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Objective: We previously reported the interim effects in a per protocol analysis of a randomized controlled
trial of an innovative neuroscience-informed computerized cognitive training approach in schizophrenia.
Here we report the effects of training on behavioral outcome measures in our final sample using an
intent-to-treat analysis. We also report the effects on serum brain-derived neurotrophic factor (BDNF).
Method: Eighty-seven clinically stable participants with schizophrenia were randomly assigned to either
targeted auditory training (AT, N=46) or a computer games control condition (CG, N=41). Participants were
assessed on neurocognition, symptoms and functional outcome at baseline and after 50 hours of intervention
delivered over 10 weeks. Serum BDNF was assessed at baseline, at 2 weeks, and at 10 weeks.
Results: After the intervention, AT participants showed significant gains in global cognition, speed of
processing, verbal learning, and verbal memory, relative to CG participants, with no changes in symptoms or

functioning. At baseline, schizophrenia participants had significantly lower-than-normal serum BDNF. AT
participants showed a significant increase in serum BDNF compared to CG participants, and “normalized”
levels by post training.
Conclusions: Participants with chronic schizophrenia made significant cognitive gains after 50 hours of
intensive computerized training delivered as a stand-alone treatment, but no improvement in symptoms or
functioning. Serum BDNF levels were significantly increased, and may serve as a peripheral biomarker for the
effects of training. Future research must focus on: 1) Methods of integrating cognitive training with
psychosocial treatments; 2) A deeper understanding of underlying neurophysiology in order to enhance
critical mechanisms of action.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We previously reported our interim findings from a randomized
clinical trial of targeted cognitive training of auditory processing and
auditory/verbal working memory in schizophrenia. Using a per
protocol analysis on data from 55 participants, we found significant
cognitive gains after 50 hours of auditory cognitive training as a
stand-alone treatment relative to an active control condition of
computer games (Fisher et al., 2009), and a significant increase in
serum brain-derived neurotrophic factor (BDNF) relative to the
control condition (Vinogradov et al., 2009). Here, in our final sample
of 87 participants, we report the behavioral effects of the training
using an intent-to-treat analysis, as well as the effects on serum BDNF.
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The study of cognitive remediation in schizophrenia has grown
substantially over the past 20 years. Meta-analytic studies indicate
that a vast array of cognitive training approaches have a small to
medium effect on cognition, on functioning, and on durability of
effects at follow-up, and a small but non-durable effect on symptoms
(McGurk et al., 2007; Wykes et al., 2011). Wykes et al. (2011) found a
mean global cognition effect size of 0.45, with heterogeneity of effect
sizes in global cognition, speed of processing, and reasoning and
problem solving; however, the meta-analysis did not find that type of
training, participant characteristics, or trial quality could account for
this heterogeneity in cognitive outcomes. It does appear that a wide
range of approaches providing various forms of cognitive stimulation
for variable amounts of time and treatment intensity all have amodest
beneficial effect in schizophrenia. However, it is difficult to draw too
many definitive conclusions from the currently available data from
previous cognitive remediation studies, given the wide disparity in
assessment measures, study designs, patient samples, cognitive
remediation methodologies, and control groups used. Further,
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differences in methodology and design – including trials that combine
cognitive remediation with other treatments – make it difficult to
discernwhich components of improved cognition or functioning are the
result of the cognitive training per se and which may be due to other
study features, such as increased staff contact, computer exposure, or
the provision of strategy coaching or other forms of skills training.

In the present study, we performed a double-blind randomized
controlled trial of an innovative, neuroscience-informed approach to
cognitive training in schizophrenia, delivered as a stand-alone
treatment relative to a computer games control condition. The
primary goal of the computerized exercises is to train the individual
to become more efficient in the early processing of auditory and
verbal information, and to increase auditory working memory
capacity. This approach is based on the large body of research that
demonstrates impairments in early sensory processing as well as
associated frontally-mediated cognitions in schizophrenia (e.g.,
Adcock et al., 2009; Kasai et al., 2002; Ragland et al., 2004, 2007).
We posed two questions: 1) Using an intent-to-treat analysis in our
final sample of 87 participants, do we replicate our earlier interim
findings on the significant cognitive effects of 50 hours of training? 2)
What is the effect of training on serum BDNF in our final sample?

