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Abstract  
Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the 
rational design of scaffolds aiming at tissue engineering, tissue repair and neural regeneration applications. 
Here, we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds 
obtained by two-photon lithography. Because of the intrinsic resolution of the technique, the micrometric 
cylinders composing the scaffold have a lateral step size of ~200 nm, a surface roughness of around 20 nm, 
and large values of fractal dimension approaching 2.7. We found that cells in the scaffold assemble into 
separate groups with many elements per group. After cell wiring, we found that resulting networks exhibit 
high clustering, small path lengths, and small-world characteristics. These values of the topological charac-
teristics of the network can potentially enhance the quality, quantity and density of information transported 
in the network compared to equivalent random graphs of the same size. This is one of the first direct obser-
vations of cells developing into 3D small-world networks in an artificial matrix.

Key Words: 3D networks; biomaterials; nano-topography; network topology; neuro-regeneration; small-world 
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Introduction 
In tissues and organs, and especially the brain, the interac-
tion between a large number of cells determines the emer-
gence of functions that are not explicable in terms of indi-
vidual cells taken individually (Hopfield, 1982; Fano, 1992; 
Koch and Laurent, 1999; Ravasz and Barabási, 2003; Bassett 
and Bullmore, 2006; Bullmore and Sporns, 2012; Melnattur 
et al., 2014; Trabesinger, 2016; Onesto et al., 2017). In similar 
systems, organization, communication, and cooperation be-
tween elements are decisive for the correct functioning and 
optimal performance of the systems themselves. Network 
theory is a practical way to examine biological systems on a 
quantitative basis (Strogatz, 2001; Barabási and Oltvai, 2004; 
Rubinov and Sporns, 2010; Sun et al., 2011; Sporns, 2013). 
Networks are groups of nodes (or vertices) and edges (or 
links) that connect those nodes – in which the nodes repre-
sent the elements of the systems and the edges the interac-
tions between them (Gunduz et al., 2004; van Steen, 2010; 
Chartrand and Zhang, 2012; Barabási, 2016). Networks can 
be described through three sole parameters. The degree of a 
network k is the average number of links per node. The local 
clustering coefficient ccι of a node is the proportion of active 
established links to the number of possible connections in 
the neighborhood of that node (the global clustering coeffi-

cient cc is determined by averaging ccι over the nodes of the 
network). The characteristic path length cpl is the average 
number of steps that separate two nodes randomly chosen 
in the grid (Gunduz et al., 2004; van Steen, 2010; Chartrand 
and Zhang, 2012; Barabási, 2016). Among the great variety 
of network categories with different features, small-world 
networks have recently attracted attention because it is be-
lieved that networks with small-world attributes can trans-
mit signals (or instructions) more efficiently than periodic 
or unstructured graphs of the same size (Watts and Strogatz, 
1998; Lago-Fernández et al., 2000; Latora and Marchiori, 
2001; Watts, 2003; Takahashi et al., 2010). For the same 
reason, a system with a small-world architecture can divide 
tasks between its components, coordinate activities, and 
optimize processes more efficiently than ordinary systems 
without structure. In a small-world network, the distance 
(i.e., cpl) between the elements of the network raises less 
rapidly than its size (N), such that cpl~log(N): this indirectly 
implies that – typically – nodes of the network form few, 
highly connected clusters, with short paths between them 
(Watts and Strogatz, 1998; Lago-Fernández et al., 2000; Lato-
ra and Marchiori, 2001; Watts, 2003; Takahashi et al., 2010). 
In such context, materials science combined with nanofab-
rication methods provide ways to drive the organization of 
living cells into artificial structures engineered according 
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to a desired design. In previous works, some of the authors 
of this paper have shown that cells, cultured on nano-pat-
terned surfaces, evolve to form networks with small-world 
characteristics, where the nano-scale roughness of the sub-
strate represents the external factor that forces the cells to 
collapse into energetically favorable configurations (Onesto 
et al., 2017). A similar behavior has been observed for neu-
roblastoma cells on mesoporous silicon substrates (Marinaro 
et al., 2015), as wells as for neuronal cells on rough silicon 
substrates (Onesto et al., 2017) and arrays of zinc oxide 
nanowires (Onesto et al., 2019). Nonetheless, these results 
are limited to bi-dimensional geometries.

Here, we examined the topology of 3D networks of neu-
roblastoma cells cultured in polymeric scaffolds fabricated 
by two-photon lithography, focusing on the data reported in 
reference (Accardo et al., 2017). Due to the fabrication pro-
cess characteristics, the scaffold presents topography details 
over multiple scales: the micrometer-scaled cylinders of the 
scaffold have been patterned with a lateral step size of ~200 
nm that, in turn, results in a surface roughness of ~20 nm. 
Upon networks analysis, we found that cells form small-
world networks, with higher clustering and smaller paths 
than in equivalent random graphs with the same size: the 
hierarchical structure of the scaffold being the possible cause 
of cell response. This is one of the first direct observations of 
cells developing into 3D small-world networks in an artifi-
cial matrix.

