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nasopharyngeal endoscopy

Zicheng He,1,2,6 Kai Zhang,3,6 Nan Zhao,3 Yongquan Wang,1 Weijian Hou,4 Qinxiang Meng,5 Chunwei Li,1

Junzhou Chen,3,* and Jian Li1,2,7,*

SUMMARY

Nasopharyngeal carcinoma (NPC) is known for high curability during early stage
of the disease, and early diagnosis relies on nasopharyngeal endoscopy and
subsequent pathological biopsy. To enhance the early diagnosis rate by aiding
physicians in the real-time identification of NPC and directing biopsy site selec-
tion during endoscopy, we assembled a dataset comprising 2,429 nasopharyn-
geal endoscopy video frames from 690 patients across three medical centers.
With these data, we developed a deep learning-based NPC detection model
using the you only look once (YOLO) network. Our model demonstrated high
performance, with precision, recall, mean average precision, and F1-score values
of 0.977, 0.943, 0.977, and 0.960, respectively, for internal test set and 0.825,
0.743, 0.814, and 0.780 for external test set at 0.5 intersection over union.
Remarkably, our model demonstrated a high inference speed (52.9 FPS), surpass-
ing the average frame rate (25.0 FPS) of endoscopy videos, thus making real-time
detection in endoscopy feasible.

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the mucosal epithelium of the

nasopharynx. In 2020, there were 96,371 new cases and 58,094 deaths worldwide, with over 70% of new

cases occurring in East and Southeast Asia, revealing a highly uneven global distribution.1,2

Patients with early stage NPC exhibit a high overall survival rate after treatment.3 However, due to the

atypical symptoms often associated with early stage NPC and the possibility of asymptomatic cases, the

majority (>70%) of patients are diagnosed at an advanced stage of NPC. For the early screening of NPC,

endoscopy is considered to be indispensable. The ultimate gold standard for diagnosing NPC is nasopha-

ryngeal endoscopy-guided biopsy of abnormal nasopharyngeal lesions.4 Hence, it is particularly important

for endoscopists to observe the morphological characteristics of masses through endoscopy and make

preliminary judgments. However, distinguishing nasopharyngeal inflammation, lymphoid hyperplasia,

adenoid hypertrophy, and residual adenoid tissue from early NPC under endoscopy can be challenging,

resulting in false-negative outcomes.5–7 Atypical and small lesions may require multisite and repeated

biopsies to improve detection rates. Repeated biopsies increase patient trauma and may delay treatment.

Therefore, accurately identifying lesions and localizing biopsy sites are critical for early tumor diagnosis.

However, not all endoscopists possess the necessary training, experience, or equipment to adequately

identify and localize nasopharyngeal lesions, particularly early stage, insidious lesions. In addition, repeat-

edly reviewing endoscopic images of NPC can be time-consuming and mentally exhausting for endoscop-

ists, as the human eye and brain are less sensitive to identifying lesions. Consequently, developing

automatic computer-aided detection (CADe) and diagnosis (CADx) systems to support physicians in

diagnosing NPC is crucial.

Computer-aided systems employing machine learning (ML) and deep learning (DL) techniques, such as

convolutional neural networks (CNNs), can enhance disease detection and diagnostic accuracy and

efficiency. By learning feature information from input images, CNNmodels can recognize specific patterns

and correlate them with predefined results or parameters (output detection or diagnosis) to train network

parameters. In recent years, CNNs have emerged as a promising method for image recognition or
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classification, serving as the foundation for automated image perception, processing, and decision-mak-

ing. CNNs have proven highly beneficial in endoscopy and have been applied in various medical endos-

copy imaging areas. For example, a large-dataset DL model was developed for the detection of upper

gastrointestinal tumors in digestive endoscopy, an ear endoscopic image classification model based on

DL was developed and validated, a DL model was applied to laryngoscopy for real-time laryngeal cancer

detection, and a real-time system using DL was applied to detect and track ureteral orifices during urinary

endoscopy.8–14 In the field of endoscopic NPC recognition, several studies have developed artificial

intelligence models based on static endoscopic images, demonstrating their feasibility and recognition

performance. However, these models often require a balance of high accuracy and fast inference speed,

impeding real-time dynamic detection in video nasopharyngeal endoscopy.15–19 Furthermore, existing

studies have mainly focused on the recognition and classification of endoscopic images of NPC, which

makes it difficult to accurately locate lesions in images. This is obviously unfavorable for guiding inexperi-

enced doctors to perform biopsy site selection. In addition, as these studies rely on single-center datasets,

the actual performance, generalization, and robustness of the models still need to be investigated.

The First Affiliated Hospital of Sun Yat-sen University, Macau Kiang Wu Hospital, and Guangzhou First

People’s Hospital are located in southeastern China, an area with a high global prevalence of NPC. By

leveraging artificial intelligence technology and our extensive nasopharyngeal endoscopy data, we utilized

the you only look once (YOLO) network to develop a fast and accurate real-time object detection model for

NPC. In this study, we assessed the model’s performance, determined the optimal configuration, and

validated the feasibility and effectiveness of the model for real-time automated NPC detection in nasopha-

ryngeal endoscopy using both internal and external datasets. The proposed model represents a novel

approach to assist physicians with NPC identification and guide biopsy site selection during nasopharyn-

geal endoscopy. In addition, the model’s predictive capabilities can validate a physician’s clinical

judgment. Our contributions are as follows:

1. We have harnessed the power of the YOLO network to create a real-time NPC diagnostic model

designed specifically for video nasopharyngeal endoscopy. This model excels in terms of diagnostic

accuracy and inference speed, thereby enabling rapid and precise localization of NPC.

2. We use a dataset from three different clinical centers to develop and validate our model. This unique

approach facilitates a more realistic assessment of our model’s performance and generalizability in

real-world clinical environments.

3. We have developed a robust model that maintains consistent performance across a wide array of

scenarios, including variations in video brightness, hue, contrast, video quality, and lens stability.

This level of robustness in varied conditions is an advancement in the field.

RESULTS

Detection results

The purpose of this experiment was to evaluate the detection performance of various algorithms for NPC

lesions of varying size, shape, and appearance in different datasets. The experimental results are

Table 1. Performance Evaluation of various models

Model

Parameters of the

Model (Millions)

Internal Test Set External Test Set
Frame

Rate (FPS)

Delay

(ms)P@.5iou R@.5iou F1@.5iou mAP@.5 P@.5iou R@.5iou F1@.5iou mAP@.5

YOLOv8l 43.7 0.977 0.943 0.960 0.977 0.825 0.743 0.780 0.814 52.9 18.9

YOLOv7 36.9 0.944 0.924 0.930 0.944 0.862 0.621 0.730 0.634 57.1 17.5

YOLOv6m 35.9 0.946 0.937 0.941 0.946 0.746 0.750 0.758 0.705 43.0 23.3

Faster-RCNN 41.3 0.563 0.391 0.406 0.563 0.235 0.377 0.290 0.235 8.0 125.0

Cascade-RCNN 69.2 0.930 0.621 0.742 0.930 0.676 0.415 0.544 0.676 6.3 158.7

SSD 24.4 0.858 0.683 0.759 0.858 0.779 0.454 0.573 0.779 10.4 96.2

RCNN = Region Convolutional neural network; SSD = Single Shot MultiBox Detector; P@.5iou = Precision with an Intersection over Union threshold of 0.5;

R@.5iou = Recall with an Intersection over Union threshold of 0.5; F1@.5iou = F1 Score with an Intersection over Union threshold of 0.5; mAP@.5 =Mean Average

Precision with an Intersection over Union threshold of 0.5; FPS = Frames Per Second; ms = Millisecond.
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displayed in Table 1. The results demonstrated that the object detection performance of the YOLOv8l

model was superior to that of YOLOv6m, YOLOv7, Faster-RCNN, Cascade-RCNN, and SSD (single

shot multibox detector) for the internal test set, with precision, recall, F1-score, and mAP (mean average

precision) values of 0.977, 0.943, 0.960, and 0.977, respectively. In the comparison test for the external

test set, YOLOv7 exhibited higher precision than the remaining five models, with a value of 0.862.

