy HFD-induced kidney
damage. Interestingly, despite upregulated urine albumin/-
creatinine, downregulated GLP-1R by HFD was restored
by emodin administration. Although the relationship
between GLP-1R and urine albumin/creatinine is uncovered,
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Figure 5: GLP-1R and PPAR-γ in NRK-52E cells with palmitic acid. (a, b) “∗” shows decreased PPAR-γ and GLP-1R in NRK-52E cells with
100μM palmitic acid, compared to those without palmitic acid. (c, d) “∗” shows increased PPAR-γ and GLP-1R in NRK-52E cells with
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we focus on the regulatory mechanism of GLP-1R in this
present study.

In order to investigate the regulatory mechanism of GLP-
1R expression, LDL-C and palmitic acid were used to induce
damage of NRK-52E cells. Although 100μg/ml LDL-C is
enough to affect the proliferation of renal tubular epithelial
cells [26], in this research, 100μg/ml or 200μg/ml LDL-C
failed to induce the downregulation of PPAR-γ and GLP-1R.
This may account for oxidized cholesterol but not native cho-
lesterol involved in the damage of renal tubular epithelial cells
[41]. However, palmitic acid significantly regulated the decre-
ment of GLP-1R and PPAR-γ of NRK-52E cells.

To clarify the effect of emodin on GLP-1R, emodin was
used to treat NRK-52E cells with palmitic acid. Interestingly,
decreased PPAR-γ and GLP-1R levels were reversed by emo-
din. GLP-1R is a kind of G protein-coupled receptor, which
works by binding to ligands [42]. Additionally, its down-
stream second messenger signaling pathway is depending
on the expression of GLP-1R. GLP-1R promoter was
detected in the mixture pulled down by PPAR-γ primary
antibody in a ChIP assay. It suggested the exit of interac-
tion between PPAR-γ and promoter sequence of GLP-1R.
In another word, PPAR-γ may influence the expression of
GLP-1R and the downstream signaling pathway involved
in injury of renal tubular epithelial cells. To verify the reg-
ulatory effect on GLP-1R expression of PPAR-γ, GW9662,
a selective PPAR-γ inhibitor, was used. Amazingly,
GW9662 partly abolished the recovery effect on GLP-R
of emodin.

Although we have preliminarily explored the protective
effect of emodin on kidney damages from HFD, there are still
some limitations. Firstly, as a basic experiment, especially for
an experiment that the main protein was measured by a
semi-quantitative method, we failed to calculate the power
for the sample size scientifically. With such a small sample
basic experiment, there is a long way to clinical usage of emo-
din in clinical work. Secondly, emodin upregulates the levels
of GLP-1R and PPAR-γ decreased in HFDmice in our exper-
iment. However, emodin also protects individuals from
weight gain, hyperglycemia, and hyperlipidemia in this work
and others [43, 44]. To exclude these potential mechanisms
of beneficial effect from emodin, mice with hyperglycemia
were removed from this experiment. In addition, LDL-C
was used to treat NRK-52E cells. However, there is still
slightly difference of plasma glucose of mice in each group.
Moreover, other lipid levels were not considered in this
work. Although body weight-matched mice in the HFD
and EM-HFD groups may partly avoid the effect of weight
loss effect of emodin, enough numbers of body weight-
matched mice are hard to obtain. Thirdly, we used mice
and rat cell line in vivo and in vitro, respectively, in this pres-
ent work. The species difference may limit the scientific con-
clusion of this research. Fourthly, we just discussed the effect
on GLP-1R expression regulated by PPAR-γ and confirm
the impaired GLP-1 in serum and GLP-1R in the kidney
but failed to explore the important role of GLP-1R in renal
injury of obese individuals in this study. The GLP-1R knock-
out animal model remains needed to investigate the essential
role of GLP-1R in further research.

5. Conclusion

In general, we demonstrated that emodin may alleviate the
kidney damage induced by HFD via GLP-1R. Additionally,
the regulation of GLP-1R may partly depend on the function
of PPAR-γ activated by emodin.
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