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Abstract: Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (T2DM). This study was per-
formed to investigate the antidiabetic effect of Bacillus toyonensis SAU-19 and its possible mechanisms
of action in mice with type 2 diabetes mellitus (T2DM). Thirty SPFKM mice were randomly assigned
to three groups: control, diabetic model, and diabetes + Bacillus toyonensis SAU-19 group. After
35 days, blood was collected for biochemical analysis and liver tissue samples for histopathological
analysis using H&E staining, qPCR, and ELISA. The results showed that the administration of
B. toyonensis SAU-19 significantly improved the blood glucose, hepatic insulin resistance, and mor-
phological changes of the liver characterized by significant improvement of dyslipidemia, glycogen
synthesis, and antioxidant status (p < 0.05), indicating the strains’ ameliorating effects on hepatic
insulin resistance in T2DM. In conclusion, the probiotic strain (B. toyonensis SAU-19) inhibits T2DM by
reducing insulin resistance, improving antioxidant status, and downregulating genes related to glu-
cose synthesis; hence, it may be used in treating diabetes and other metabolic disorders. This study
provides the basis for further studies into the molecular mechanisms of B. toyonensis SAU-19 in
treating T2DM.

Keywords: type 2 diabetes; hepatic insulin resistance; Bacillus toyonensis SAU-19; glucose synthesis

1. Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic syndrome, chiefly associated with
chronic hyperglycemia as a result of insulin resistance and inadequate insulin secretion [1].
T2DM is one of the major diseases that affect human health and life globally [2]. In the
year 2014, it was estimated that about 422 million adults were suffering from diabetes [3].
Furthermore, in 2010, the. global frequency of adult diabetes was estimated as 285 million
and was speculated to increase to about 439 million by 2030 [4]. The liver is the key organ
involved in the preservation of glucose homeostasis as it controls the balance between
gluconeogenesis and glycogen synthesis in the body [5]. Insulin resistance elevates glu-
coneogenesis and decrease glycogen synthesis in the liver, resulting in hyperglycemia [6].
The liver stores excessive lipids as fat droplets and the accumulation of these fat droplets
may cause inflammation, insulin resistance, and diabetes [7]. Numerous studies have
reported on the use of probiotics in treating diabetes and other metabolic diseases. In addi-
tion, since the effect and mechanisms of probiotics are species specific, there is a need to
investigate specific probiotic strains and elucidate their efficiency for managing T2DM.

Bacillus toyonensis, a bacteria strain from the Bacillus cereus family, has been proven
safe and is being used as a probiotic for many animals, such rabbits, pigs, chickens,
and cattle [8,9]. Numerous studies have revealed the probiotic activities of this bacte-
ria [10]. Bacillus toyonensis has been reported to improve feed conversion ratios and reduce
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post-weaning diarrhea and mortality in piglets [11] as well as reducing the activities of
pathogenic bacteria in the gut [12]. However, studies on the probiotic bacteria’s antidiabetic
properties have not been reported in the literature.

Therefore, in this study, we investigated the effect of the probiotic Bacillus toyonen-
sis strain SAU-19, which was identified in our lab, on T2DM in mice. In our previous
study, the Bacillus toyonensis strain SAU-19 isolated from Ageratina adenophora plant [13,14]
showed tolerance to simulated gastrointestinal tract conditions, and improved the growth
performance, antioxidant capacity, anti-inflammatory effects, and gut integrity in our ani-
mal experiment (unpublished), which provided a basis for the beneficial effects of Bacillus
toyonensis SAU-19 in vivo. This study provides a theoretical basis for future use of the
B. toyonensis strain SAU-19 in treating diabetes and other metabolic diseases.

2. Material and Methods
2.1. Sample Collection

Culture media were purchased from Qingdao Hope Bio-Technology Co., Ltd., Qing-
dao, China and streptozotocin (STZ) was purchased from Solarbio solabao Beijing solabao
Technology Co., Ltd., China. Mice, basal, and high-fat diet (Table 1) were purchased from
the Chengdu Dashuo Experiment Animal Co., Ltd., Chengdu, China. Bacillus toyonensis
SAU-19 (Accessory number: MW287198; Collection Preservation number: CCTCC NO: M
20211138) was obtained from the College of Veterinary Medicine (Professor Yanchun Hu’s
lab), Sichuan Agricultural University, China.

Table 1. Feed composition.