Furthermore, the recall of YOLOv6m was the highest among all models, with a value of 0.750. However,

Figure 1. YOLO models performance metrics on the internal test set and the external test set for NPC detection

(A and E) Precision curves.

(B and F) Recall curves.

(C and G) F1-score curves.

(D and H) Precision-Recall curves.

ll
OPEN ACCESS

iScience 26, 107463, October 20, 2023 3

iScience
Article



the F1-score can more comprehensively reflect the model’s performance. The F1-score of YOLOv8l for

the external test set was 0.780, higher than that of YOLOv7, YOLOv6m, and the remaining three models.

In terms of inference speed, YOLOv7 demonstrated the fastest speed and the least delay in the compar-

ative experiments among the six models. Except for Faster-RCNN, Cascade-RCNN, and SSD, the

inference speed of YOLOv6m, YOLOv7, and YOLOv8l exceeded the average frame rate (25 FPS) of

the nasopharyngeal endoscopy videos, enabling real-time detection in endoscopy. Based on the perfor-

mance comparison of the six models, we selected the top three performing models for further

comparative analysis: YOLOv6m, YOLOv7, and YOLOv8l. The detailed results of this comparative anal-

ysis can be found in Figure 1. In summary, these comparative experiments provided compelling evidence

that the YOLOv8l model exhibited exceptional stability and accuracy across both internal and external

datasets. Notably, YOLOv8l demonstrated remarkable accuracy and real-time lesion detection

capabilities.

Visualization of DL model prediction

In the field of medical image processing, ensuring the interpretability of a model is of utmost importance.

Providing doctors with an understanding of the reasoning behind the model’s predictions allows for

Figure 2. Examples of automatic NPC prediction provided by the model (YOLOv8l)

The first column on the left contains the original images. The second column contains images with ground truth bounding

boxes. The third column contains images with YOLO-predicted bounding boxes. The fourth column contains images with

predicted bounding boxes and heat maps. Cases A–E are nasopharyngeal endoscopic images of different NPC patients.

Grad-cam: Gradient-weighted Class Activation Mapping.
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enhanced trust and utilization in clinical practice. To address this, we incorporated gradient-weighted class

activationmapping (Grad-CAM) into our methodology.20 Grad-CAM aids to generate activationmaps spe-

cific to the predicted class by producing a weighted linear sum of visual patterns across different spatial

locations. By employing Grad-CAM, we are able to determine which regions of an image the model relies

on for its predictions. Our analysis of the Grad-CAM results revealed that the model consistently directs its

attention toward lesion areas, with a particular focus on regions exhibiting distinct elevation andmore intri-

cate blood vessels, as visually depicted in Figure 2. This observation suggests that these areas hold crucial

information for identifying and diagnosing potential cases of NPC. The focus on these regions indicates

their significance in contributing to the model’s accurate predictions. As a result, the Grad-CAM technique

shows promise as a reference tool for guiding precise lesion biopsies, potentially improving the diagnostic

accuracy and treatment planning in clinical settings.

Verification of real-time detection

To evaluate the model’s suitability for real-time detection in video streams, the focus of this study was pri-

marily on the running time. The YOLOv8l model was chosen for its superior performance, as evidenced by

the aforementioned results. As shown in Table 2, the inference speed of a model that processed six videos

was greater than the videos’ frame rate. To illustrate the detection effect, we selected some original video

frames and their corresponding frames processed by the model, which are displayed in Figure 3. Further-

more, to provide a more comprehensive demonstration, three sample videos processed by the model,

referred to as Videos S1, S2, and S3 in supplemental information, were made available. The aforemen-

tioned experimental results validated the efficacy and feasibility of utilizing YOLOv8l for the real-time

NPC detection of nasopharyngeal endoscopy videos. The division of the dataset, the research process,

and the definition of IoU are shown in Figures 4, 5 and 6.

Validation of robustness

The robustness of a model may have significant implications for its practical application in the real world,

manifested by its ability to exhibit outstanding detection performance in diverse environments. A series of

rigorous tests were conducted to validate the robustness of the proposed model. We applied image cor-

ruption methods to the test sets to simulate various image characteristics in different scenes, including

noise, blur, fog, and changes in brightness.21 The experimental results are displayed in Table 3. The exper-

iments demonstrated that the model exhibited reliable detection performance when dealing with different

video qualities, blurry visuals caused by lens shake, foggy scenes resulting from patient respiration, and

changes in device brightness for both the internal and external datasets. It is worth mentioning that, in

terms of the F1-score, in addition to the zoom blur and fog methods, which significantly decreased the

model performance, the average impact on the performance metrics of the other methods for the internal

and external test sets was �0.017 and �0.018, respectively. In summary, the proposed model demon-

strated exceptional performance and reasonable generalizability for a diverse range of clinical scenarios.

DISCUSSION

In this study, we successfully employed a YOLO network to develop an NPC diagnostic model for video

nasopharyngeal endoscopy. The model demonstrated outstanding accuracy and inference speed with

both internal and external datasets. By providing real-time and precise lesion localization during the early

screening of NPC, our model has the potential to significantly assist clinicians in their decision-making

Table 2. Characteristics and Computation Times of the Testing Videos After Applying the Model (YOLOv8l) for NPC Detection

Video

ID

Size

(Mb)

Video

Format

Video

Resolution

Video Frame

Rate （FPS）
Total Frame

Count NPC

Average Computation

Time Per Frame (s)

Model Frame

Rate （FPS）

1 18.3/89.6 MP4/MKV 1920x1080 25.00 306 Y 0.0183 54.64

2 18.9/81.2 MP4/MKV 1920x1080 25.00 272 Y 0.0176 56.82

3 9.92/42.7 MP4/MKV 1920x1080 25.00 148 Y 0.0176 56.82

4 20.2/82.3 MP4/MKV 1920x1080 25.00 286 Y 0.0175 57.14

5 26.6/113 MP4/MKV 1920x1080 25.00 390 Y 0.0174 57.47

6 19.2/89.4 MP4/MKV 1920x1080 25.00 311 N 0.0170 58.82

NPC = nasopharyngeal carcinoma; Mb = megabytes; FPS = frame per second.
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processes. Furthermore, the model shows promising prospects in guiding biopsy procedures for NPC,

ultimately contributing to more accurate diagnoses and improving patient outcomes.

In areas where NPC is endemic, early screening for high-risk individuals currently includes serum Epstein-

BarrVirus (EBV) DNA testing combined with nasopharyngeal endoscopy and magnetic resonance imaging

(MRI). NPC exhibits characteristics that are distinct from those of most other tumors, and nasopharyngeal

endoscopy plays a vital role in the early screening and auxiliary diagnosis of NPC that MRI cannot replace.22

Presently, there are two main types of nasopharyngeal endoscopy: white light imaging (WLI) and narrow-

band imaging (NBI). The former mainly identifies the overall characteristics of a lesion, and the latter mainly

identifies the microvascular morphology of a lesion.23 While NBI is more beneficial in identifying occult

NPC, its clinical applicability is hampered by the intensive training and expertise required for optical image

interpretation. Furthermore, NBI endoscopic equipment is more expensive than WLI endoscopic

equipment. Given that many areas with high NPC prevalence in China and Southeast Asia are situated

in rural or remote locations, WLI endoscopes are the most prevalent endoscopic equipment in local hos-

pitals. Thus, the prevalence of NBI endoscopy is limited.24 After considering these factors, we primarily

focused on detecting and diagnosing NPC in the WLI mode of nasopharyngeal endoscopy.