Brain-derived neurotrophic factor (BDNF) plays a critical role in
neurodevelopment, neuronal function, andneural plasticity. Schizophrenia
may be related in part to decreases in normal BDNF functioning (Buckley
et al., 2007; Carlino et al., 2012). Meta-analyses indicate that blood BDNF
levels are significantly lower in schizophrenia relative to healthy controls
(Green et al., 2011), and that peripheral BDNF and cognition are positively
associated in schizophrenia (Ahmed et al., 2015; Carlino et al., 2012),
however there is considerable heterogeneity across studies.

While the relationship between peripheral and central BDNF remains
speculative, peripheral BDNF is hypothesized to reflect central BDNF
based on evidence that BDNF crosses the blood-brain barrier (Pan et al.,
1998), and based on findings of significant associations between
peripheral and central BDNF levels. For example, Karege et al., 2002)
found a strong correlation between serumand cortical BDNF levels in rats.
In healthy individuals, BDNF serum concentration showed an association
with in vivo level of cerebral N-asetylaspartate – a marker of neuronal
integrity (Lang et al., 2007). In a study of drug-naïve patients with
first-episode psychosis, plasma BDNF level and BDNF level in cerebrospi-
nal fluid were significantly associated (Pillai et al., 2010).

We previously found a significant increase in serum BDNF at two
weeks and 10 weeks of training relative to the computer games
control condition (Vinogradov et al., 2009). In the active condition,
participants’ BDNF level increased to that of a healthy comparison
sample by post-training, whereas the control group showed no
change. A deeper understanding of the role of BDNF in cognitive
enhancement in schizophrenia will likely provide important insights
for the design of future treatments.

2. Methods

2.1. Participants

We describe below our final sample of 87 participants who
participated in the trial (ClinicalTrials.gov Identifier: NCT00312962).
Clinically stable, chronically ill, volunteer schizophrenia participants
were recruited from mental health treatment settings in the
community. All participants gave written informed consent and
underwent a series of baseline clinical and cognitive assessments.
Participants were stratified by age, education, gender, and symptom
severity, and randomly assigned to either the neuroplasticity-based
auditory cognitive training (AT) condition or a control condition of
engaging commercial computer games (CG). Participants were
receiving case management in the community but were not enrolled
in any psychiatric rehabilitation program, and reported no prior
cognitive remediation treatment. Participants remained on stable
doses of medications during the study, defined as no change in dosage
greater than 10%. All participants received nominal payment for each
successful day and week of participation, which was contingent on
attendance only.

A CONSORT diagram of enrollment and allocation is shown in
Fig. 1. Demographic characteristics and medication regimens of the
participant groups are presented in Tables 1 and 2.

2.2. Auditory cognitive training exercises

Auditory training (AT) was provided by software developed by
PositScience, Inc. Participants were driven to make progressively
more accurate distinctions about the spectro-temporal fine-structure
of auditory stimuli and speech under conditions of increasing working
memory load (i.e. increasing number of stimuli, and decreasing
inter-stimulus intervals and duration of stimulus presentation).
Stimuli across the exercises spanned the acoustic and organizational
structure of speech, from very simple acoustic stimuli and tasks (e.g.,
time order judgments of rapidly successive frequency modulated
sweeps) to the complex manipulations of continuous speech (e.g.,
narrative memory). The exercises were continuously adaptive in that
they first established the precise parameters within each stimulus set
required for an individual participant to maintain 80% correct
performance; once that threshold was determined, task difficulty
increased or decreased systematically and parametrically as perfor-
mance improved or declined. In all exercises, correct performancewas
heavily rewarded in a game-like fashion: each correct response was
followed by novel and amusing visual and auditory embellishments as
well as the accumulation of points. After several correct responses, a
longer and more elaborate animation was provided.

2.3. Computer games control condition

The computer games (CG) condition was designed to control for the
effects of computer exposure, contact with research personnel, and
monetary payments. Participants in the CG condition came to the lab five
days a week, one hour per day, and were monitored by staff in the same
manner as AT participants. CG participants rotated through a series of 16
different enjoyable commercially available computer games (e.g.,
visuospatial puzzle games, clue-gathering mystery games) playing 4–5
games on any given day.