Normal Diet High-Fat Diet

Ingredients Content g/kg Ingredients Content g/kg

Water 94 Water 93
Protein 190 Protein 134

Fat 51 Fat 143
Fiber 36 Fiber 27
Ash 62 Ash 44

Calcium 11.3 Calcium 8.3
Phosphorus 8.6 Phosphorus 7.1

2.2. Preparation of Probiotic Bacteria Suspensions

B. toyonensis SAU-19 was transferred twice in LB broth and incubated anaerobically
at 37 ◦C for 72 h. The bacterial cells were collected by centrifugation (3500× g, 5 min),
and washed twice in 0.85% NaCl (Sigma), and then resuspended in 0.85% NaCl to a final
concentration of 106 CFU/mL, and stored at 4 ◦C.

2.3. Experimental Animal and Design

Thirty male specific-pathogen-free Kun min mice (SPFKM) (5 weeks old; BW 25–30 g)
were purchased from the Chengdu Dashuo Experiment Animal Co., Ltd., Chengdu, China.
The animals were housed in an experimental animal house at Sichuan Agricultural Univer-
sity at a constant temperature (22 ± 2 ◦C) and humidity (65 ± 5%) under a 12-h light/12-h
dark cycle with free access to food and water. This study was approved by the Institutional
Animal Care and Use Committee of Sichuan Agricultural University, Sichuan, China, under
the permit number DKY-B2019603005.

The mice diabetes model was established by the administration of a high-fat diet
(HFD) for 6 weeks and intraperitoneal injection of streptozotocin (STZ) solution (dissolved
in a 0.01 M citrate buffer, pH 4.5 (Solarbio Science and Technology Co., Ltd., Beijing,
China) at a dose of 35 mg/kg body weight for 3 consecutive days [15]. Then, 72 h after
the injection, fasting blood glucose (FBG) was measured using a blood glucose meter
(Bayer). The diabetes model was identified as successfully prepared in cases where random
blood glucose level > 11.1 mmoL/L [1]. Mice injected with equivalent amounts of with
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equivalent amounts of precooling citrate buffer solution, pH 4.5 were used as controls
(n = 10). The model mice were randomly divided into a diabetic group (DG) (n = 10)
that was fed HFD + 1 mL 0.9% normal saline daily in drinking water and a diabetic
+ B. toyo SAU-19 group (DG + B. toyo SAU-19) (n = 10) that was fed HFD + 1 mL of
1 × 106 CFU mL−1 B. toyo SAU-19 in drinking water as well as a control group (C) (n = 10)
fed a basal diet and 1 ml of 0.9% normal saline for 35 days. Feed and water intake was
monitored and recorded daily throughout the experimental period. Feed and clean water
were provided ad libitum. Water bottles were washed every week and fresh drinking water
was placed in it for the next week’s administration. The bedding material (wood shavings)
was also changed weekly. To administer the B. toyo SAU-19, new stocks were generated
each week in LB, and their viability was monitored by serial dilution and viable cell count
using LB agar, respectively.

2.4. Oral Glucose Tolerance Test

An oral glucose tolerance test (OGTT) was performed in the last week of B. toyo
SAU-19 administration. Mice were fasted for 12 h and blood glucose was determined
(time = 0 min). Then, mice were orally administered glucose (2 g kg−1 BW) and blood
glucose levels were measured at 30, 60, 90, and 120 min.

2.5. Blood and Tissue Sample Collection

At the end of the experiment (week 12), mice were fasted for 12 h and anesthetized
with sevoflurane. Blood samples were collected from the inferior vena cava and centrifuged
at 4000× g for 10 min at 4 ◦C, and then the serum was collected and stored at −80 ◦C for
further assays. Liver tissue samples were quickly removed, rinsed, and stored at −80 ◦C or
fixed in 10% paraformaldehyde solution.

2.6. Biochemical Parameters

Liver glycogen and serum insulin were determined using ELISA kits (Jiangsu Jingmei
biological Technology company limited, Jiangsu, China). Lipid profiles, including total
cholesterol (TC), total triglyceride (TG), LDL-cholesterol (LDL-C), and HDL cholesterol
(HDL-C), were determined by commercial kits (Jiangsu Jingmei biological Technology
company limited, Jiangsu, China). Homeostatic model assessment of insulin resistance
(HOMAIR), used to quantify insulin resistance, was calculated as: HOMA-IR = Fasting
blood glucose (mmol L−1) × Fasting blood insulin (mU L−1)/22.5 [16]. The levels of
glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in mice
serum and livers were also measured using commercial kits from Jiangsu Jingmei biological
Technology company limited, Jiangsu, China.