For physicians, identifying NPC by nasopharyngeal endoscopy is a significant challenge. Li et al. reported

that the accuracy, sensitivity, specificity, and positive prediction value (PPV) of experts with five years of

experience in identifying nasopharyngeal malignant and benign lesions in WLI images were 80.5%,

89.5%, 70.8%, and 76.6%, respectively, and these metrics were significantly lower for less experienced phy-

sicians.15 As many areas with high NPC prevalence in China and Southeast Asia are located in rural or

Figure 3. Panel of testing videoframes extracted from six nasopharyngeal endoscopic videos

Each row represents a different video: the first two pictures of every row are extracted from the original videos, the second

two and the last two images are the same frames extracted after the prediction of the model (YOLOv8l).
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remote locations, local doctors might lack sufficient experience and advanced endoscopic equipment for

NPC detection. Consequently, we believe that primary care hospitals need a CADe model based on DL to

assist physicians in the early diagnosis of NPCmore than national hospitals, and this model can help bridge

the cancer diagnosis gap between them. Li et al.’s DL model demonstrated higher recognition accuracy

and faster recognition speed than those of professional clinicians, proving that CADe technology can serve

as a powerful assistant for clinicians.15

Over the past five years, the advent of the big data era has driven rapid development in the DL network

represented by CNNs. In the processes of data acquisition, preprocessing, feature extraction, and data

classification, CNNs have been widely used in tumor classification, detection, and segmentation due to

their outstanding spatial feature extraction function and classification accuracy.11,13,25,26 Currently,

numerous studies have developed object detection models based on YOLO, particularly in the field of

video endoscopy, which requires real-time lesion recognition. With the exceptional accuracy and speed

of the YOLO network, dynamic, real-time, and precise lesion recognition can be achieved in video

endoscopy.11,27–31

To the best of our knowledge, only a few studies have employed artificial intelligence networks to construct

NPC endoscopic diagnosis models. Li et al. retrospectively used 28,966 white light images of nasopharyn-

geal endoscopy to train and develop a CNN-based diagnostic model to identify endoscopic nasopharyn-

geal malignant tumors and guide biopsies.15 The accuracy, sensitivity, specificity, and PPV values of the

model for the retrospective test set were 88.7%, 91.3%, 83.1%, and 92.2%, respectively. Simultaneously,

for the prospective test set, these values were 88.0%, 90.2%, 85.5%, and 86.9%, respectively. It took approx-

imately 40 s to process 1,430 images. The model exhibited excellent segmentation performance and could

accurately outline tumor boundaries. However, since the model can only make diagnoses based on preac-

quired endoscopic images rather than real-time video, it was challenging to achieve real-time detection in

video endoscopy. Mohammed et al. used 381 endoscopic images of NPC to construct an ML model that

Figure 4. The flowchart of dataset creation

Figure 5. The flowchart of research & YOLOv8l architecture
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can handle classification and segmentation tasks. By employing a genetic algorithm for feature selection

and an artificial neural network (ANN) for image classification, the model achieved precision, sensitivity,

and specificity values of 95.15%, 94.80%, and 95.20%, respectively. In addition, the segmentation accuracy

of themodel was 92.65%.18 Moreover, Mohammed’s research team used the sameNPC dataset to develop

a diagnostic model using support vector machine (SVM)-based decision-level fusion of three image texture

(local binary patterns, first-order statistics histogram properties, and grayscale histograms) schemes. The

classifier approaches achieved an accuracy of 94.07%, a sensitivity of 92.05%, and a specificity of 93.07%.19

For the detection of endoscopic images of NPC, Mohammed’s team then developed an NPC detection

model using a genetic algorithm and ANN based on Haar feature fear. The proposed model achieved ac-

curacy, sensitivity, and specificity values of 96.22%, 95.35%, and 94.55%, respectively.17 Xu et al. developed

a CNN-based NPC diagnostic model using 4,783 nasopharyngeal endoscopic images by combining the

optical characteristics of NPC with WL and NB images and used cross-validation to expand the test set

sample size. They reported an accuracy of 94.9%, a sensitivity of 94.8%, a specificity of 95.0%, a PPV of

95.2%, and an AUC of 0.986. Additionally, the processing time for 2,000 images was 39.04 s, enabling

real-time diagnosis during nasopharyngeal endoscopy.16 However, their models primarily perform image

classification tasks and cannot accurately obtain the location, size, and other important information of an

NPC lesion. While some of the aforementioned models exhibit fast inference speeds, there has been no

verification of their performance in video-based applications. Therefore, further investigation is necessary

to evaluate and optimize the real-time performance of these models. Moreover, since these studies use

single-center datasets, the generalizability and applicability of the proposed models in the real world

remain to be further discussed. The comparison of our proposed model with previous studies is summa-

rized in Table 4.

To the best of our knowledge, we are the first to develop a DL model for real-time NPC object detection in

video endoscopy. We used YOLOv6m, YOLOv7, YOLOv8l, Faster-RCNN, Cascade-RCNN, and SSD to

construct object detection models and compared their results, ultimately finding that YOLOv8l provided

the best accuracy and speed for tumor detection. The model demonstrated a good balance between pre-

cision and recall, with F1-scores of 0.960 and 0.780 for the internal and external test sets, respectively, which

maximized the detection rate and reduced themisdiagnosis rate. The CADe’s ability to detect small lesions

has been shown to be comparable or even superior to that of professional doctors, which can help less

experienced doctors accurately detect lesions during endoscopy.28 The YOLOv8l model required only

17 ms to analyze a video frame. Additionally, the model’s average frame rate was 57.6 FPS, while the

average frame rate of nasopharyngeal endoscopy video was 25–30 FPS, indicating that the model was fully

capable of real-time lesion detection in nasopharyngeal endoscopy. In addition, our endoscopic video

verification experiment also confirmed the real-time performance of the model. Most importantly, the pro-

posedmodel demonstrated outstanding stability during robustness testing.We believe that themodel can

accurately detect NPC across various settings of nasopharyngoscopy examinations, differences in hospital

equipment, and instances where the examination field may be blurred due to inexperienced doctor’s

operation. Similar to those used by Xu et al., we used interpretive tools to visually explain which regions

of images the model focuses on to make predictions, which had important implications.16 On the one

Figure 6. Evaluation of whether model was correctly diagnosed. The red rectangle is marked by the model as a

predicted NPC

The green rectangle is the location of NPC, which is manually marked by the expert physicians. Intersection over the union

(IoU) is the area of overlap divided by area of union.
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hand, when the model is significantly weaker than endoscopists in terms of NPC detection, the goal of

explanations is to identify the failure modes, thereby helping researchers focus their efforts on the most

fruitful research directions. On the other hand, when the model is significantly stronger than endoscopists

in terms of NPC detection, the goal of explanations is in machine teaching, i.e., a machine teaching an en-

doscopist about how tomake better decisions in detecting NPC during nasopharyngeal endoscopy. Unlike

CAM, Grad-CAM can extract the heatmap of any layer of the feature map without modifying the network

structure of the model. It can be applied to the network structure of nonglobal average pooling connec-

tions to provide more accurate visualization results.20 Furthermore, due to the lightweight structure of

the YOLO network, this model can be widely used and promoted in grassroots or community hospitals.