2.4. Assessments

The Positive and Negative Syndrome Scale (PANSS, Kay et al.,
1987), an abbreviated version of the Quality of Life Scale (QLS, Bilker
et al., 2003; Heinrichs et al., 1984), and MATRICS recommended
cognitive measures (Nuechterlein and Green, 2006) were adminis-
tered at baseline and after training. For problem solving, the BACS
Tower of London (Keefe et al., 2004) was used in place of the NAB
Mazes. At the time this study was initiated, the MCCB battery was not
yet available but the list of recommendedmeasures for theMCCB Beta
Version were available on the MATRICSwebsite (http://www.matrics.
ucla.edu). We obtained the MATRICS recommended measures from
test publishers, and converted raw scores to z-scores using normative
data, stratified by age, published by the test authors. All measures
were distinct and independent from tasks practiced during training.
Alternate forms of tests were administered and counterbalanced for
tests sensitive to practice effects.

At study entry, each participant received a standardized diagnostic
and clinical evaluation performed by research personnel trained in
research diagnostic techniques. Evaluations included the Structured
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Fig. 1. CONSORT diagram of auditory training participants (AT) and computer games control participants (CG).

Table 1
Demographics of auditory training participants (AT) and computer games control
participants (CG).

AT (N=46) CG (N=41)

Mean (SD) Mean (SD) T-test (p-value)

Male/Femalea 34/12 29/12 0.11 (0.74)
Age 40.70 (11.81) 43.20 (10.62) 1.03 (0.31)
Education 13.24 (2.25) 13.32 (1.93) 0.17 (0.86)
WASI IQ 101.11 (16.69) 103.58 (16.24) 0.69 (0.49)
PANSS Totalb 73.41 (20.59) 73.95 (15.85) 0.14 (0.89)
QLS Average Item Ratingc 3.10 (1.17) 2.93 (0.95) −0.74 (0.46)
Hours of Training 44.13 (12.34) 39.37 (15.06) −1.62 (0.11)

a chi-Square results.
b Positive and Negative Syndrome Scale.
c Quality of Life Scale-Abbreviated.
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Clinical Interview for DSM-IV Axis I Disorders (First et al., 2002), as
well as review of clinical records and interview with patient
informants (e.g., psychiatrists, therapists, social workers). All partic-
ipants in this study had a diagnosis of schizophrenia or schizoaffective
disorder. Research staff who conducted neurocognitive testing or
PANSS and QLS interviews first completed extensive training on
testing/interviewing and scoring criteria of individual items (e.g.,
scoring videotaped sessions, observation of sessions conducted by
experienced staff, and participating in mock sessions). In our
laboratory, intra-class correlation coefficients (ICC) are greater than
Table 2
Medication regimens of study participants.

AT (N=46) CG (N=4

Antipsychotic Medicationa

1st Generation (N) 2 5
2nd Generation (N) 33 29
Multiple (N) 5 5
No Antipsychotic (N) 6 2

Other Psychiatric Medication
Antidepressants or 24 20
Mood Stabilizers (N)
Benzodiazepines (N) 9 12

Other Medication Measures
Chlorpromazine
Equivalentsb

346.20 (249.47) 397.90 (2

AT, auditory training group; CG, computer games control group.
a 1st Generation Antipsychotic medication = chlorpromazine, haloperidol, perphenazine

2nd Generation Antipsychotic medication = aripiprazole, clozapine, olanzapine, quetia
b Mean and SD of Chlorpromazine Equivalents (Andreasen et al., 2010).
0.85 for the PANSS and QLS Total and subscale scores. Participants and
assessment personnel were blind to group assignment. All neurocog-
nitive tests were scored and re-scored by a second staff member blind
to the first scoring.

A subset of participants rated their level of interest/enjoyment in the
computer gamesandcognitive training exercisesusing the7-itemsubscale
of Interest/Enjoyment from the Intrinsic Motivation Inventory – a 1–7
Likert scale, with higher scores corresponding to greater interest/
enjoyment (Deci EL et al., 1994; Ryan et al., 1991). CG participants rated
the computer games as slightly more enjoyable relative to AT participants
(ATM=4.44, SD=1.61, CGM=5.38, SD=1.10, t(35)=2.06, p=0.05).