2.7. Liver Histological Analysis

Livers fixed in 4% paraformaldehyde were embedded in paraffin and sectioned for
5 µm thick. Hematoxylinensin (H&E) staining was used for liver pathological evaluation.
H&E staining kits were purchased from Jiancheng Bioengineering Institute (Nanjing,
China). All kits were used according to the corresponding manufacturers’ instructions.
Liver injury was numerically recorded following the method of Chen et al. [17].

2.8. Enzyme-Linked Immunosorbent Assay

Parts of the liver tissues were washed with PBS. Then, 0.1 g of the sample tissue was
weighed and homogenized with 0.9 mL of ice-cold PBS in a glass homogenizer, and then
the mixture was centrifuged (3000 rpm, 20 min) to obtain the supernatant. Furthermore,
we determined the protein concentration in the supernatant using a Total Protein Assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The supernatants were used
to determine the concentrations of IL-1β, TNF-α, IL-4, and IL-10 using a commercial mice
ELISA kit (Jiangsu Jingmei Biological Technology Co., Ltd., Jiangsu, China), respectively.
The level of sensitivity of each kit was 0.1 pg/mL for each cytokine [18].
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2.9. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

Samples of liver tissues (30 mg/mouse) were snap-frozen with liquid N2 and then
immediately ground into powder using a ceramic mortar. Total RNA from each sample
was extracted using an Animal Total RNA Isolation Kit (Sagon Biotech, Shanghai, China)
according to the manufacturer’s instructions. After confirming the isolated RNA concen-
tration and purity using a NanoDrop One system (Thermo Fisher Scientific, Waltham, MA;
OD260/280 ≈ 1.9–2.0), triplicate aliquots (each 1 µg) were removed, loaded into wells,
and cDNA was prepared using a PrimeScrip RT reagent kit (Takara, Tokyo Japan). There-
after, qRT-PCR was performed using a SYBR Premix ExTaq (Takara) and a CFX96 thermal
cycler (BioRad, Hercules, CA, USA). The PCR conditions were as follows: 95 ◦C for 5 min,
followed by 40 cycles of 95 ◦C, 15 s for denaturation, 60 ◦C, 60 s for annealing at and 70 ◦C,
25 s for extension. Each qRT-PCR reaction was performed with volumes of 10 µL containing
5 µL of TB Green TM Premix (Takara), 1 µL of forward and reverse primers, 1 µL of cDNA,
and 2 µL of DNase/RNase-Free Deionized Water (Tiangen, Beijing, China). The primers
used to analyze the genes of interest were designed from NCBI genBank and are shown
in Table 2. The relative gene expression in each sample was normalized to an internal
control (β-actin); data analysis was performed using the 2−∆∆Ct method. All samples were
evaluated in triplicate.

Table 2. Primers used for the real-time PCR analysis.

Gene Name Primer Sequence (5′ and 3′) Product
Length (bp)

Annealing
Temperature (◦C)

Sequence
Number

IL-1β
Forward TGAAATGCCACCTTTGACAGTG 141 60.18 NM_008361.4
Reverse ATGTGCTGCTGCGAGATTTG

PEPCK
Forward GACAGACTCGCCCTATGTGG 98 59.90 NM_011044.3
Reverse GGCACTTGATGAACTCCCCA

IL-4
Forward GTACCAGGAGCCATATCCACG 130 60.18 NM_021283.2
Reverse TTCGTTGCTGTGAGGACGTT

IL-10
Forward GGGGCGAGTGTAACAAGACC 109 60.27 XM_036162094.1
Reverse GCAGAGGAGGTCACACCATTT

TNF-α
Forward CCCTCACACTCACAAACCAC 211 59.82 NM_001278601.1
Reverse ATAGCAAATCGGCTGACGGT

g6pc Forward GTTTGGTTTCGCGCTTGGAT 95 59.82 NM_008061.4
Reverse GCCGCTCACACCATCTCTTA

FoxO1 Forward AGTGGATGGTGAAGAGCGTG 96 60.04 NM_019739.3
Reverse GAAGGGACAGATTGTGGCGA