This study was not focused on optimizing performance 
nor examining in detail all the possible combinations of 
geometrical characteristics of the scaffold, mechanical prop-
erties, surface functionalization, cell lines characteristics, 
which may affect cell behavior. The main objective of this 
preliminary study was to demonstrate the feasibility of using 
network analysis and the small-world-network model to de-
scribe the spatial organization of mammalian cells in 3D ar-
chitectures. Data presented in the paper and analysis thereof 
represent a preliminary reference for future studies. More 
sophisticated test campaigns that will be performed over 
time will verify the combined effect of geometry, nano-to-
pography, and mechanical properties of the scaffold on the 
collective behavior and self-assembly of primary hippocam-
pal neurons, which are more representative of the central 
nervous systems.

Materials and Methods 
Fabrication of the polymeric scaffolds
Briefly, the 3D scaffolds were fabricated by exploiting a 
two-photon direct laser writing approach where the slicing 
(minimal distance between two adjacent planes) and hatch-
ing (lateral distance of two adjacent lines within a layer) dis-
tances were set at 300 and 200 nm, respectively, as described 
in reference (Accardo et al., 2017).

Scanning electron microscopy imaging of the samples
Scanning electron microscopy (SEM) imaging was per-
formed on the samples (metal-coated with 15 nm of sput-
tered gold) by using a Hitachi S-4800 microscope (Hitachi, 

Tokyo, Japan) with an acceleration voltage ranging from 0.8 
to15 kV.

Culturing mouse neuroblastoma N2A cells in the scaffold
Prior to cell culture, the 3D scaffold was first sterilized for 1 
hour under ultraviolet (UV) radiation (254 nm), then coated 
with 0.01% poly-l-lysine (Sigma-Aldrich), to favor the elec-
trostatic interactions between the negatively charged ions of 
the cellular membrane and the employed polymer, washed 
twice with sterile water and dried for 2 hours. Then, lami-
nin (a protein of the extracellular matrix, involved as well 
in the mechanisms of cell adhesion) solution (40 μg/mL) 
(Invitrogen, Bordeaux, France) was applied for 3 hours. The 
fast-growing mouse neuroblastoma cell line, N2A, was ob-
tained from the American type culture collection (Molsheim, 
France). Dulbecco’s modified Eagle’s medium (DMEM) con-
taining glutamax, pyruvate (Invitrogen, Bordeaux, France) 
and 10% fetal bovine serum was used for the N2A cells. 
100,000 cells/cm2 were inoculated onto the scaffold and left 
in culture for 3 days in vitro. Cells were incubated in an at-
mosphere containing 5% CO2 at 37°C.

Two-photon confocal imaging of cells in the scaffolds
The two-photon confocal imaging experiments were per-
formed using an AxioImager upright microscope LSM 7MP 
(Carl Zeiss, La Rochelle, France). Z-stack acquisitions were 
performed with a 20× W-Plan Apochromat water immersion 
objective with 1.0 N.A. (numerical aperture), with the laser 
excitation wavelength tuned to 820 nm, giving a resolution 
on the x/y-axis of 430 nm and on the z-axis of 1.3 μm, as de-
scribed in reference (Accardo et al., 2017).

Cluster analysis
Cluster centers were determined using a density based clus-
tering algorithm reported in a previous study (Rodriguez 
and Laio, 2014). The algorithm determines the number of 
groups into which the elements of the set are partitioned, 
and assigns each element to a group. The algorithm classified 
elements into categories on the basis of their similarity. Clus-
ter centers were determined as those points in the set with 
higher density than their neighbors and by a relatively large 
distance from points with higher densities. For each cell i in 
the original distribution, the algorithm:

(i) Determines the density of i, ρ(i), as the number of 
points that falls within a cut off distance δco from i, divided 
by the total number of points in the set.

(ii) Finds the subset s ∈ S of points in the dataset with den-
sities ρ(s) > ρ(i).

(iii) Finds the point a ∈ S with minimum distance to i, this 
distance is δmin/ρ(i): the minimum distance of i from points 
with higher densities than i.

(iv) Derives a diagram where the density ρ is reported 
against δmin/ρ per each element in the data set. Points in 
the set with higher density than their neighbors and by a 
relatively large distance from points with higher densities 
emerge as singularities in the diagram, an example of which 
is reported in Figure 1. These points are the cluster centers.
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(v) Assigns each point in the set to different clusters on the 
basis a minimum distance criterion: a point b is assigned to 
a cluster Gi if the minimum distance of b to Gi  is the smaller 
among all the minimum distances calculated with the re-
maining clusters. Thus clusters are constructed per accumu-
lation. The cluster centers represent the seeds of the clusters. 
In Figure 1, points are colored according to the cluster of 
group to which they are assigned.