Since DL models typically perform well for internal datasets and poorly for extrapolation, we incorporated

data from other medical centers as external test sets to validate the models’ generalizability across various

patient populations and healthcare systems. The dataset from multiple clinical medical centers included

characteristics of different populations and different endoscopic systems, which could make our sample

population more consistent with the actual population and more accurately reflect the model’s perfor-

mance in practical applications. Often, the metric values of a model for an external test set may be less

than or equal to those for an internal test set because the external test set contains more unknown data,

which may have different distributions from the data in the internal test set. This could be due to a variety

of factors, including differences in the equipment used at different centers, variations in the skills of the

technical staff, and differences in the types and stages of diseases among patient populations. In the pro-

cess of model training, the model will attempt to adapt to the data distribution of the training set and the

validation set but may overfit these data distributions, resulting in degraded performance with the external

test set. Additionally, there may be some selection bias in the internal test set data, resulting in slightly

higher model performance for the internal test set than in reality. However, despite these differences,

our model demonstrated good generalizability, maintaining reasonable performance across different cen-

ters and patient populations. This outcome gives us confidence in the application of our model in the real

world and provides directions for improvements to our model. Consequently, future research should focus

on further validating and optimizing the model’s practicality and generalizability in real-world scenarios.

Increasing the diversity and quantity of data used for training or employing cross-validationmethodologies

in limited data should be considered. Furthermore, it is crucial to test the model’s performance across

different sex, age, region, and disease stage subgroups and assess its robustness when dealing with

various video qualities, lighting conditions, and lens angles. However, it should be noted that

achieving perfect generalization across all datasets is often unattainable, so it may be necessary to

strike a balance between increased performance with additional data and the possibility of overfitting

the model.

Table 3. Robustness validation of the model

Model and Methods

of Image corruption

Internal Test Set External Test Set

P@.5iou R@.5iou F1@.5iou mAP@.5 P@.5iou R@.5iou F1@.5iou mAP@.5

YOLOv8l 0.977 0.943 0.960 0.977 0.825 0.743 0.780 0.814

Gaussian noise 0.956 0.911 0.933 0.959 0.805 0.711 0.755 0.795

Shot noise 0.948 0.911 0.929 0.960 0.792 0.710 0.749 0.797

Impulse noise 0.954 0.889 0.920 0.949 0.805 0.684 0.739 0.787

Defocus blur 0.965 0.932 0.948 0.971 0.812 0.735 0.771 0.807

Zoom blur 0.810 0.758 0.783 0.837 0.680 0.587 0.630 0.705

Motion blur 0.966 0.966 0.966 0.969 0.818 0.732 0.772 0.803

Fog 0.945 0.661 0.778 0.830 0.796 0.493 0.610 0.689

Brightness + 0.977 0.943 0.960 0.977 0.824 0.743 0.780 0.815

Brightness - 0.956 0.932 0.944 0.971 0.804 0.731 0.766 0.803

P@.5iou = Precisionwith an Intersection over Union threshold of 0.5; R@.5iou = Recall with an Intersection over Union threshold of 0.5; F1@.5iou = F1 Score with an

Intersection over Union threshold of 0.5; mAP@.5 = Mean Average Precision with an Intersection over Union threshold of 0.5.
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Table 4. A review of AI diagnosis of NPC based on endoscopic images

Authors, Year and

Country

Site, No. of Cases (Data

Type)

AI Subfield

(Application)

AI Methods and its

Application Performance Metric (s)

Li et al.15 (2018)

(China)

NPC

28966 (Endoscopic

images, white light

imaging)

Deep learning (Auto-

contouring/Diagnosis)

1. Detection:

Fully CNN

1. Detection performance

- AUC: 0.930

- Sensitivity: 0.902

[CI:0.878–0.922]

- Specificity: 0.855 [CI:

0.827–0.880]

- Accuracy: 0.880 [CI:

0.861–0.896]

- PPV: 0.869 [CI: 0.843–

0.892]

- NPV: 0.892 [CI: 0.865–

0.914]

- Time taken: 0.67 min

(1430 images)

2. Segmentation

performance

- DSC: 0.75 G 0.26

Mohammed et al.18 (2018)

(Malaysia, Iraq and India)

NPC

381 (Endoscopic images,

white light imaging)

Machine learning (Auto-

contouring/Diagnosis)

1. Feature selection:

Genetic algorithm

2. Classification:

ANN & SVM

1. Segmentation

performance

- Accuracy: 0.9265

2. Classification

performance

- Sensitivity: 0.9480

- Specificity: 0.9520

- Precision: 0.9515

Abd Ghani MK et al.19

(2018) (Malaysia,

Iraq and India)

NPC

381 (Endoscopic images,

white light imaging)

Machine learning

(Diagnosis)

1. Classification:

SVM, ANN, KNN

1. Classification

performance

- Sensitivity: 0.9205

- Specificity: 0.9307

- Accuracy: 0.9407

Mohammed et al.17 (2018)

(Malaysia, Iraq and India)

NPC

381 (Endoscopic images,

white light imaging)

Machine learning

(Diagnosis)

1. Feature selection:

Genetic algorithm

2. Classification:

ANN

1. Classification

performance

- Sensitivity: 0.9535

- Specificity: 0.9455

- Accuracy: 0.9622

Xu et al.16 (2021)

(China)

NPC

4783 (Endoscopic images,

white light imaging &

narrow-band imaging)

Deep learning (Diagnosis) 1. Feature extraction:

Xception

2. Classification:

Deep CNN

1. Classification

performance

- AUC: 0.986 [CI:0.982–

0.992]

- Sensitivity: 0.948

[CI:0.930–0.966]

- Specificity: 0.950 [CI:

0.937–0.964]

- Accuracy: 0.949 [CI:

0.933–0.965]

- PPV: 0.952 [CI: 0.936–

0.968]

- NPV: 0.946 [CI: 0.933–

0.960]

2. Inference Time: 39.4 s

(1000 pairs of images)

(Continued on next page)
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Limitations of the study

There are limitations in this study. First, the model only recognizes NPC and non-NPC. Non-NPC includes

benign andmalignant lesions, such as hypertrophic adenoids, tuberculosis, lymph node hyperplasia, cysts,

lymphoma, olfactory neuroblastoma, malignant melanoma, and adenoid cystic carcinoma. Among them,

the number of video frames of lymphoma is small, and its endoscopic morphology is similar to that of

NPC, so the model is prone to mistakenly consider lymphoma as NPC. Although NPC is the most common

malignant tumor in the nasopharynx, further research is necessary. The next stage of this study will focus on

expanding the number of other pathological types to enrich the dataset and build a reliable algorithm. Sec-

ond, the number of video frames of NPC growing under the mucosa in the dataset, that is, atypical lesions

and small lesions, is small, which leads to insufficient training of the model for this type of NPC. Therefore,

the model is prone to missed diagnosis. In nasopharyngeal endoscopy, the local resolution can be

improved by making the lens close to the lesion, thereby improving the detection rate. Third, the dataset

consists of manually selected video frames rather than continuous video frames. Continuous video frames

provide a more comprehensive representation of the dynamic changes and progression of lesions over

time. This may cause the model to fail to learn effectively and adapt to a wider range of scenarios. Fourth,

the whole dataset was collected retrospectively, which might have led to a certain level of selection bias.

Finally, the accuracy of our model’s detection needs to be compared with different ranks of doctors, which

in turn validates the model’s suitability for true clinical practice.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Data augmentation

B DL model training and testing

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107463.