GS
Forward AGGATGAATTCGACCCCGAG

81 55.00 NM_030678.3Reverse CAGTGTAGATGCCACCCACC

Glut2
Forward GATCACCGGAACCTTGGCTT

76 55.00 NM_031197.2Reverse CACACCGATGTCATAGCCGA

Pfkl
Forward AAAGCGGCGTGTGTTCATTG

73 60.39 NM_008826.5Reverse AGCAATGCCGGTCACAGTAG

β-actin
Forward TTCGCGGGCGACGAT 297 58.57 NM_0077393.5
Reverse CATCTTTTCACGGTTGGCCT

2.10. Statistical Analysis

Statistical analysis of the data collected (from various independent experiments) was
performed using GraphPad Prism 5.04 software (GraphPad Software, Inc., La Jolla, CA,
USA) and SPSS 20 Statistical Analysis Software (SPSS Inc., Chicago, IL, USA). The Shapiro–
Wilk Test was used to test the normality of the data. All experimental results are presented
as mean± SD, and statistical significance were determined by one-way analysis of variance
(ANOVA) followed by the Tukey’s test. The values were significantly different at p < 0.05.
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3. Results
3.1. Effects of B. toyonensis Strain SAU-19 on Growth Performance in HFD/STZ-Induced
T2DM Mice

From the results, during the experimental trial, we observed a significant increase
in feed and water intake in the DG group compared to the control (C) and B. toyo SAU-
19 groups (Figure 1A,B, p < 0.05), typical of T2DM. However, there was no difference
between the control (C) and B. toyo SAU-19 groups in feed and water intake (p > 0.05).
Furthermore, we also observed a decrease in the weight gain in the DG group after 35 days
compared to the control (C) and B. toyo SAU-19 groups even though feed intake was high
in the DG group (Figure 1C, p < 0.05). No difference existed between the control (C) and
B. toyo SAU-19 groups. Moreover, we observed a significant decrease in liver, kidney,
and spleen weights of the DG group compared to the control (C) and B. toyo SAU-19 groups
(Figure 1D, p < 0.05). The immune index scores for the DG group were significantly lower
than that of the control (C) and B. toyo SAU-19 groups (Figure 1D, p < 0.05). There was
no difference in the organ weights and immune index scores of the control (C) and B. toyo
SAU-19 groups (p > 0.05). The immune index was calculated as: Immune index = spleen
weight (g)/Body weight (g).
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3.2. Effects of B. toyonensis Strain SAU-19 on Blood Glucose Levels and Oral Glucose Tolerance
Test (OGTT) in HFD/STZ-Induced T2DM Mice

As shown in Figure 2A, the fasted blood glucose level of the DG group after the 35-day
administration period was higher as compared to the control (C) and B. toyo SAU-19 groups
(p < 0.05). However, there was no difference in the fasted blood glucose between the control
(C) and B. toyo SAU-19 groups. Furthermore, the glucose area under the curve (AUC) for
the OGTT value in DG mice was significantly larger than that of the control (C) (Figure 2B,
p < 0.05). The glucose AUC was significantly lowered following oral administration of the
B. toyonensis strain SAU-19 to mice compared to the DG group (p < 0.05), with no significant
difference compared to the control (C) group (p > 0.05).
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different (p < 0.05), DG compared with the control (C) and B. toyo SAU-19 groups (n = 6).

3.3. Effects of B. toyonensis Strain SAU-19 on Biochemical Parameters in HFD/STZ-Induced
T2DM Mice

As shown in Figure 3A–D, the levels of AST, ALT, fructosamine, and HOMA-IR in the
diabetic (DG) group were significantly higher compared to the control (C) group (p < 0.05).
However, administration of B. toyonensis SAU-19 significantly reduced the levels of AST,
ALT, fructosamine, and HOMA-IR compared to the DG group mice (p < 0.05), but these
parameters were not significantly different compared to the control (C) group.
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The liver glycogen content and serum insulin levels were significantly lower in the
DG group compared to the control (C) and B. toyo SAU-19 groups (Figure 3E, p > 0.05).
In addition, the liver glycogen content was significantly lower in the B. toyo SAU-19 groups
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compared to the control (C) group (Figure 3E, p < 0.05). There was no difference in the
insulin levels between the B. toyo SAU-19 groups and control (C) groups.