2.5. Measurement of serum BDNF levels

Blood sampleswere drawn at baseline, after 10 hours of training (2
weeks), and at the end of the intervention in 70 study participants (AT
N=37, CG N=33). Blood samples were drawn at baseline only in a
sample of healthy comparison participants matched for age, sex, body
mass index (BMI), smoking history, and education. All samples were
drawn in the early afternoon (~1 PM + 1 hour). Complete BDNF
analytic procedures are described in Vinogradov et al. (2009).

2.6. Statistical analyses

All variableswere screened andnormally distributed afterwinsorising
of outlying values. In order to answer Question 1, an intent-to-treat
analysis was conducted with last-observation-carried-forward. Repeated
1) Total Test Statistic p value

7 X2(1) = 1.80 0.18
62 X2(1) = 0.01 0.92
10 X2(1) = 0.04 0.85
8 X2(1) = 1.73 0.19

44 X2(1) = 1.00 0.75

21 X2(1) = 1.12 0.29

97.49) t(85) = 0.88 0.38

, thioridazine, thiothixene.
pine, risperidone, ziprasidone.



Table 3
Intent to treat analysis of cognitive and clinical outcomes in auditory training participants (AT) and computer games control participants (CG).

Outcome
Measuresa

AT (N=46) CG (N=41)

Baseline Post Baseline Post Effect

Mean SD Mean SD Mean SD Mean SD Fb p Size

Global Cognition −1.10 0.73 −0.84 0.77 −0.88 0.77 −0.89 0.75 9.83 b0.01 0.74
Speed of Processing −0.73 0.69 −0.50 0.64 −0.60 0.80 −0.64 0.86 5.01 0.03 0.51
Working Memory −0.74 1.03 −0.49 1.07 −0.61 1.12 −0.46 1.14 0.67 0.42 0.16
Verbal Learningc −2.39 1.26 −2.01 1.32 −1.96 1.10 −2.30 1.20 10.58 b0.01 0.73
Verbal Memoryc −2.23 1.29 −1.66 1.40 −1.73 1.35 −2.14 1.35 13.84 b0.01 0.85
Visual Learning −1.50 1.24 −1.15 1.45 −1.12 1.39 −1.03 1.47 0.59 0.45 0.21
Visual Memory −1.14 1.62 −1.09 1.66 −0.90 1.72 −0.67 1.68 0.99 0.32 −0.14
Problem Solving −0.09 0.95 0.01 0.76 −0.02 0.84 0.10 0.97 0.46 0.50 −0.09
PANSS Totald 73.41 20.59 73.15 19.36 73.95 15.85 71.76 16.50 1.08 0.30 0.18
QLS Average Item Rating e 3.10 1.17 3.16 1.03 2.93 0.95 3.17 0.91 1.86 0.18 −0.25

a Speed of processing (symbol coding; category fluency; trails a); working memory (letter-number span; WMS-III spatial span); verbal learning (HVLT trials 1–3), verbal memory
(HVLT delayed recall); visual learning (BVMT trials 1–3), visual memory (BVMT delayed recall); problem solving (BACS tower of London); and global cognition (composite score of
all measures).

b Repeated measures ANCOVA, condition-by-time interaction, controlling for hours of training.
c Group differences remained significant with baseline entered as a covariate (pb0.01).
d Positive and negative syndrome scale.
e Quality of life scale-abbreviated.
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Measures ANOVA was used to compare the participant groups on
the change in the PANSS and QLS Total and subscale scores and in 8
cognitive domains (listed in Table 3). Composite and domain scores
were computed as the average z-score across all measures defining
the composite or cognitive domain. Effect sizes (Cohen’s d) were
calculated using the AT and CG change scores and the pooled
standard deviation.

Independent Samples t-test tested for group differences in
baseline BDNF between the healthy comparison group and partici-
pants with schizophrenia. Repeated Measures ANOVA was used to
compare the AT and CG groups on the change in BDNF. Post hoc
comparisons tested for group differences in the change in BDNF from
baseline to 2 weeks and from baseline to post training. Pearson
correlations tested if the change in BDNF was associated with the
change in cognitive outcomes or QLS measures.
3. Results

3.1. Demographic variables and medication regimens

There were no significant group differences in demographic
variables (Table 1). There was a non-significant group difference in
total hours of training (p=0.11, Table 1). All group differences in
medication regimens were non-significant (Table 2).
3.2. Cognitive outcomes