Table 4. Continued

Authors, Year and

Country

Site, No. of Cases (Data

Type)

AI Subfield

(Application)

AI Methods and its

Application Performance Metric (s)

Our proposed model NPC

2429 (Endoscopic images,

white light imaging)

Deep learning (Object

detection/Diagnosis)

1. Object detection:

YOLOv6, YOLOv7,

YOLOv8, Faster-RCNN,

Cascade-RCNN, SSD

1. Object detection

performance

Internal dataset

-Precision: 0.977

-Recall: 0.943

-F1-score: 0.960

-mAP: 0.977

External dataset

-Precision: 0.825

-Recall: 0.743

-F1-score: 0.780

-mAP: 0.814

2. Inference speed: 52.9

FPS

NPC = Nasopharyngeal carcinoma; AI = Artificial intelligence; CNN = Convolutional neural network; AUC = Area under curve; PPV = Positive prediction value;

NPV =Negative prediction value; DSC=Dice similarity coefficient; ANN=Artificial neural network; SVM= Support vector machines; KNN= k-nearest neighbors’

algorithm; RCNN = Region Convolutional neural network; SSD = Single Shot MultiBox Detector; mAP = Mean average precision; FPS = Frames per second.
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Mattheis, S., Baujat, B., Hardillo, J., et al.
(2021). Nasopharyngeal carcinoma: ESMO-
EURACAN Clinical Practice Guidelines for
diagnosis, treatment and follow-up(dagger).
Ann. Oncol. 32, 452–465. https://doi.org/10.
1016/j.annonc.2020.12.007.

5. Cengiz, K., Kumral, T.L., and Yıldırım, G.
(2013). Diagnosis of pediatric nasopharynx
carcinoma after recurrent adenoidectomy.
Case Rep. Otolaryngol. 2013, 653963. https://
doi.org/10.1155/2013/653963.

6. Wu, Y.P., Cai, P.Q., Tian, L., Xu, J.H., Mitteer,
R.A., Jr., Fan, Y., and Zhang, Z. (2015).
Hypertrophic adenoids in patients with

nasopharyngeal carcinoma: appearance at
magnetic resonance imaging before and
after treatment. Chin. J. Cancer 34, 130–136.
https://doi.org/10.1186/s40880-015-0005-y.

7. Kim, D.H., Lee, M.H., Lee, S., Kim, S.W., and
Hwang, S.H. (2022). Comparison of
Narrowband Imaging and White-Light
Endoscopy for Diagnosis and Screening of
Nasopharyngeal Cancer. Otolaryngol. Head
Neck Surg. 166, 795–801. https://doi.org/10.
1177/01945998211029617.

8. Luo, H., Xu, G., Li, C., He, L., Luo, L., Wang, Z.,
Jing, B., Deng, Y., Jin, Y., Li, Y., et al. (2019).
Real-time artificial intelligence for detection
of upper gastrointestinal cancer by
endoscopy: a multicentre, case-control,
diagnostic study. Lancet Oncol. 20, 1645–
1654. https://doi.org/10.1016/s1470-2045(19)
30637-0.

9. Chen, Z., Lin, L., Wu, C., Li, C., Xu, R., and Sun,
Y. (2021). Artificial Intelligence for Assisting
Cancer Diagnosis and Treatment in the Era of
Precision Medicine. Cancer Commun. 41,
1100–1115. https://doi.org/10.1002/cac2.
12215.

10. Zeng, X., Jiang, Z., Luo, W., Li, H., Li, H., Li, G.,
Shi, J., Wu, K., Liu, T., Lin, X., et al. (2021).
Efficient and accurate identification of ear
diseases using an ensemble deep learning
model. Sci. Rep. 11, 10839. https://doi.org/
10.1038/s41598-021-90345-w.

11. Azam, M.A., Sampieri, C., Ioppi, A., Africano,
S., Vallin, A., Mocellin, D., Fragale, M.,
Guastini, L., Moccia, S., Piazza, C., et al.
(2022). Deep Learning Applied to White Light
and Narrow Band Imaging

Videolaryngoscopy: Toward Real-Time
Laryngeal Cancer Detection. Laryngoscope
132, 1798–1806. https://doi.org/10.1002/lary.
29960.

12. Liu, D., Peng, X., Liu, X., Li, Y., Bao, Y., Xu, J.,
Bian, X., Xue, W., and Qian, D. (2021). A real-
time system using deep learning to detect
and track ureteral orifices during urinary
endoscopy. Comput. Biol. Med. 128, 104104.
https://doi.org/10.1016/j.compbiomed.2020.
104104.

13. Min, J.K., Kwak, M.S., and Cha, J.M. (2019).
Overview of Deep Learning in
Gastrointestinal Endoscopy. Gut Liver 13,
388–393. https://doi.org/10.5009/gnl18384.

14. Sumiyama, K., Futakuchi, T., Kamba, S.,
Matsui, H., and Tamai, N. (2021). Artificial
intelligence in endoscopy: Present and future
perspectives. Dig. Endosc. 33, 218–230.
https://doi.org/10.1111/den.13837.

15. Li, C., Jing, B., Ke, L., Li, B., Xia, W., He, C.,
Qian, C., Zhao, C., Mai, H., Chen, M., et al.
(2018). Development and validation of an
endoscopic images-based deep learning
model for detection with nasopharyngeal
malignancies. Cancer Commun. 38, 59.
https://doi.org/10.1186/s40880-018-0325-9.

16. Xu, J., Wang, J., Bian, X., Zhu, J.Q., Tie, C.W.,
Liu, X., Zhou, Z., Ni, X.G., and Qian, D. (2022).
Deep Learning for nasopharyngeal
Carcinoma Identification Using Both White
Light and Narrow-Band Imaging Endoscopy.
Laryngoscope 132, 999–1007. https://doi.
org/10.1002/lary.29894.

ll
OPEN ACCESS

12 iScience 26, 107463, October 20, 2023

iScience
Article

https://doi.org/10.1016/s0140-6736(19)30956-0
https://doi.org/10.1016/s0140-6736(19)30956-0
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.radonc.2014.02.003
https://doi.org/10.1016/j.radonc.2014.02.003
https://doi.org/10.1016/j.annonc.2020.12.007
https://doi.org/10.1016/j.annonc.2020.12.007
https://doi.org/10.1155/2013/653963
https://doi.org/10.1155/2013/653963
https://doi.org/10.1186/s40880-015-0005-y
https://doi.org/10.1177/01945998211029617
https://doi.org/10.1177/01945998211029617
https://doi.org/10.1016/s1470-2045(19)30637-0
https://doi.org/10.1016/s1470-2045(19)30637-0
https://doi.org/10.1002/cac2.12215
https://doi.org/10.1002/cac2.12215
https://doi.org/10.1038/s41598-021-90345-w
https://doi.org/10.1038/s41598-021-90345-w
https://doi.org/10.1002/lary.29960
https://doi.org/10.1002/lary.29960
https://doi.org/10.1016/j.compbiomed.2020.104104
https://doi.org/10.1016/j.compbiomed.2020.104104
https://doi.org/10.5009/gnl18384
https://doi.org/10.1111/den.13837
https://doi.org/10.1186/s40880-018-0325-9
https://doi.org/10.1002/lary.29894
https://doi.org/10.1002/lary.29894


17. Mohammed, M.A., Abd Ghani, M.K.,
Arunkumar, N., Hamed, R.I., Abdullah, M.K.,
and Burhanuddin, M.A. (2018). A real time
computer aided object detection of
nasopharyngeal carcinoma using genetic
algorithm and artificial neural network based
on Haar feature fear. Future Generat.
Comput. Syst. 89, 539–547. https://doi.org/
10.1016/j.future.2018.07.022.