3.4. Effects of B. toyonensis Strain SAU-19 on Lipid Profiles in HFD/STZ-Induced T2DM Mice

The effects of B. toyonensis strain SAU-19 on the lipid profile are shown in Figure 4. TC,
TG, and LDL-C levels in the diabetic group (DG) were higher compared to the control (C)
group in both the serum and liver (Figure 4A–C, p < 0.05). However, these parameters were
significantly attenuated in the B. toyo SAU-19 group (p < 0.05). Moreover, the TC levels in
the B. toyo SAU-19 group were higher as compared to the control (C) group (Figure 4A,
p < 0.05). There were no significant differences in the TG and LDL-C levels between the
B. toyo SAU-19 group and control (C) group. The HDL-C levels in the diabetic group (DG)
were reduced as compared to the B. toyo SAU-19 group and control (C) group (Figure 4D,
p < 0.05); however, there were no significant differences in the HDL-C levels between the
B. toyo SAU-19 group and control (C) group.

Nutrients 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 4. Effects of Bacillus toyonensis SAU-19 on lipid profiles in HFD/STZ-induced T2DM mice. (A) Levels of TC in blood 

and liver serum (mmol/L). (B) Levels of TG in blood and liver serum (mmol/L). (C) Levels of LDL-C in blood and liver 

serum (mmol/L). (D) Levels of HDL-C in blood and liver serum (mmol/L). (E) Glycogen content in liver (mg/g tissue). 

Values are shown as mean ± Sd. *** p < 0.05, DG compared with the control (C) and B. toyo SAU-19 groups. ### p < 0.05, B. 

toyo SAU-19 compared with the control (C) group (n = 6). TC—Total cholesterol, TG—Triglyceride, LDL-C—Low-density 

lipoprotein cholesterol, HDL-C—High-density lipoprotein cholesterol. 

3.5. Effects of B. toyonensis Strain SAU-19 on Antioxidant Activity in HFD/STZ-Induced 

T2DM Mice 

The variations in the antioxidant status of the mice livers are presented in Figure 5. 

As compared to the control (C) group, the oxidative stress parameter (MDA) was in-

creased in the DG whereas the antioxidative stress components (SOD and GSH) in the DG 

group were greatly decreased (Figure 5A–C, p < 0.05). However, the administration of the 

B. toyonensis strain SAU-19 reverted these effects by increasing the levels of antioxidative 

stress components (SOD and GSH) and reducing the levels of the oxidative stress compo-

nent MDA (p < 0.05). There was no significant difference in both the oxidative stress and 

antioxidant components between the B. toyo SAU-19 group and control (C) group (p > 

0.05). 

Figure 4. Effects of Bacillus toyonensis SAU-19 on lipid profiles in HFD/STZ-induced T2DM mice. (A) Levels of TC in blood
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lipoprotein cholesterol.

3.5. Effects of B. toyonensis Strain SAU-19 on Antioxidant Activity in HFD/STZ-Induced
T2DM Mice

The variations in the antioxidant status of the mice livers are presented in Figure 5.
As compared to the control (C) group, the oxidative stress parameter (MDA) was in-
creased in the DG whereas the antioxidative stress components (SOD and GSH) in the DG
group were greatly decreased (Figure 5A–C, p < 0.05). However, the administration of the
B. toyonensis strain SAU-19 reverted these effects by increasing the levels of antioxidative
stress components (SOD and GSH) and reducing the levels of the oxidative stress compo-
nent MDA (p < 0.05). There was no significant difference in both the oxidative stress and
antioxidant components between the B. toyo SAU-19 group and control (C) group (p > 0.05).
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3.6. Effects of B. toyonensis Strain SAU-19 on Liver Histological Injury in HFD/STZ-Induced
T2DM Mice

Histological analysis of the liver showed the well-ordered structure of the hepatic
lobules in the control group’s liver sections, characterized by clear hepatic morphology
and a centered nucleus. However, the diabetic mice group showed distortions in the
hepatic lobule characterized by widespread degeneration, necrosis, and inflammation of
the hepatocytes. These pathological disorders were noticeably improved by B. toyonensis
SAU-19 feeding (Figure 6). Furthermore, SAU-19-fed mice had a significantly lower liver
injury score compared to the HFD/STZ-fed mice; however, the injury scores of the SAU-
19 group were significantly higher compared to the control group (Figure 6B, p < 0.05).