Wiring cells to form networks: the Waxman algorithm 
adapted to 3D spaces
In order to establish the nodes connections, we first need 
to derive the distance between the nodes. Being each node 
in the network described by three coordinates (x, y, z), the 
distance matrix d is obtained calculating the Euclidean dis-
tance between each node pair in the 3D space. If there are n 
elements in the network, the distance matrix is a symmet-
ric two-dimensional array having size nxn. No matter how 
many dimensions we have in a Euclidean space, once derived 
the distance matrix, the calculation of the nodes connections 
is the same of the case of the 2D spaces. The Waxman model 
(Waxman, 1988) is used to establish the connections be-
tween the nodes, whereby the probability of being a link be-
tween two nodes exponentially decreases with the Euclidean 
distance d between those nodes. For a given set of two nodes 
u and v, the link probability, P(u,v) is defined as:

where l is the largest possible Euclidean distance between 
two nodes of the grid. In the equation, α and β are the Wax-
man model parameters and, upon tuning these, the graph 
may be more or less dense. α and β should be chosen be-
tween 0 and 1. Selecting smaller values of these parameters 
results in a smaller number of links. For the present config-
uration, these parameters were set to α = 1 and β = 0.1. The 
probability P varies between 0 for a pair of nodes with an 
ideally infinite distance, and 1 for a pair of nodes with an 
ideally zero distance. The information about the connections 
among the nodes in a graph is contained in the adjacency 
matrix A = aij, where the indices i and j run through the 
number of nodes n in the graph; aij = 1, if there exists a con-
nection between i and j, aij = 0 otherwise. In the analysis, rec-
iprocity between nodes is assumed, and thus if information 
can flow from i to j, it can reversely flow from j to i. In the 
framework of graph theory, we call a similar network an un-
directed graph. Notice that this property translates into sym-
metry of A being aij = aji. We showed above how to derive the 
distances between nodes dij in the networks. On the basis of d, 
we may decide whether a pair of nodes is connected, we use 
at this end the formula:

in which P is a constant that we have chosen being between 
0.3–0.1 that the probability of being a connection is q = 1–P 
= 0.7–0.9.

Network analysis of 3D graphs
We quantified some network parameters including the clus-
tering coefficient, the characteristic path length and the small-
world-ness. In graph theory, the clustering coefficient (Cc) 
is a measure of the degree to which nodes in a graph tend 
to cluster together. Cc ranges from 0 (none of the possible 
connections among the nodes are realized) to 1 (all possible 
connections are realized and nodes group together to form a 
single aggregate). The clustering coefficient is defined as:

where k is the number of neighbors of a generic node i, Ei is 
the number of existing connections between those, k(k–1)/2 
being the maximum number of connections, or combina-
tions, that can exist among k nodes. Notice that the cluster-
ing coefficient Ci is defined locally, and a global value, Cc, is 
derived upon averaging Ci over all the nodes that compose 
the graph. The characteristic path length (Cpl) is defined as 
the average number of steps along the shortest paths for all 
possible pairs of network nodes. We shall call the minimum 
distance between a generic couple of nodes the shortest path 
length (Spl), which is expressed as an integer number of 
steps. With these premises, we show now how to calculate 
the Spl for a couple of nodes nl and nm. In A, al,i and ai,m ac-
count for all the pairs of nodes which are connected to nl and 
nm respectively. The sum of al,i and ai,m over all the nodes in A, 
is stored in a new matrix A2 = ∑al,iai,m for all the l and m and 
A2 has the same dimension of A. Now multiplicate A2 and A 
repeatedly A2 = A2 A, until all the terms of A2 are non-zero 
and those terms in position ij will be the Spl between node 
i and node j. Finally, the characteristic path length Cpl is 
calculated like the average of Spl over A2. Once obtained the 
Cc and Cpl values, we defined a precise measure of ‘small-
world-ness’, the ‘small-world-ness’ coefficient (SW), based 
on the tradeoff between high local clustering and short path 
length. A network G with n nodes and m edges is a small-
world network if it has a similar path length but greater 
clustering of nodes than an equivalent Erdos-Rényi (E–
R) random graph with the same m and n (an E–R graph is 
constructed by uniquely assigning each edge to a node pair 
with uniform probability) (Strogatz, 2001; Watts, 2003). Let 
Cplu and Ccu be the mean shortest path length and the mean 
clustering coefficient for the E–R random graphs, obtained 
meaning the Cpl and the Cc of 20 uniform distributions, 
and Cplgraph and Ccgraph the corresponding quantities for the 
graphs derived using the methods described above. We can 
calculate:

Thus, the ‘small-world-ness’ coefficient is

(1)

(2)

(3)

(4)

(5)
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The categorical definition of small-world network above im-
plies λ ≥ 1, γ >> 1 which, in turn, gives SW > 1 (small-world-
ness higher than one).