18. Mohammed, M.A., Abd Ghani, M.K.,
Arunkumar, N., Mostafa, S.A., Abdullah, M.K.,
and Burhanuddin, M.A. (2018). Trainable
model for segmenting and identifying
Nasopharyngeal carcinoma. Comput. Electr.
Eng. 71, 372–387. https://doi.org/10.1016/j.
compeleceng.2018.07.044.

19. Abd Ghani, M.K., Mohammed, M.A.,
Arunkumar, N., Mostafa, S.A., Ibrahim, D.A.,
Abdullah, M.K., Jaber, M.M., Abdulhay, E.,
Ramirez-Gonzalez, G., and Burhanuddin,
M.A. (2018). Decision-level fusion scheme for
nasopharyngeal carcinoma identification
using machine learning techniques. Neural
Comput. Appl. 32, 625–638. https://doi.org/
10.1007/s00521-018-3882-6.

20. Selvaraju, R.R., Cogswell, M., Das, A.,
Vedantam, R., Parikh, D., and Batra, D. (2017).
Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization. In
2017 IEEE International Conference on
Computer Vision (ICCV).

21. Dan Hendrycks, T.G.D. (2019). Benchmarking
Neural Network Robustness to Common
Corruptions and Surface Variations. In
International Conference on Learning
Representations, 2019.

22. Li, S., Deng, Y.Q., Zhu, Z.L., Hua, H.L., and
Tao, Z.Z. (2021). A Comprehensive Review on
Radiomics and Deep Learning for
Nasopharyngeal Carcinoma Imaging.
Diagnostics 11, 1523. https://doi.org/10.
3390/diagnostics11091523.

23. Wen, Y.H., Zhu, X.L., Lei, W.B., Zeng, Y.H.,
Sun, Y.Q., and Wen, W.P. (2012). Narrow-
band imaging: a novel screening tool for early

nasopharyngeal carcinoma. Arch.
Otolaryngol. Neck Surg. 138, 183–188.

24. Ni, X.G., Zhang,Q.Q., andWang, G.Q. (2017).
Classification of nasopharyngeal
microvessels detected by narrow band
imaging endoscopy and its role in the
diagnosis of nasopharyngeal carcinoma. Acta
Otolaryngol. 137, 546–553. https://doi.org/
10.1080/00016489.2016.1253869.

25. Pacal, I., Karaboga, D., Basturk, A., Akay, B.,
and Nalbantoglu, U. (2020). A comprehensive
review of deep learning in colon cancer.
Comput. Biol. Med. 126, 104003. https://doi.
org/10.1016/j.compbiomed.2020.104003.

26. Suzuki, K. (2017). Overview of deep learning
in medical imaging. Radiol. Phys. Technol. 10,
257–273. https://doi.org/10.1007/s12194-
017-0406-5.

27. Lee, J.Y., Jeong, J., Song, E.M., Ha, C., Lee,
H.J., Koo, J.E., Yang, D.H., Kim, N., and
Byeon, J.S. (2020). Real-time detection of
colon polyps during colonoscopy using deep
learning: systematic validation with four
independent datasets. Sci. Rep. 10, 8379.
https://doi.org/10.1038/s41598-020-65387-1.

28. Guo, Z., Nemoto, D., Zhu, X., Li, Q., Aizawa,
M., Utano, K., Isohata, N., Endo, S., Kawarai
Lefor, A., and Togashi, K. (2021). Polyp
detection algorithm can detect small polyps:
Ex vivo reading test compared with
endoscopists. Dig. Endosc. 33, 162–169.
https://doi.org/10.1111/den.13670.

29. Pacal, I., and Karaboga, D. (2021). A robust
real-time deep learning based automatic
polyp detection system. Comput. Biol. Med.
134, 104519. https://doi.org/10.1016/j.
compbiomed.2021.104519.

30. Ku, Y., Ding, H., andWang, G. (2022). Efficient
Synchronous Real-Time CADe for
Multicategory Lesions in Gastroscopy by
Using Multiclass Detection Model. BioMed
Res. Int. 2022, 8504149. https://doi.org/10.
1155/2022/8504149.

31. Pacal, I., Karaman, A., Karaboga, D., Akay, B.,
Basturk, A., Nalbantoglu, U., and Coskun, S.
(2022). An efficient real-time colonic polyp
detection with YOLO algorithms trained by
using negative samples and large datasets.
Comput. Biol. Med. 141, 105031. https://doi.
org/10.1016/j.compbiomed.2021.105031.

32. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y.,
Liang, L., Zaidan, K., Li, Q., Cheng, M., Nie,
W., Li, Y., et al. (2022). YOLOv6: A Single-
Stage Object Detection Framework for
Industrial Applications. Preprint at arxiv.
https://doi.org/10.48550/arXiv.2209.02976.

33. Wang, C.Y., Bochkovskiy, A., and Liao, Y.M.
(2022). YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object
detectors. Preprint at arxiv. https://doi.org/
10.48550/arXiv.2207.02696.

34. Liu, W., Anguelov, D., Erhan, D., Szegedy, C.,
Reed, S., Fu, C.-Y., and Berg, A.C. (2016). SSD:
Single Shot MultiBox Detector (Computer
Vision – ECCV 2016). https://doi.org/10.1007/
978-3-319-46448-0.

35. Ren, S., He, K., Girshick, R., and Sun, J. (2017).
Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 39,
1137–1149. https://doi.org/10.1109/tpami.
2016.2577031.

36. Zhaowei Cai, N.V. (2018). Cascade R-CNN:
Delving Into High Quality Object Detection.
IEEE Conf. Comput. Vis. Pattern Recogn.
6154–6162.

37. Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin,
T.Y., Cubuk, E.D., Le, Q.V., and Zoph, B.
(2021). Simple Copy-Paste Is a Strong Data
Augmentation Method for Instance
Segmentation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), pp. 2917–2927.

38. Zhang, H., Cisse, M., Dauphin, Y.N., and
Lopez-Paz, D. (2018). mixup: Beyond
empirical risk minimization. In The
International Conference on Learning
Representations, 2018.

ll
OPEN ACCESS

iScience 26, 107463, October 20, 2023 13

iScience
Article

https://doi.org/10.1016/j.future.2018.07.022
https://doi.org/10.1016/j.future.2018.07.022
https://doi.org/10.1016/j.compeleceng.2018.07.044
https://doi.org/10.1016/j.compeleceng.2018.07.044
https://doi.org/10.1007/s00521-018-3882-6
https://doi.org/10.1007/s00521-018-3882-6
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref20
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref21
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref21
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref21
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref21
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref21
https://doi.org/10.3390/diagnostics11091523
https://doi.org/10.3390/diagnostics11091523
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref23
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref23
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref23
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref23
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref23
https://doi.org/10.1080/00016489.2016.1253869
https://doi.org/10.1080/00016489.2016.1253869
https://doi.org/10.1016/j.compbiomed.2020.104003
https://doi.org/10.1016/j.compbiomed.2020.104003
https://doi.org/10.1007/s12194-017-0406-5
https://doi.org/10.1007/s12194-017-0406-5
https://doi.org/10.1038/s41598-020-65387-1
https://doi.org/10.1111/den.13670
https://doi.org/10.1016/j.compbiomed.2021.104519
https://doi.org/10.1016/j.compbiomed.2021.104519
https://doi.org/10.1155/2022/8504149
https://doi.org/10.1155/2022/8504149
https://doi.org/10.1016/j.compbiomed.2021.105031
https://doi.org/10.1016/j.compbiomed.2021.105031
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.1007/978-3-319-46448-0
https://doi.org/10.1007/978-3-319-46448-0
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref36
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref36
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref36
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref36
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref37
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref38
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref38
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref38
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref38
http://refhub.elsevier.com/S2589-0042(23)01540-7/sref38


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jian Li (lijianent@hotmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Nasopharyngeal endoscopic image data reported in this paper will be shared by the lead contact upon

request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study was conducted in accordance with the principles of the Declaration of Helsinki and was

approved by the Ethics Committees of the First Affiliated Hospital of Sun Yat-sen University, the Kiang

Wu Hospital and the Guangzhou First People’s Hospital. Due to the retrospective nature of the study

and the negligible risk to subjects, informed consent was waived. All patients underwent examination in

the endoscopy room using a high-definition video nasopharyngeal endoscope (KARL STORZ-endoskope,

Tuttlingen, Germany) in white light mode after local anesthesia with bupivacaine and mucosal shrinkage

with epinephrine.