3.7. Effects of B. toyonensis Strain SAU-19 on Relative mRNA and Protein (ELISA) Expression of
Genes Related to Inflammation in Liver Tissues of HFD/STZ-Induced T2DM Mice

As shown in Figures 7 and 8, the mRNA and protein expression levels of proinflamma-
tory cytokines (IL-1β and TNF-α) were significantly elevated whereas anti-inflammatory
cytokines (IL-4 and IL-10) were reduced in the diabetic (DG) group compared to the control
and SAU-19 groups (Figures 7A–D and 8A–D, p < 0.05). However, the B. toyonensis strain
SAU-19 reduced the expression levels of proinflammatory cytokines and increased the
expression of anti-inflammatory cytokines compared to the DG group (p < 0.05). There was
no significant difference between the B. toyonensis strain SAU-19 and control (C) (p > 0.05)
in the mRNA expression of all cytokines and the protein expression of IL-1β, TNF-α, and IL-
10; however, the protein levels (ELISA) of IL-4 in the SAU-19 group were significantly
lower than the control.
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Figure 6. Effects of Bacillus toyonensis SAU-19 on histology (×200) in HFD/STZ-induced T2DM mice. (A) Photograph of
histopathological staining in treatment groups (Scale = 20 µm). (B) Histological necrosis injury scores of the liver section
of mice. Values are shown as mean ± Sd. *** p < 0.05, DG compared with the control (C) and B. toyo SAU-19 groups.
### p < 0.05, B. toyo SAU-19 compared with the control (C) group C = Control, DG = Diabetic group, and DG + B. toyo
SAU-19 (n = 5).
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Figure 7. Effects of Bacillus toyonensis SAU-19 on relative mRNA expression of pro- and anti-inflammation-related cytokines
in HFD/STZ-induced T2DM mice. (A,B) mRNA expression levels of pro-inflammation cytokines. (C,D) mRNA expression
of anti-inflammatory cytokines. Values are shown as mean ± Sd. Bars with *** are statistically different (p < 0.05).
DG compared with the control (C) and B. toyo SAU-19 groups (n = 6).
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Figure 8. Effects of Bacillus toyonensis SAU-19 on relative protein expression (ELISA) of pro- and anti-inflammation-
related cytokines in HFD/STZ-induced T2DM mice. (A,B) Protein (ELISA) expression levels of pro-inflammation cytokines.
(C,D) Protein (ELISA) expression of anti-inflammatory cytokines. Values are shown as mean± Sd. *** p < 0.05, DG compared
with the control (C) and B. toyo SAU-19 groups. ### p < 0.05, B. toyo SAU-19 compared with the control (C) group (n = 6).

3.8. Effects of B. toyonensis Strain SAU-19 on Relative mRNA Expression of Genes Related to
Glucose and Glycogen Synthesis in the Liver Tissues of HFD/STZ-Induced T2DM Mice

As shown in Figure 9, the mRNA expression levels of genes related to glucose synthesis
phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) were
elevated in the T2DM mice group whereas Forkhead Box O1 (FOXO1), Glucose Transporter
2 (GLUT2), Glycogen synthase (GS), and phosphofructokinase liver type (Pfkl) were
significantly reduced in the diabetic group compared to the normal mice group, but the
administration of the B. toyonensis strain SAU-19 reverted this effect by downregulating
the expression levels of PEPCK and G6Pase and upregulating the expression of FOXO1,
GLUT2, GS, and Pfkl (Figure 9A–F, p < 0.05) compared to the diabetes mice.
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genes in HFD/STZ-induced T2DM mice. (A,B) mRNA expression levels of genes related to glucose synthesis. (C–F) mRNA
expression of genes related to glycogen synthesis. Values are shown as mean ± Sd. *** p < 0.05, DG compared with the
control (C) and B. toyo SAU-19 groups. ### p < 0.05, B. toyo SAU-19 compared with the control (C) group (n = 6).
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4. Discussion

This study demonstrates the antidiabetic effect of B. toyonensis SAU-19 on mice with
T2DM induced by HFD/STZ. We successfully modeled a T2DM mice model as basic
characteristics of T2DM, such as weight loss, increased food and water consumption,
and increase blood glucose, were evident in our study. Interestingly, the administration of
B. toyonensis SAU-19 significantly improved hyperglycemia, insulin resistance, oxidative
stress, and dyslipidemia. A study by Li et al. [19] reported that the body weights of
HFD/STZ-induced diabetic mice were significantly lower than the control mice after the
type 2 diabetes model was established. Similarly, in our study, we observed a decrease in
the body weights of HFD/STZ-induced diabetic mice after the type 2 diabetes model was
established. However, the feeding of B. toyonensis SAU-19 maintained the body weights
compared to the type 2 diabetic mice. Kantas et al. [20] reported that Bacillus toyonensis
could improve health and growth performance. Furthermore, we observed a reduction
in the weights of the liver, kidney, and spleen in the diabetic group compared to the
other treatment groups. This observation was consistent with the study by Zafar and
Naeem-Ul-Hassan Naqvi [21], who reported a reduction in the body and organ weights of
STZ-induced diabetes rats.