All group differences in baseline cognitive performance were
non-significant. Group differences in baseline verbal learning and
verbal memorywere at trend level. The analyses were conductedwith
and without co-varying for hours of training and baseline verbal
learning and verbal memory. Repeated Measures ANCOVA omnibus
F-tests showed significant condition-by-time interactions for global
cognition, speed of processing, verbal learning, and verbal memory
(Table 3). Effect sizes were medium to large for global cognition,
verbal learning, and verbal memory (0.72 b d b .86) and in the
medium range for speed of processing (d = .51) (Table 3). All main
effects of time were non-significant and the results were the same
with and without co-varying for hours of training and baseline verbal
learning and verbal memory.
3.3. Clinical and functional outcomes

There were no significant differences between the groups in
PANSS and QLS ratings at baseline (Table 1). Repeated Measures
ANCOVA omnibus F-tests revealed no significant condition-by-time
interactions for the PANSS and QLS Total (Table 3) or the PANSS and
QLS subscales. Main effects of time were not significant with hours of
training entered as a covariate. Without co-varying for hours of
training, main effects of time were evident on the PANSS Positive
Symptom subscale (F (1,85) = 6.04, p = 0.02), QLS Intrapsychic
Foundations (F (1,85) = 4.32, p = 0.04), QLS Environmental
Engagements (F (1,85) = 4.60, p = 0.04), and the QLS Total
(F (1,85) = 4.38, p = 0.04).

3.4. Serum BDNF levels over the course of cognitive training

Repeated-measures ANCOVA revealed a significant difference
between the AT and CG schizophrenia groups in BDNF change from
baseline, to Week 2, to post training, (F (2,66) = 4.01, p = .02)
(Fig. 2). Post hoc contrasts revealed that the AT and CG groups differed
significantly in BDNF serum level from baseline toWeek 2, (F(1,67)=
5.06, p= .03), and from baseline to post training, (F(1,67)= 7.28, p=
.009). Effect sizes of the change in BDNF were in the medium range
from baseline toWeek 2 (d=0.55) and from baseline to post training
(d = .64). The results were the same without co-varying for hours of
training.

Participants with schizophrenia and healthy control participants
showed a significant difference in serum BDNF level at baseline (t (85) =
2.10, p = 0.04). AT and healthy control participants also differed
significantly in baseline serum BDNF level (t (52) = 2.01, p = 0.05). By
post-training, serum BDNF level of AT participants was comparable to the
healthy control sample (Fig. 3). There was no significant association
between change in BDNF and change in any of the cognitive outcomes or
QLS measures (Supplemental Table 1).

4. Discussion

4.1. Cognitive outcomes

Using an intent-to-treat analysis, our results indicate that 50 hours
of neuroscience-informed cognitive training exercises that target
early auditory perceptual processes drive medium to large gains in
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Fig. 2. Serum brain-derived Neurotrophic factor (BDNF) levels (ng/ml) at baseline, 2 weeks of training, and post training in auditory training participants (AT) and computer games
control participants (CG).
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global cognition, speed of processing, verbal learning, and verbal
memory. These positive effects are consistent with our per protocol
interim report, (Fisher et al., 2009), with one exception: in our final
ITT analysis, AT participants also show significant gains in speed of
processing relative to CG participants. Our results are also similar to
the results from our trial in participants with recent-onset schizo-
phrenia (Fisher et al., 2015): AT participants showed significant gains
in global cognition, verbal memory, and problem solving relative to a
computer games control condition.