Results
Three-dimensional polymeric scaffolds
The scaffolds where cells were seeded is an ordered network 
of polymeric cylinders (Figure 2a), with a diameter D = 20 
μm, and a spacing between structures of d1 = 20 μm and d2 = 
60 μm in the vertical and horizontal direction, respectively 
(Figure 2b). The entire scaffold is embedded within a cube 
with edge length of l = 300 μm. While the overall volume of 
the scaffold is such to contain a sufficiently high number of 
cells, the openings within the scaffold enable cells to develop 
without geometrical constraints. SEM inspection of the scaf-
fold reveals that, due to the fabrication process resolution 
(methods), the final structures are discretized into smaller 
blocks with a lateral step size of s~200 nm (Figure 2c). 2D 
photo polymerization of structures with similar values of 
lateral step size results, generally, in a surface roughness that 
is not zero. The surface roughness Ra can be estimated by 
previous works (Guo et al., 2006), where Ra has determined 
as a function of the lateral step size of three dimensional 
polymerized structures. For the present configuration Ra is 
estimated as Ra~20 nm (Guo et al., 2006). Structures in the 
scaffold have therefore a multiscale roughness and details or-
ganized in a hierarchical architecture, from the micro scale 
level (cylinder size) to the high (lateral step size) and low 
(surface roughness) nano meter range. We have generated 
in Figure 2d the surface state of a cylinder with a similar 
structure and, by Fourier analysis of the surface topography 
(Gentile et al., 2011), we have derived the Power Spectrum 
(PS) density function of the scaffold (Figure 2e). The PS de-
scribes how the information content of an image (Q) varies 
as a function of its spatial frequency (ν) – it reports a change 
of density (of information) as a change of scale. Therefore, 
the slope β of a PS can be correlated to the fractal dimension 
Df of a structure as (Gentile et al., 2011) Df  = (8–β)/2. For 
the present configuration, it results Df ~2.7. Moderate values 
of surface roughness (Ra~20 nm) and high values of fractal 
dimension (Df ~2.7) are agents that may force cells to cluster 
into few groups, with many elements per group, as previous-
ly reported for 2D geometries (Marinaro et al., 2015; Onesto 
et al., 2017, 2019).

As regarding the mechanical features of the scaffold: the 
hierarchical structure was fabricated from liquid polymer, i.e. 
the negative photoresist IP-Dip. Nanomechanical character-
ization of IP-Dip (Meza et al., 2015) yielded for this material 
the following values of average Young’s modulus E = 2.1 ± 0.3 
GPa and an average yield strength under compressive loads 
σy  = 67.2 ± 4.7 MPa. Nevertheless, experimental measure-
ments of the effective Young modulus Eeff of periodic lattices 
governed by bending effects was found to scale as Eeff = Es 
ρ2, where Es is the bulk Young modulus of the constitutive 
material (IP-Dip), ρ the relative density of the scaffold (Fleck 
et al., 2010). Our scaffold exhibits a relative density close to 
20%. This gives an effective young modulus of the produced 

scaffold Es~80 MPa. N2A cells thus contact a stiff material 
(IP-Dip) of young modulus in the GPa range, but they are 
embedded inside a deformable scaffold of effective stiffness 
around 80 MPa. Remarkably, the stiffness found for IP-Dip 
is, even considering the reduction in the strength of E due 
to the lattice geometry, ~40 times larger than the average 
Young’s modulus of PDMS (E = 2 ± 0.1 MPa), that has been 
used in previously reported experiments(du Roure et al., 
2005) to determine the average traction forces exerted by 
differentiated Madin-Darby canine kidney epithelial cells on 
a substrate, being approximately F ~2nN/μm2. This, in turn, 
implies that the deformation of the scaffold caused by N2A 
cells is – for this configuration – negligible, and the behavior 
of cells and the characteristics of the networks that they form 
can be ascribed to geometry solely.

Cell distribution
Neuroblastoma N2A cells were seeded in the scaffolds using 
the protocols described in the Methods. Neuroblastoma 
N2A cells, then, were imaged 3 days after seeding using 
light sheet microscopy and two-photon confocal micros-
copy as described in reference (Accardo et al., 2017). N2A 
cells were not differentiated – i.e. no differentiation medium 
or methods were employed at any point of study. Light sheet 
microscopy enables qualitative analysis of the cells (Figure 
3a), that appear unevenly distributed within the entire vol-
ume of the scaffold (here represented as a cube with an edge 
of l~300 μm). SEM analysis reveals that cells preferentially 
align along the nanometric grooves of the scaffold (Figure 
3b), that therefore exert significant influence over the cell 
behavior. Surface roughness of the scaffold, organized over 
different dimensional scales, seems to cause cells to precip-
itate into aggregates (Figure 3c). Two-photon confocal mi-
croscopy was employed to obtain quantitative localization 
of individual cells within the scaffold. The total number of 
cells in the volume of interest is N = 233. Using a 3D scat-
ter plot representation of the cells (Figure 4a), with the z 
axis aligned along the vertical edge of the scaffold, one can 
observe that cells are preferentially distributed around the 
upper (high z’s) and lower (small z’s) parts of the scaffold 
(Figure 4b and c), and generally along its perimeter (Figure 
4d). This is also evidenced by rotating clockwise the scatter 
plot of cells through successive angles θ around the z axis, 
with θ = (0–π) (Additional Figure 1), that provides com-
plete vision of the cell distribution within the three-dimen-
sional volume. We then projected the positions of the center 
of the cells, initially distributed over the entire volume of the 
scaffold, on the three orthogonal planes xy, xz, yz. This en-
abled to derive the quantitative profile of cell distribution in 
the plane that were in turn projected along the edges of the 
cube to obtain the frequency distributions f along the x, y 
and z directions (Figure 1). From the distributions, one can 
notice that f is non-uniform over the planes of projection 
and along the principal directions of the scaffold, with the 
number of cells per line micrometer varying between a min-
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imum of f~0.2 cells/μm and a maximum of f~1.2 cells/μm, 
with a more than six times increase. Notice that the integral 
of the f ’s over the edge of the cube is 233, i.e. the number of 
cells contained in the scaffold.