All images were video frames captured from nasopharyngeal endoscopy videos. The inclusion criteria for

images were: (1) a minimum resolution of 400x400 pixels; (2) a minimum size of 60 kb; (3) acquired during

the initial diagnosis; (4) nasopharyngeal images without nasal structure; (5) clearly visible nasopharyngeal

mucosa without overlying material; (6) clear focus; (7) standard white light used during inspection and

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Nasopharyngeal Endoscopic

Image Datasets

This paper N/A

Software and algorithms

YOLOv6 Li et al.32 https://github.com/meituan/YOLOv6

YOLOv7 Wang et al.33 https://github.com/WongKinYiu/yolov7

YOLOv8 Ultralytics company https://github.com/ultralytics/ultralytics

Single Shot MultiBox Detector (SSD) Liu et al.34 https://github.com/weiliu89/caffe

Faster-RCNN Girshick et al.35 https://github.com/rbgirshick/py-faster-rcnn

Cascade-RCNN Cai et al.36 https://github.com/zhaoweicai/cascade-rcnn

Image Corruptions Hendrycks et al.21 https://github.com/bethgelab/imagecorruptions

Gradient-weighted Class Activation

Mapping (Grad-CAM)

Selvaraju et al.20 https://github.com/jacobgil/pytorch-grad-cam

PyTorch Version 1.11.0 https://pytorch.org/docs/1.11/

Matplotlib Version 3.7.1 https://pypi.org/project/matplotlib/

Python Version 3.8.13 https://www.python.org/downloads/release/python-3813/
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image capture, with white balance correction performed before inspection; (8) definitive pathological diag-

nosis. The exclusion criteria for images included: (1) missing pathological information; (2) missing endo-

scopic images; (3) images that were out of focus, too low in brightness, or had motion artifacts.

We retrospectively collected 2,429 nasopharyngeal endoscopic video frame images, clinicopathological

data, imaging reports, and medical records from 690 patients at three medical centers from January 1,

2020, to December 1, 2021. This included 2,000 images from 519 patients at the First Affiliated Hospital

of Sun Yat-sen University and 429 images from 171 patients at the KiangWu Hospital in Macau and the First

People’s Hospital in Guangzhou. All patients were Chinese. In the internal dataset, we recorded a total of

369 male patients and 150 female patients. Similarly, in the external dataset, our findings showed 112 male

patients and 59 female patients. The average age of the entire dataset was 41.05 years old. All images were

anonymized and reconstructed in random order. Images pathologically confirmed as other than NPC, ac-

cording to the World Health Organization histopathological classification, were considered to be in the

non-NPC category, which included nasopharyngeal cysts, lymphomas, tuberculosis, fibrovascular tumors,

malignant melanoma, etc. The ratio of NPC to non-NPC was approximately 1:1.

Subsequently, three expert physicians manually labeled the images using LabelImg software. In an image

with histopathological evidence of NPC, a bounding box, defined as Ground Truth (GT), was outlined along

the largest boundary of the tumor that surrounded the entire tumor area and was labeled as "NPC" accord-

ing to the label. The accuracy of the GT bounding boxes profile was cross-checked by the three expert phy-

sicians.We classified theNPC images into three categories based on relative bounding-box size of lesion in

proportion to the image. The classification criteria were as follows: small: GT bounding box of lesion occu-

pying equal or less than 10% of the image; medium: GT bounding box of lesion occupying more than 10%

but equal or less than 30% of the image; large: GT bounding box of lesion occupying more than 30% of the

image. Among them, small, medium and large bounding boxes accounted for 3.6 %, 36.2 % and 60.2 %

respectively. The size distribution of ground-truth bounding boxes for different datasets is shown in the

Table S1 and Figure S1 in supplemental information.

We randomly divided the dataset of the main center into a training set, a validation set, and an internal test

set in an 8:1:1 ratio. The dataset from the remaining two centers was used as an external test set to evaluate

the model’s generalization ability. Lastly, six unedited videos of nasopharyngeal endoscopy were selected

to validate the real-time NPC detection performance of the model. The dataset division is shown in

Figure 4.

METHOD DETAILS

Data augmentation

Data augmentation is a technique to improve model generalization and reduce model overfitting, aiming

to increase the number and diversity of data in the training set by transforming and expanding the original

data to enhance the model’s generalization and robustness. The data augmentation techniques we

employed included adjusting image brightness, contrast, saturation, noise, random scaling of images,

cropping, flipping, rotating, copy-paste, mixup, and mosaic data augmentation.33,37,38

DL model training and testing

Weutilized the YOLO network of open-source CNNs as the object detectionmodel. YOLO is a single-stage

DL object detector capable of identifying objects by framing them in a bounding box while simultaneously

classifying the object based on probability. At the time of our analysis, the latest version of YOLO was

YOLOv8, which demonstrated excellent accuracy and inference speed. In the backbone network of

YOLOv8, additional branches have been introduced during feature extraction. These additional branches

help enhance the model’s training accuracy by capturing and leveraging more diverse and informative

features from the input images. Importantly, during the inference process, these additional branches are

not involved in the computations. This optimization ensures that the inference speed is not compromised,

allowing for efficient real-time or near-real-time object detection. The head section adopts the popular

decoupled head structure, separating the classification and regression heads. Moreover, it transitions

from an anchor-based approach to an anchor-free approach. In the classification head, YOLOv8 utilizes

the Binary Cross Entropy (BCE) Loss for efficient and accurate object classification. The regression head,

on the other hand, incorporates the concepts from the Distribution Focal Loss (DFL) and Complete Inter-

section over Union (CIoU) Loss. DFL is a loss function proposed to address the class imbalance issue in
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object detection tasks while CIoU Loss is a localization-based loss function that measures the geometric

similarity between predicted and GT bounding boxes.

YOLOv8 consists of five different models that vary in terms of the number of parameters, trainable weight

sizes, and computation time. Models range from small to extra-large versions (YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x). In this study, we chose YOLOv8l as the target algorithm model.

The flowchart of the research and YOLOv8l architecture are depicted in Figure 5. Additionally, to verify

the NPC detection performance of the YOLOv8l model, we selected the other five algorithms, YOLOv7,

YOLOv6m, Faster-RCNN, Cascade-RCNN and SSD for comparison tests.32–36

To further assess the model’s robustness in various environmental conditions, including different video

brightness, hue, contrast, video quality, and lens stability, we conducted a series of rigorous robustness

tests. We employed the image corruption methods in test sets to simulate various image characteristics

under different scenes, such as noise, blur, fog and brightness changes.

