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Background. Knowledge on the epidemiological features and transmission patterns of novel coronavirus disease (COVID-19) is 
accumulating. Detailed line-list data with household settings can advance the understanding of COVID-19 transmission dynamics.

Methods. A unique database with detailed demographic characteristics, travel history, social relationships, and epidemio-
logical timelines for 1407 transmission pairs that formed 643 transmission clusters in mainland China was reconstructed from 
9120 COVID-19 confirmed cases reported during 15 January–29 February 2020. Statistical model fittings were used to identify 
the superspreading events and estimate serial interval distributions. Age- and sex-stratified hazards of infection were estimated for 
household vs nonhousehold transmissions.

Results. There were 34 primary cases identified as superspreaders, with 5 superspreading events occurred within households. 
Mean and standard deviation of serial intervals were estimated as 5.0 (95% credible interval [CrI], 4.4–5.5) days and 5.2 (95% CrI, 
4.9–5.7) days for household transmissions and 5.2 (95% CrI, 4.6–5.8) and 5.3 (95% CrI, 4.9–5.7) days for nonhousehold transmis-
sions, respectively. The hazard of being infected outside of households is higher for people aged 18–64 years, whereas hazard of being 
infected within households is higher for young and old people.

Conclusions. Nonnegligible frequency of superspreading events, short serial intervals, and a higher risk of being infected out-
side of households for male people of working age indicate a significant barrier to the identification and management of COVID-19 
cases, which requires enhanced nonpharmaceutical interventions to mitigate this pandemic.
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In December 2019, a novel coronavirus disease (COVID-19) 
emerged in Wuhan of Hubei Province, China. The World 
Health Organization announced a public health emergency of 
international significance on 30 January 2020 [1] and classi-
fied the threat as a global pandemic on 11 March 2020 [2]. 
More than 8 million confirmed cases and 440 290 deaths 
have been reported from >200 countries and territories as of  
17 June 2020 [3].

On 23 January 2020, China raised the national emer-
gency response to the highest level, which triggered an 

unprecedented travel ban starting from the lockdown 
of Wuhan on 23 January, 14 cities in Hubei province on  
24 January, and >30 provinces thereafter. Despite this un-
precedented intervention, we estimated that COVID-19 cases 
had been introduced into 130 (95% credible interval [CrI], 
190–369) cities in mainland China prior to the lockdown of 
Wuhan on 23 January 2020 [4]. Similar findings on the rapid 
geographic expansion of COVID-19 have also been reported 
in several recent studies [5–8]. Starting from the last week 
of January 2020, >260 Chinese cities have implemented in-
tensive social distancing and confinement policies, which 
brought the epidemic under control [7–10]. However, the 
epidemic has still caused >10 000 confirmed cases in China 
outside Hubei Province within a month.

To enhance public health preparedness and awareness, 
Chinese health authorities have publicly reported detailed re-
cords of confirmed COVID-19 cases since mid-January. This 
provides a unique resource for studying the transmission pat-
terns, routes, and risk factors of COVID-19.
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METHODS

Data Collection

In mainland China, 27 provincial and 264 urban health com-
missions have publicly posted 9120 confirmed case reports on-
line during 15 January–29 February 2020, which accounts for 
72% of all cases confirmed in mainland China outside Hubei 
province. We compiled a unique line-list database using these 
reports, which contains detailed information about demo-
graphic features, social relationships, travel history, and key 
epidemiological timelines (eg, dates of symptom onset, confir-
mation, and hospitalization). In contrast to several published 
COVID-19 data repositories [11–16], which focus on describing 
information about individual cases, our database allows the re-
construction of transmission pairs and clusters by inferring 
potential causal associations among different cases. The entire 
dataset of transmission pairs is available at our GitHub (https://
github.com/linwangidd/covid19_transmissionPairs_China). 
See the Supplementary Materials for more details.

Statistical Analysis

We reconstructed 1407 transmission pairs using the epi-
demiological evidence among reported cases. The section 
“Reconstruction of Transmission Pairs” in the Supplementary 
Materials specifies how we identified a pair or a group of con-
firmed cases using information about their close contacts, strat-
ified transmission pairs into household and nonhousehold 
settings using information about familial relationships, and 
determined the direction of transmission between infector 
and infectee using information about travel histories. For each 
transmission pair, we term the infector the “primary case” and 
the infectee the “secondary case.” We also consider connected 
chains of confirmed cases, in which we term the original case 
the “index” and the entire chain of cases, including the index, 
the “transmission cluster” (Figure 1A).

We categorized each transmission pair by the social rela-
tionship between primary and secondary cases (eg, familial 
members of the same household, nonhousehold relatives, col-
leagues, classmates, friends, and other face-to-face contacts). 
Considering that during the Spring Festival travel season  
(10 January–18 February 2020), several billion human move-
ments can occur because of the tradition of Chinese New Year 
(to visit and live with their original families), we considered any 
transmission pair with immediate familial relationships (eg, a 
person’s spouse, parents, and children) as a household transmis-
sion pair, and with other familial relationships (eg, a person’s 
siblings with age >17 years) or close contacts with no familial 
information (eg, classmates, colleagues) as a nonhousehold 
transmission pair. The numbers of household (662) and 
nonhousehold (745) transmission pairs are almost even.