Cluster analysis of cells
We performed unsupervised cluster analysis of cells to ex-
amine whether a non-uniform cell distribution results in 
the emergence of separate groups in the scaffold. We used 
a density based clustering algorithm, originally developed 
by Rodriguez and Laio in 2014, to determine cluster cen-
ters as those cells in the set with higher density than their 
neighbors and by a relatively large distance from cells with 
higher densities (methods). From the analysis (Figure 5a), 
it results that there are at least seven separate cluster centers 
in the original set, as reported in Figure 5b. The remaining 
cells are then assigned to specific clusters on the basis of 
their Euclidian distance to the clusters. In Figure 5c, cells are 
colored according to the cluster to which they are assigned. 
The discovery of a finite number of sub-groups in the cell 
distribution suggests that cells can form networks with high 
clustering and short paths.

Network analysis of cells
The two-photon confocal imaging technique used in refer-
ence (Accardo et al., 2017) enabled to determine the position 
of the cells in the scaffold but not their connections. We used 
the Waxman algorithm (Waxman, 1988) to create, artificial-
ly, the topological networks associated to the coordinates of 
neuroblastoma cells in the space. The Waxman algorithm 
makes a decision on whether couples of cells are connected 
or not, based on their distance. It states that the probability p 
of two nodes (u,v) of being connected is:

where d(u,v) is the Euclidean distance between u and v, l is 
the maximum distance between pairs of nodes, and α and β 
are parameters of the model that are here set as α = 1, β = 0.1 
(Additional Figure 2). Thus, the larger the distance between 
two cells, the smaller p. By comparing p to an arbitrary 
threshold probability P = 1 – q, one can decide if nodes es-
tablish a connection (p > P) or not (p < P). We used different 
values of q and P (q = 0.7 – 0.95→P = 0.3 – 0.05) to construct 
the topological graphs associated to the real biological proto-
type (Figure 6). The larger q (the smaller P), the denser the 
graphs, in the limiting case q = 1 nodes of the graph establish 
all possible connections between them, producing a com-
plete graph (at the opposite extreme, q = 0, the graph is null, 
with no connections between nodes).

We then computed the graphs parameters using the algo-
rithms reported in reference (Onesto et al., 2017) and the 
methods. For specific values of q (Figure 7a) we determined 
the degree of the graph k, the clustering coefficient cc, the 
characteristic path length cpl, the small world coefficient SW 
(Figure 7b–e). The graph parameters exhibit a very high sen-
sitivity to q. The degree of the network k varies between k~3 

for q = 0.7 and k~16 for q = 0.95 (Figure 7b). The degree of 
a network represents the average number of connections per 
node, i.e. the number of synapses per neuron in a biological 
interpretation of the results.

Even if N2A cells cannot differentiate into fully functional 
neurons, still they can develop multiple neuritic connections 
per single cell, although rarely more than 5, and each con-
nection can develop sub-branches which may or may not 
link with other cells. In previous experimental reports, it has 
been observed that the number of neuritic extensions per 
N2A cell varies from approximately 2–3 for un-patterned 
SiO2 (Béduer et al., 2012), to around 3 for free-standing 
photo‐crosslinked poly(ethylene glycol) diacrylate hydrogel 
architectures (Accardo et al., 2018), to 3–5 for surfaces pat-
terned with arrays of carbon nanotubes(Béduer et al., 2012). 
Numbers of neuritic extension/cell greater than 5 are ob-
served with lower probability values.

On modulating q between the considered interval, result-
ing values of k oscillate around the characteristic value k = 
4, stretching below and above it. This choice of q’s is thus 
founded on a biological basis. The maximum theoretical 
value of k = 16, while significantly larger than the maximum 
determined number of neuritic extension per cell, ~5, still is 
sufficiently large to cover possible cases in which, owing to 
specific conditions and geometries, the number of neuritic 
extensions that cells develop rises above the limits heretofore 
registered.

Best fit of data and graphical representation of k(q) indi-
cate that k is a cubic function of q: k = –571 + 2240 q – 2928 
q2 + 1286 q3, perhaps indicating the fact that the network 
is immersed in a 3D-space and, for a variation in q (i.e. the 
probability of connectivity), the nodes of the systems tend to 
create new connections along three independent directions. 
We calculate a r-squared statistic r2 to test whether the data 
in several different bands are consistent with the matching 
template. Values of r2 near unity and of estimated variance σ2 
near zero indicate that the signal is consistent with the mod-
el (r2~0.997, σ2~0.04).