Gaussian noise was added to the images, simulating random variations with a Gaussian distribution. This

noise introduces randomness and decreases in intensity as the distance from the center increases. It can be

represented mathematically as follows:

For each pixel (i, j) in the image:

I0ði; jÞ = Iði; jÞ+Nð0; sÞ
where I’(i, j) represents the corrupted pixel, I(i, j) is the original pixel, and N(0, s) represents Gaussian noise

with zero mean and standard deviation s.

Shot noise was applied to simulate the random fluctuations in pixel intensities caused by variations in light.

This type of noise is typically associated with uncertainties in light intensity and results in visible artifacts at

areas of brightness changes. Shot noise can be modeled using the Poisson distribution:

For each pixel (i, j) in the image:

I0ði; jÞ = PoissonðIði; jÞ � gÞ
where I’(i, j) represents the corrupted pixel, I(i, j) is the original pixel, and l controls the intensity of the noise.

Impulse noise, also known as salt-and-pepper noise, introduces sudden, isolated changes in brightness or

color values. This type of noise is commonly observed due to sensor malfunctions or transmission errors,

resulting in the appearance of bright and dark pixels. The corruption process involves randomly replacing

a certain percentage of pixels with either the maximum intensity or minimum intensity.

For each pixel (i, j) in the image:

I0ði; jÞ = Iði; jÞ
with a probability of p,

I0ði; jÞ = 0, if a random number less than p/2;

I0ði;jÞ = 255, if a random number exceeds p/2 and is less than p.where I’(i, j) represents the corrupted pixel,

I(i, j) is the original pixel, and p represents the corruption ratio.

Defocus blur simulates the blurring effect caused by inaccurate focus settings in the endoscopic lens. It re-

sults in the loss of sharpness in image details, blurring of edges, or overall image blurriness. This effect is

achieved by convolving the image with a given blur kernel, which represents the defocused point spread

function.

For each pixel (i, j) in the image:

I0ði; jÞ = Iði; jÞ5K
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where I’(i, j) represents the blurred pixel, I(i, j) is the original pixel, and5 denotes convolution with the blur

kernel K.

Zoom blur mimics the blur effect caused by endoscopic lens or lesions movement during exposure. This

blur results in the diffusion and blurring of details in the image. The process involves cropping and scaling

the image, which enlarge or reduces the edges of the original image, leading to blurred edge information.

For each pixel (i, j) in the image:

I0ði; jÞ = ð1 =NÞ �
X

½I zoomedðkÞði0; j0Þ�
where I’(i, j) represents the zoom-blurred pixel, I_zoomed(k)(i’, j’) represents the pixel value from the k-th

zoomed-in image at coordinates (i’, j’), N represents the total number of zoomed-in images.

Motion blur replicates the blurring effect caused by the movement of the endoscopic lens or the lesions. It

manifests as a blurred trajectory of moving objects or overall image blurring. The blur effect is achieved by

shifting and weighting the input image based on given parameters and a randomly chosen angle.

For each pixel (i, j) in the image:

I0ði; jÞ =
X

ðIði � dx; j � dyÞ �Wðdx;dyÞÞ
where I’(i, j) represents the blurred pixel, I(i - dx, j - dy) are the shifted pixels, W(dx, dy) represents themotion

blur kernel weights, and the sum is taken over the motion blur kernel.

Fog simulation introduces a decrease in lens clarity caused by the patient ’s breathing fog. This degrada-

tion method results in a blurry appearance, faded colors, and loss of fine details. The fog function adds a

generated plane fractal image to the input image, creating the desired foggy effect. The plane fractal im-

age is a complex structure with self-similarity generated through a mathematical algorithm or process.

For each pixel (i, j) in the image:

I0ði; jÞ = Iði; jÞ+ Fði; jÞ
where I’(i, j) represents the corrupted pixel, I(i, j) is the original pixel, and F(i, j) is the plane fractal image.

The brightness+ operation increases the overall brightness level of the image, resulting in a brighter

appearance. This enhancement is achieved by adjusting the pixel values in the V (Value) channel of the

HSV (Hue, Saturation, Value) color space.

Convert the image to HSV color space:

V0ði; jÞ = Vði; jÞ+ c

where V’(i, j) represents the modified pixel value in the V channel, V(i, j) is the original pixel value, and c

controls the brightness increment.

The brightness- operation decreases the overall brightness level of the image, resulting in a darker appear-

ance. Similar to brightness+, it adjusts the pixel values in the V channel of the HSV color space.

Convert the image to HSV color space:

V0ði; jÞ = Vði; jÞ � c

where V’(i, j) represents the modified pixel value in the V channel, V(i, j) is the original pixel value, and c con-

trols the brightness decrement. Figure S2 illustrates the schematic diagram of the image corruption

methods.

The experimental platform for this study was based on Ubuntu, with an Intel(R) Xeon(R) CPU (2.40GHz) and

Nvidia GeForce RTX3090 GPUs (24G). We implemented the YOLO model using the Pytorch deep learning

framework, and the experimental environment was torch 1.11.0 + cu113 CUDA. The hyperparameters used

to train the YOLO network were as follows: batch size 160; image size 640; number of epochs 100; optimizer
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Stochastic Gradient Descent (SGD); dropout rate 0.1; confidence threshold 0.25; intersection over union

(IoU) threshold 0.5; initial learning rate (lr0) 0.01; learning rate decay factor (lrf) 0.1; momentum 0.937;

weight decay 0.0005; warm-up epochs 3.0; warm-up momentum 0.8; warm-up bias learning rate 0.1; box

loss gain 4.0; classification loss gain 4.5; DFL loss gain 1.5; focal loss gamma 0.0; label smoothing 0.0; nom-

inal batch size (nbs) 64; HSV-Hue augmentation 0.015; HSV-Saturation augmentation 0.4; HSV-Value

augmentation: 0.4.

QUANTIFICATION AND STATISTICAL ANALYSIS

We evaluated the model performance using precision, recall, mean average precision (mAP), F1-score, and

frame rate. Intersection over Union (IoU) is the ratio of the intersection and the union of the predicted

bounding box and the GT box, as shown in Figure 6. True positive (TP) was defined as IoU R 0.5. A false

positive (FP) was defined as an IoU < 0.5 or detection of a duplicate bounding box for the same GT box.

False negative (FN) was defined as themodel detecting the target object as a negative class in its presence.

True negative (TN) indicates that the model detects the target object as a negative class in its absence. The

object detection metric does not consider TN because it does not reflect the algorithm’s performance in

detecting the target object. All statistical analyses were conducted using Python (version 3.8.13 (Matplotlib

library, version 3.7.1). Recall is the probability of correct identification in all positive samples and corre-

sponds to the model’s sensitivity, expressed as:

Recall =
TP

TP+FN

Precision is the probability of correct detection among all detected targets and corresponds to themodel’s

positive predicted value (PPV), expressed as:

Precision =
TP

TP+FP

For the object detection model, mAP is the standard performance metric. mAP is the area under the

precision-recall curve, defined by the following equation:

mAP =

PQ
q = 1AveP

�
q
�

Q

where Q is the number of queries in the set, and AveP(q) is the average precision for a given query, q. In our

study, as we set the model threshold as 0.5 (at IoU = 0.5), mAP@.5 denotes that this value was achieved

under the condition of IoU R 0.5.

The F1-score takes into account both precision and recall of the object detection model and is the summed

average of the two, which is expressed as:

F1 =
23Precision3Recall

Precision+Recall

To evaluate the inference speed of a model, frame rate is usually used, and its unit is FPS (frames per sec-

ond), and the expression is:

Frame rate =
FrameNum

elapsedTime

where FrameNum is the number of video frames and elapsedTime is the time taken by the model to pro-

cess the video frames. In addition, we recorded the time delay of the model in milliseconds (ms).
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