Following Lloyd-Smith et al [17], we defined the threshold of 
observing superspreading events (SSEs) as the 99th percentile 

of the offspring distribution for the number of secondary cases 
caused by a primary case. Household and nonhousehold trans-
missions were combined together for computing the offspring 
distribution. To estimate the threshold of observing SSE, we 
used a Poisson, exponential, and power-law distribution to fit 
the empirical offspring distribution via the Distribution Fitter 
App in Matlab R2020a [18]. Since the power-law distribution 
gives the smallest Akaike information criterion compared to the 
Poisson and exponential distributions (Supplementary Table 2), 
the threshold of observing SSEs is set as 3.78, which indicates 
the occurrence of an SSE if 4 or more secondary cases were in-
fected by a single primary case.

For each transmission pair with known symptom onset times 
for both primary and secondary cases, we computed the empir-
ical serial interval as the number of days between the symptom 
onset dates of the primary case and of the secondary case [19]. 
Due to the presence of negative-valued serial intervals and the 
skewness of the empirical distribution (Figure 1B), we estimated 
the serial interval distributions by fitting a normal distribu-
tion via the Markov chain Monte Carlo (MCMC) method with 
Gibbs sampling and noninformative flat prior. We confirmed 
the convergence of MCMC chains via trace plot and diagnosis, 
and obtained the posterior estimates of parameters by running 
100 000 iterations with a burn-in of 40 000 iterations and a thin-
ning interval of 10. Fitting serial interval data with a Gumbel 
or logistic distribution gives similar estimates (Supplementary 
Tables 3–5).

We estimated the age-stratified hazard of infection γH/N(a, b) 
for household vs nonhousehold transmissions by the ratio be-
tween the probability PH(a, b) that a secondary case of age group 
b was infected by a primary case of age group a within the same 
household and the probability PN(a, b)  that a secondary case 
of age group b was infected by a primary case of age group a 
outside of households, that is, γH/N(a, b) = PH(a, b)/PN(a, b). 
If γH/N(a, b) >1, then the infection within households has a 
higher risk than the infection outside of households for sec-
ondary cases of age group b being infected by primary cases of 
age group a.

We estimated the sex-specific hazard of infection for house-
hold vs nonhousehold transmissions by the ratio between the 
probability that a secondary case of gender b was infected by 
a primary case of gender a within the same household and the 
probability that a secondary case of gender b was infected by a 
primary case of gender a via nonhousehold transmission.

RESULTS

We in total reconstructed 643 transmission clusters formed 
by 1407 transmission pairs (Figure 1A). The size is <5 for 587 
transmission clusters, whereas the size exceeds 20 for the largest 
cluster. We identified 34 primary cases as the superspreaders, 
with 5 SSEs occurring within households. Stratification by 

https://github.com/linwangidd/covid19_transmissionPairs_China
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household setting demonstrates that 356, 92, and 34 primary 
cases infected 1, 2, and ≥3 secondary cases within households, 
respectively, and 276, 78, and 75 primary cases infected 1, 2, 
and ≥3 secondary cases outside of households, respectively 
(Figure 1B).

Fitting a normal distribution to serial interval data for house-
hold transmissions estimates the mean and standard deviation 
(SD) of serial intervals as 5.0 (95% CrI, 4.4–5.5) days and 5.2 
(95% CrI, 4.9–5. 7) days, respectively. Given the posterior median 

estimates of the mean and SD, the median serial interval distri-
bution is estimated to be 5.0 (interquartile range [IQR], 1.5–8.5) 
days for household transmissions. Fitting a normal distribution 
to serial interval data for nonhousehold transmissions estimates 
the mean and SD of serial intervals as 5.2 (95% CrI, 4.6–5.8) 
days and 5.3 (95% CrI, 4.9–5.7) days, respectively. Given the 
posterior median estimates of the mean and SD, the median se-
rial interval distribution is estimated to be 5.2 (IQR, 1.6–8.8) 
days for nonhousehold transmissions. See Supplementary Table 

Figure 1. COVID-19 transmission clusters. A, Six hundred forty-three transmission clusters, stratified by the size of cluster n. Red, green, and blue nodes denote primary 
cases, household secondary cases, and nonhousehold secondary cases, respectively. B, Empirical offspring distribution for the number of secondary cases infected by each 
of the 809 primary cases. C, Empirical and estimated serial interval distributions for household or nonhousehold transmissions. Pink and blue bars indicate the empirical 
distributions of serial interval data for household and nonhousehold transmissions, respectively. Red curve indicates the estimated serial interval distributions for household 
transmissions, based on the posterior median estimates of the mean and standard deviation (SD) of normal distribution. Blue curve indicates the estimated serial interval 
distributions for nonhousehold transmissions, based on the posterior median estimates of the mean and SD of normal distribution. Fitting results with alternative distributions 
(eg, Gumbel or Logistic distribution) are available in Supplementary Tables 3–5.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa790#supplementary-data
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3 for more results. Notably, 25 of 339 household and 25 of 340 
nonhousehold transmission pairs reported negative-valued se-
rial intervals, implying presymptomatic transmission.