Differently from k, and with the exception of the first (q = 
0.7) and last (q = 0.95) values of q, the clustering coefficient 
shows a low sensitivity to q, with values of cc oscillating 
around the average (cc~0.71), and in any case greater than 
cc~0.70 (Figure 7c). Recalling that the clustering coefficient 
varies between 0 and 1, in the considered range of q’s, the 
cells of the network exhibit a very high inclination to cluster 
together. Vice versa, in the same domain of variation for q, 
the characteristic path length cpl of the network is generally 
low, the number of steps separating two nodes of the graph 
being smaller than 3.5 for each considered configuration 
(Figure 7d). Combined together, the clustering coefficient 
cc and the characteristic path length cpl enable to determine 
the small-world coefficient of a graph. We used the topo-
logical measure small-world-ness SW, defined in reference 
(Humphries and Gurney, 2008) and the methods to examine 
whether cultured cell graphs exhibit small-world attributes. 
Calculated values of SW range between SW~1 and SW~1.4 
for q > 0.72, while SW~0.85 for q = 0.70 (Figure 7e). For 

(6)
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Figure 1 The density distribution of cells 
within the scaffold, derived from the position 
of the cells within the initial volume (i.e., 
cube). 
The density distribution is here projected onto 
either the lateral surfaces or the edges of the 
cube. Variations of the values of frequency are 
indicative of the non-uniformity of cells within 
the scaffold. Values of local density vary up to 
three times within the considered volume.

Figure 2 Scaffold details and 
characteristics. 
The scaffold for cell culture growth and orga-
nization is a 3D network of regularly spaced 
polymeric cylinders (a), where the size and 
spacing of the cylinders is in the micro-me-
ter range (b). Due to the fabrication process 
characteristics, the final structures are dis-
cretized into blocks with a lateral step size of 
200 nm (c). The surface roughness resulting 
from a similar step size is approximately 20 
nm – we have recreated the surface topog-
raphy of the scaffold cylinder with a similar 
value of surface roughness (Ra) (d). The pow-
er spectrum associated to the structures can 
be used the derive the fractal dimension of 
the scaffold - Df~2.7. High value of Df reveals 
that the final prototype has details over mul-
tiple scales (e).

Figure 3 Imaging N2A cells cultured in the scaffold. 
Light sheet microscopy enables to derive qualitative repre-
sentation of cell distribution in the scaffold (a). Scanning 
electron microscopy of the cells suggest that their behavior 
and organization is guided by the nanometric details on the 
surface of the scaffolds (b, c).
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Figure 4 Quantitative cell 
distribution in the scaffold. 
Two-photon microscopy was em-
ployed for precise, quantitative local-
ization of cells within the volume of 
the scaffold (a). Front (b), side (c) and 
top (d) views of the scatter plot of the 
cells reveal that cells are unevenly dis-
tributed in the scaffold.

Figure 5 Cluster analysis of cells. 
Unsupervised cluster analysis of cells 
(a) enabled to estimate the severn 
cluster centers (numbers 1–7) in the 
originating distribution of cells (b) 
and attribute cells to specific clusters 
(c). Cluster centers are highlighted in 
the original distribution, where cells 
appear as black dots. In the clustered 
distribution, cells are colored accord-
ing to the cluster of reference. Units 
are expressed in microns.

Figure 6 Network formation through the Waxman 
algorithm. 
To determine the topological parameters of cell distri-
butions, cells were wired using the Waxman algorithm, 
using different probabilities of wiring (q). q was varied 
between 0.7 and 0.9. The larger q, the higher of connec-
tions per node. Units are expressed in microns.

Figure 7 Network analysis. 
After cell wiring (a), we deter-
mined the topological parameters 
of the networks as a function of 
the connectivity q. The degree of 
the network, k, increases with the 
cubic power of q (b). Values of the 
clustering coefficient, cc, (c) and 
the characteristic path length, cpl, 
(d) are above 0.7 (cc) and below 
3.5 (cpl) for large intervals of q. 
The small world coefficient (SW) 
is greater than one for any q > 
0.7, indicating that cell networks 
exhibit small world characteristics 
(e). In (a), units are expressed in 
microns.
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the large majority of the considered possible values of q 
the graphs surpass the small-worldness test (SW values are 
greater than one) and, analyzing their degree distribution, 
for large κ the probability of finding a highly connected ver-
tex decreases exponentially with κ (power-lawness test was 
negative –Additional Figure 3), therefore we are confident 
to claim that these networks obey a small-world configura-
tion (Moore and Newman, 2000).