The medium to large effect sizes in verbal learning and verbal
memory are also strikingly similar to two other studies that have
tested the effects of this auditory training module in schizophrenia. In
a multi-site feasibility study, a moderate to large effect size in verbal
learning was evident after 20 hours of auditory training and weekly
“bridging groups” relative to a computer games control condition and
weekly healthy lifestyles groups (Keefe et al., 2012). By 40 hours of
training, the effect size was in the small to medium range (d~.4),
however the between-group difference was no longer significant. The
authors note that 9 out of the 25 participants did not complete all 40
hours of training which may account for the reduced efficacy at
post-training. Popov et al. (2011) also found medium to large effect
sizes on verbal cognitive measures after 20 hours of auditory training
among inpatients with schizophrenia relative to patients who
completed a similar number of hours of Cogpack exercises (see
Fig. 3 in Popov et al., 2011). The robust effects on verbal learning
measures provide confirmatory evidence of the targeted nature of the
training on auditory and verbal processing systems (Adcock et al.,
2009; Dale et al., 2010).
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Fig. 3. Serum brain-derived Neurotrophic factor (BDNF) levels (ng/ml) at baseline, 2 weeks
healthy control participants.
Two studies of the same auditory training module did not show
significant positive training effects. In a single arm, multi-site trial of
individuals with schizophrenia, Murthy et al. (2012) did not find
improvements on the CogState battery; this battery was administered 3
times prior to training, with the third set of battery measures used as
“baseline”. Interestingly, in a post-hoc analysis, a subgroup of participants
who showed improvement in Cogstate performance across all 3 baseline
timepoints (called “learners”) also showed gains in auditory processing
speed as a result of training, as well as significant improvement in the
CogState cognitive composite score at the end of training compared to
baseline. “Non-learners” showed a slight improvement on Cogstate
performance between the first and second baseline assessments, but no
improvement on the third baseline Cogstate, no improvement in auditory
processing speed after training, and no gain in cognition. These data
suggest that theremay bemoderators (such as “learning potential” or the
ability to engage the auditory training target) thatmediate the response to
this formof treatment. Piskulic et al. (2015) recently examined the effects
of the training versus a computer games control condition in 32
individuals at clinical high risk for psychosis and found no significant
group differences in cognition, symptoms, or functioning at post training.
Participants were asked to complete 40 hours of training over a 10–12
week period, however only 7 of the 18 participants completed 20–40
hours of the auditory training, and there was a discrepancy in the mean
number of sessions completed in each group (16 auditory training
sessions compared to 24 computer game sessions). The authors
note that the study was underpowered due to a large attrition rate: 61%
of the auditory training participants and 50% of the control group
participants discontinued.
Healthy Controls (N = 17, Baseline only)

Post Training *p=.05

of training, and post training in auditory training participants (AT) and at baseline in
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Similar to our prior reports, participants in the computer games
control condition show a decrease in verbal learning and memory. We
hypothesize that the nonspecific visuospatial processing required by 10
weeks of an intensive schedule of visually engaging computer games
resulted in competitive interference for limited neural resources, causing
worse performance on the HVLT at the second time point. These findings
require replication and further investigation, as they have important
implications for individuals with schizophrenia. Surprisingly few studies
have examined the effects of video game exposure on verbal memory in
either healthy or cognitively impaired individuals. In a sobering study
with healthy school-age children, Dworak et al. (2007) found a significant
reduction in verbal memory after a single day of exposure to voluntary
excessive computer game playing and television. For individuals with
impaired or developmentally anomalous neural systems, the impact of
exercising certain networks or functions (such as those involved in visual
perception and attention, visual working memory, and visuo-motor
processing) may have compensatory consequences on other neural
systems, as suggested by the basic science literature (Mao et al., 2011).

4.2. Clinical and functional outcomes

Also consistent with our prior report, we found no significant
group differences in the change in symptom and functional outcome
ratings immediately after training. A subset of these participants
completed a 6 month follow-up assessment, and we found significant
associations between gains in cognition and gains in functioning at
the follow-up in the training group, however the gains in symptoms
and functioning at the group level were non-significant (Fisher et al.,
2010). We posit that the treatment of cognitive deficits may not have
an immediate direct effect on real-world functioning, but rather, may
enhance one’s capacity to benefit from vocational, psychosocial, and
other positive environmental learning experiences (Green et al.,
2004). This hypothesis is supported by our imaging studies which
indicate a significant positive relationship between training-induced
enhancements of prefrontal cortical activity and better ratings on
social and occupational domains of the Quality of Life Scale 6 months
later (Subramaniam et al., 2012, 2014). The recent report by McGurk
et al. (2015) on better occupational functioning over an 18 month
period after a combination of supported employment and cognitive
remediation in individuals with serious mental illness (vs. supported
employment alone) also provides support for this model.