We performed several sensitivity analyses on estimating serial 
interval distributions (Supplementary Tables 4 and 5), such as the 
stratification of transmission pairs by the location of primary cases 
(imported vs local), and estimating transmission pairs with more 
clear epidemiological evidence (eg, primary case linked only to a 
single secondary case). Results of these sensitivity analyses are con-
sistent with those estimated with all transmission pairs.

Hazard of being infected within households was higher for 
young (<18 years) and elderly (>65 years) people, whereas the 
hazard of being infected outside of households was higher for 
the age group 18–64  years (Table  1). Primary cases of elderly 
(>65 years) people were more prone to cause household infec-
tions. Hazard of infection between different sexes was higher for 
household than for nonhousehold transmission (Table 2).

DISCUSSION

We have built a line-list database with detailed demographic 
information, travel history, epidemiological timelines, and so-
cial relationships for 1407 transmission pairs that formed 643 
transmission clusters in mainland China outside Hubei prov-
ince. We identified 34 primary cases as superspreaders. The ma-
jority of SSEs were observed for nonhousehold transmissions, 
which is consistent with a recent study [21] on transmission 
settings of COVID-19 (eg, hospitals, residential care, prisons, 
boarding schools, cruise ships). This indicates the importance 
of nonpharmaceutical interventions (eg, isolation, quarantine, 
social distancing, and confinement [7, 22–24]) in mitigating the 
COVID-19 epidemic.

Household studies are helpful to identify risk factors for 
certain demographic groups [25, 26]. The analysis of the age-
stratified and sex-specific hazard of infection suggests a higher 
risk of infection within households for young (<18 years of age), 
elderly (>65 years of age), and female people. The higher risk of 
being infected outside of households for male people aged be-
tween 18 and 64 years may indicate their role in driving house-
hold secondary infections, perhaps because these were travelers 
of working age from Wuhan.

We identified 50 transmission pairs (~3.5%) with a secondary 
case reporting symptom onset earlier than the primary case (ie, 
negative-valued serial intervals), which is consistent with recent 
clinical reports [27, 28] and epidemiological studies [29, 30]. 
We estimated that the mean serial interval is around 5 days for 
both household and nonhousehold infections, which is consid-
erably shorter than the mean serial interval estimated for severe 
acute respiratory syndrome (eg, 8.4 days [31]) and Middle East 
respiratory syndrome (eg, 7.6 days [32]).

Our findings have several limitations. First, the household 
sizes and primary cases with no secondary infections were not 
provided from the original public case reports. This may give 
rise to biased estimates if we estimate the household reproduc-
tion number and secondary attack rate from the raw data. Field 
surveys will be helpful to adjust such biases. Second, the infor-
mation on nosocomial infections and public gathering settings 
was not available from original case reports, so the observation 
of SSEs may be less common from our dataset. Third, caution is 
needed when attempting to generalize the age-stratified hazard 
of infection to other demographic settings. For example, in our 
study (Table 1), the fact that children (<18 years of age) never 
acquired COVID-19 from other children at home may be more 
a reflection of the usual household composition in Chinese 
cities (single child living with parents) than the transmission 
characteristics of the virus. China had a lower proportion of 
households with multiple children [33], which may reduce the 
risk of transmission between children, especially during lock-
down and school closure.

In sum, the notable threat of SSEs, short serial intervals, and 
a higher risk of being infected outside of households for adult 

Table 1. Age-stratified Hazard of Infection for Household Versus Nonhousehold Transmissions

Secondary Cases, Age, y

0–17 18–49 50–64 ≥65 Total

Primary Cases, Age, y 0–17 0.0 0.8 0.8 1.1 0.7

18–49 6.3 0.7 0.9 2.0 1.1

50–64 1.7 0.9 0.7 0.6 0.8

≥65 2.3 1.4 0.6 2.1 1.3

Total 3.5 0.8 0.8 1.4 1.0

Table 2.   Sex-specific Hazard of Infection for Household Versus 
Nonhousehold Transmissions

Secondary Cases

Male Female Total

Primary Cases Male 0.6 1.6 1.0

Female 1.2 0.7 0.9

Total 0.8 1.2 1.0

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa790#supplementary-data
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men of working age (18–64 years) indicate a significant barrier 
to the identification and management of COVID-19 cases; en-
hanced nonpharmaceutical interventions will be required to 
mitigate this pandemic.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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