Discussion
The central and peripheral nervous system could be seen as 
a very large array of computational units linked together in a 
structure with some degree of order. The organization of the 
brain affects, in turn its efficiency, and its ability to perform-
ing tasks – such as image and speech recognition, object 
classification, unstructured problem-solving – that are inher-
ently difficult in conventional Von Neumann architectures, 
on which much of modern computers are based. In Von 
Neumann architectures, a core logic operates sequentially on 
data fetched from memory. In contrast, biological computing 
distributes both computation and memory among an enor-
mous number of relatively simple neurons, each communi-
cating with hundreds or thousands of other neurons through 
synapses. The spatial distribution of neurons over hierarchal 
scales is the factor that may possibly explain the enhanced 
computational power, increased versatility, and reduced low 
energy consumption of neuromorphic systems compared to 
the von Neumann chips. Many scientists are skeptical about 
the idea of the brain as a computer, representing an over-
simplification of an intrinsically irreducible problem. The 
cognitive processes underpinning human language and con-
sciousness, intuition and creativity, are perhaps excessively 
complex to be decomposed into a sequence of more funda-
mental instructions, or a list of causes and effects. Neverthe-
less, this view is of some utility if one wants to analyze the 
nervous system mathematically, and translate problems of 
the neuroscience into tractable mathematical formulations, 
which may provide insight into the originating application. 
In representing the brain as a network of logic gates (the 
neurons), one can study the nervous systems, or some of 
its parts, using the methods and the variables typical of to-
pological theories and the theory of information, including 
the clustering coefficient, the characteristic path length, the 
small-world coefficient, and the Shannon information entro-
py (Takahashi et al., 2007, 2010; Cossell et al., 2015).

Results of the paper indicate that N2A nerve cells in 3D 
geometries evolve to form networks with small-world char-
acteristics. In other words, in a cascade of biological process-
es, including adhesion and migration, cells transit from an 
initial, random, configuration to a structure with a strong 
correlation between its internal parts. The high values (SW 
> 1) of the small-world coefficient being indicative of such a 
correlation. Thus, evolution shapes an ensemble of relatively 
simple elements into a structure that (because of specific 
topologies) can more efficiently and more rapidly elaborate 
and transmit information: that is the own function of the 
brain. While nerve cells are genetically programmed to form 

similar information-efficient structures, still they may be 
restricted to do this, unless they are not fueled by a proper 
external force. In artificial scaffolds that support cell growth 
and proliferation, this force is generated by the surface 
roughness, organized on hierarchical levels, that at the single 
cell level is in the order of some tens of nanometers – simi-
larly to what precedently observed for bi-dimensional geom-
etries (Marinaro et al., 2015; Onesto et al., 2017, 2019). Multi 
scale nano-topography is the endogenous factor that sets off 
cell condensation. Understanding how surface topography, 
cell network topology and information are interconnected, 
is of fundamental importance in the design of scaffolds for 
neuronal tissue engineering and neuro-regenerative medi-
cine, where the ultimate goal is replacing, engineering or re-
generating nerve cells to restore the normal functions of the 
cells themselves, i.e. elaborate information.

The networks that we analyzed are the results of a numeri-
cal rewiring of the positions of cells tracked with two-photon 
confocal microscopy techniques. They are not a representa-
tion of a real neuronal network, but are partly based on an 
estimate on how N2A cells may form connections if placed 
on specific points of the scaffold determined by experiments. 
The Waxman algorithm that we used to model cell connec-
tions is based on the assumption that the strength of a con-
nection decays exponentially with cell-cell distance, that is a 
reasonable hypothesis validated by independent observations 
(Ercsey-Ravasz et al., 2013; Cossell et al., 2015), and on three 
model parameters, i.e. α, β, q. The choice that we made on 
α, β, q was not arbitrary: α and β were chosen to maximize 
the sensitivity of the probability of connection to the cell-cell 
distance, while q was tuned to modulate the average number 
of connections per node in the resulting networks. In the ar-
ray of different configurations that we obtained by changing 
q, the number of connections per node varies from k~3 to 
k~16. Calculated values of SW are greater than one for each 
of the configurations in this interval, indicating that results 
presented in the paper are general in nature and robust to 
a change in the model parameters. Values of k outside this 
interval were not considered (i) either because resulting net-
works are excessively sparse (k < 3) or (ii) because k would is 
excessively higher the number of connections-per-cell nor-
mally found in N2A systems, that is around 3–4 (k > 16). The 
neuroblastoma N2A cells model that we used in this study is 
a simplified version of primary neuronal cultures. Compared 
to these, N2A cells do not form as many neuritic extensions 
and cannot generate mature neurites. Nevertheless, among 
the characteristics found in N2A there are: the expression of 
neuro-filaments, the synthesis of neurotransmitter biosyn-
thetic enzymes, differentiation, the elaboration of neuritic 
processes that are ultra-structurally and electro-physiologi-
cally similar to normal neurons (Thiele, 1998). The evolution 
and development of N2A cells in a conditioned system can 
therefore approximate and reflect some of the most salient 
features and biologically relevant aspects of primary neurons 
in the same system. Results of this simplified experimental 
model, while they represent a preliminary reference for the 
study of the organization of neuronal cells in three dimen-
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sional architectures, have to be investigated even further 
with additional experiments with primary neuronal cells 
and tissues in even more complex geometries. Some of these 
experiments may involve the reconstruction of the real 
connections formed in groups of neurons with techniques 
as those described, for example, in references (Stetter et al., 
2012; Dorkenwald et al., 2017), to achieve maximum adher-
ence of the model to the real physical prototype.