4.3. Serum brain-derived neurotrophic factor

Consistent with our interim findings (Vinogradov et al., 2009),
baseline serum BDNF was significantly lower in our sample of
schizophrenia subjects compared with healthy subjects matched for
age, sex, smoking history, BMI, and education. Cognitive training
participants showed a significant increase in serum BDNF compared
with carefully matched control subjects who engaged in computer
games (Fig. 2). A significant group difference was observed after only
2 weeks of training, and after 50 hours, the AT participants had
achieved mean serum BDNF levels comparable to healthy subjects
(Fig. 3). In contrast, control subjects who played computer games for
the same amount of time showed no change in BDNF levels from
baseline at either time point. These data indicate that processes
related to the specific demands of the active cognitive training
condition induced a sustained increase in serum BDNF, separate from
the general factors of computer exposure, payment for study
participation, contact with laboratory personnel, or engagement
with enjoyable games.

To our knowledge, no other studies of cognitive training in
schizophrenia have investigated the change in serum BDNF, while two
studies have examined these effects in other patient populations. A
later version of the auditory training program was tested in heart
failure patients with memory loss. The participant group, who
performed 40 hours of training over 8 weeks, showed a significant
increase in BDNF and working memory relative to a 1-hour per week
health education control condition, who showed a decrease in BDNF
(Pressler et al., 2015). In a study of individuals with Parkinson’s
Disease, participants completed twelve 45-minute sessions of paper
and pencil exercises over one month to improve set-shifting with
increasing levels of difficulty, and showed significant gains in serum
BDNF and in planning, relative to a control condition of the same
frequency and duration of breathing exercises and simple tasks of
attention and language abilities that did not vary in difficulty across
sessions (Angelucci et al., 2015). Taken together, these early data
suggest that different forms of cognitive training induce neurobio-
logical changes that may be consistent with increased BDNF signaling
(with the caveat that the relationship between central and peripheral
BDNF remains highly speculative). A wealth of animal research
demonstrates that BDNF-signaling plays a key role in experience-
dependent plasticity (e.g., Anomal et al., 2013).

Despite the increased serum BDNF levels observed in active
training participants in our study, there was no relationship between
change in BDNF and improved cognition – consistent with, Angelucci
et al. (2015). (Pressler et al., did not test this association.) Also, the
association between change in BDNF and change in functioning
reported in our interim analysis was no longer significant in this final
sample. Thus, the relationship of increased BDNF in relation to
treatment success – at least as measured by cognitive or functional
change scores – is unclear. It may be that increases in peripheral BDNF
reflect a general process that occurs as a result of neurocognitive
training but is not linearly associated with the outcome of training;
this would be analogous to the increase in VO2max that occurs during
physical fitness conditioning but that shows no linear relationship to
fitness performance. The next research step is to deepen our
understanding of these plasticity-related neurophysiological process-
es in order to improve cognitive training success. For example, aerobic
exercise has a beneficial effect on central BDNF signaling and
neuroplasticity responses, and is highly likely to be a useful adjunct
for cognitive training (Kimhy et al., 2015), with studies underway in
this area; in addition, innovative BDNF delivery methods via transgene
expression are under study in hearing and vision loss andmay eventually
provide insights for schizophrenia (Khalin et al., 2015).

4.4. Study limitations and conclusions

One limitation of this study is that we only have 6month follow-up
data on a subset of participants (reported in Fisher et al., 2010), and
thus the durability of the effects on cognition is unknown in this larger
and final sample. A second limitation is that the AT participant group
rated the cognitive exercises as slightly less enjoyable relative to the
CG group.While the difference between the groupswas small, this has
important implications for the design of cognitive training exercises
for real-world treatment settings (as reflected in the high attrition
rate reported by Piskulic et al. 2015). Third, there were no significant
group differences in the change in symptom ratings or functional
outcome, as noted earlier. Clearly, cognitive training methods will
serve as but one potential treatment tool in the array of services that
must be offered to people with schizophrenia.

While the evidence indicates that this intensive training approach
provides cognitive benefit to patients with schizophrenia, several
questions remain unanswered. Future research is needed to determine
the optimal number of hours of training, andwhether additionalmodules
targeting other cognitive domains or the use of “booster sessions” are
required. Finally, we must develop a deeper understanding of the
underlying physiology, including the role of BDNF-associated systems
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and other plasticity-related mechanisms, in mediating optimal and
enduring changes in cognition for people with schizophrenia.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scog.2015.10.006.
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