In more sophisticated experiments that will be performed 
over time, we will assess cell connectivity in networks of 
primary neuronal cells, and will verify to which extent the 
small-world-network analogy is relevant in systems of neu-
rons developing multiple, free standing neuritic connections, 
in rigid as well as in soft materials, where the contribution 
of scaffold deformations cannot be neglected (Accardo et al., 
2018).

Similarly, we will design an experimental campaign to 
verify the effects of drugs (chemotherapeutic agents or other 
therapeutic agents) on the 3D/spatial organization of N2A 
cells, neuronal cells, or other cell lines. We will verify wheth-
er and to which extent the delivery of therapeutics and the 
nano-topography on the scaffold surface combine to facili-
tate or prevent cell adhesion, proliferation, and networking. 
More importantly than this: we will examine whether the 
physiological/pathological conditions of cell and of a system 
of cells may be reflected by the topological parameters of 
that system. May the clustering coefficient, the characteristic 
path length, and a combination of these, quantitatively re-
flect the health status of systems of cells, i.e. organs, tissues, 
organoids?

Lastly, since the role of the glial cells cannot be neglected 
[using recently validated isotropic fractionator, it has been 
observed that in the brain the glia:neuron ratio is about 1:1, 
with a total number of less than 100 billion glial cells in the 
human brain (von Bartheld et al., 2016)], we will design ex-
periments to examine whether co-cultures of neurons/glial 
cells may affect cell networking.

In summary, our results indicate that cells in 3D scaf-
folds form non-homogeneous, non-uniform systems, with 
cells forming few groups with a great many of elements 
per group. Cells used in this study are neuroblastoma N2A 
cells. While they share most of the characteristics of pri-
mary neuronal cells (see the Discussion of the paper) and 
give a preliminary indication of the evolution of a system of 
nerve cells under the influence of surface nano-topography, 
nonetheless additional experiments with primary neurons 
are needed to examine the phenomenon on a more rigorous 
basis. The small-world-network model implemented in the 
paper describes convincingly the topology of the clusters of 
cells in the scaffold. Since small-world networks are theoreti-
cally believed to receive, elaborate, and transmit information 
(i.e. signals) more efficiently than equivalent random or 
periodic networks of the same size, this also suggests that 
the main drivers for nerve cell condensation are energy min-
imization and information maximization, these two criteria 

being perhaps equivalent. That is to say – biological systems 
of cells are shaped by evolution to keep the energy of the 
system at a minimum and, simultaneously, the information 
exchanged in the system at a maximum. Optimization of 
these cost functions would, to cite a few, explain the low 
energy consumption of the brain and the formation in the 
cerebral cortex of structures with a finite size like the cortical 
mini-columns, that are the basic computational units of the 
brain. The nano-topographical details that decorate the sur-
face are the factors that trigger cell condensation in artificial 
scaffolds. Understanding the role of cell topology and sur-
face nano-topography on the organization of nerve cells into 
complex structure may help to design strategies for tissue 
engineering, nerve repair, neuronal regeneration, faster and 
more efficiently.
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Additional Figure 1 3D plot of cells within the scaffold for different values of the viewpoint.

The scatter plot of cells in the scaffold is reported for different values of the viewpoint, rotated clockwise through successive

angles �, with � � � � � . This provides complete vision of the cell distribution within the three-dimensional volume.



Additional Figure 2 Guidance for the choice of � and � in the Waxman model.

The choice of these values for � and � is not arbitrary. � is the probability of two nodes of being connected. It represent a

connection strength. Since we want that the maximum probability is �, then we set � as � � � � operates directly on the distance

d. For a fixed � � �, for large � (���) there will be a probability different from zero (and generally high) for two cells of being

connected, even if the distance between them is maximum (i.e., the cells are the opposite vertices of the cube). Viceversa, for low

values of � (� � �h��), � vanishes steeply with � – and, for any d larger than the �� of � (i.e. larger than ��� μm), cells won’t

be connected. � � �h� is a compromise between small (�h��) and large (�) values of �, which both correspond to improbable

biological states, either because cells in the network are poorly interconnected (� � �h��), or because they would form an

overabundance of links at longer distances with high metabolic costs (� � �) (A). Notice also that � influences the number of

synapses per neuron (connection density).

There is a second argument that justifies the use of � � �h�. For different values of �, the change of � for change of �, i.e. the

sensitivity � � �� ��, does also change. We can derive an explicit expression for � � ��
�
�� ��. The plot of � as a function of �

for different values of � (B), indicates that one can achieve high sensitivity in the neighborhood of � � �h�.

A

B



Additional Figure 3 Evaluating the level of power-lawness of the distribution of the degree of the graph �h

Here, we show results of a power-law test that demonstrate that the distribution of the degree of the graphs � is not power-law,

but has an exponential decay. We used the test for power-lawness described in a study of Onesto et al. (2017). The power-

lawness is a local measure that offers a confidence level to claim whether power-law node distribution governs a particular

network or not (Onesto et al., 2017). To ensure power law as a plausible hypothesis, P-value is calculated. If the calculated P-

value ≥ 0.1, the power law hypothesis is accepted for the network, otherwise rejected. For this particular configuration, P-value =

0.
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