The immune organ weight and index are associated with immunity [22]. A study
by Iftikhar et al. [23] reported that the weights of immune organs correlate with immune
improvement; therefore, an improved immune organ weight signifies immunity improve-
ment, whereas the opposite designates immunosuppression. From the results of our current
study, we observed that the administration of Bacillus toyonensis SAU-19 increased the
splenic weight and splenic organ index. Therefore, we concluded that Bacillus toyonensis
SAU-19 stimulated the development of the spleen, hence enhancing immune performance
in mice.

Recently, numerous probiotic strains have shown glucose-alleviating potential [24,25].
In our current study, B. toyonensis SAU-19 showed an effective antiglycemia activity via
reduction and regulation of the glucose levels similarly to that in control mice throughout
the experiment.

The liver is an important organ responsible for regulating glucose metabolism via
assimilating excess blood glucose into glycogen [26]. The histopathological results obtained
in this study revealed that Bacillus toyonensis SAU-19 did not cause any severe pathological
changes in the liver tissues as compared to the diabetes group. Complications, such as
hepatocyte structure disorder with extensive degeneration, congestion, and necrosis and
inflammation, were observed in the liver of mice in the diabetes group. This was consistent
with previous reports by Zeng et al. [1], who reported that probiotics Lactobacillus paracasei
NL41 could prevent the pathological damage in the liver caused in HFD/STZ-induced
mice.

Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) are markers
of active liver inflammation and tissue damage [27]. Numerous studies have reported that
diabetes causes a rise in the AST and ALT levels [28,29]. Similarly, in this study, we observed
an increase in the levels of liver injury markers in the blood; however, the administration of
B. toyonensis SAU-19 reduced the levels of these liver inflammation and damage markers.
This result was consistent with the study by Mirmiranpour et al. [30], who reported that
Lactobacillus acidophilus (probiotic) could reduce the levels of AST and ALT in type 2 diabetes
patients. Furthermore, we also observed that liver glycogen levels were much higher in
the B. toyo SAU-19 group, indicating that B. toyonensis SAU-19 reduced blood glucose
by helping in the regulation and transport of high glucose loads from the blood to the
liver to be converted into glycogen. This result was consistent with previous studies
showing that Saccharomyces boulardii Tht 500101 significantly increased the storage of
hepatic glycogen [31].

Insulin resistance is a pathophysiological disorder, which arises as a result of de-
creased insulin sensitivity in peripheral tissues [32]. In the present study, we observed
that the glucose tolerance was unimpaired, and the increased levels of HOMA-IR were
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nullified in HFD/STZ-T2DM mice administrated B. toyonensis SAU-19, indicating that the
administration of SAU-19 prevented or delayed the onset of T2DM by improving insulin
resistance. This was consistent with the study by Balakumar et al. [33], who reported that
the native probiotic strains MTCC 5690 and MTCC 5689 improve insulin resistance and
type 2 diabetes.

Oxidative stress plays a crucial function in the onset of insulin resistance and T2DM [34].
Reactive oxygen species (ROS) activated by hyperglycemia and dyslipidemia induce injury
in the liver [35,36]. Several probiotics have showed effective antioxidants activities [37].
In this study, supplementation of B. toyonensis SAU-19 significantly increased the activities
of SOD and GSH but decreased the MDA activity. These results suggest that SAU-19 pro-
tected the body against oxidative damage, thus improving insulin resistance and reducing
the injury to organs, such as the pancreas, liver, and kidney.

Systemic and subclinical inflammation is associated with type 2 diabetes mellitus [38,39].
The inflammatory process is characterized by increased levels of inflammatory factors,
such as C-reactive protein (CRP) or high-sensitivity CRP (hs-CRP) and inflammatory cy-
tokines [40]. In the hepatocytes, the process of inflammation causes the production of
numerous acute-phase proteins, such as ferritin, which enhances insulin resistance [39].
The results from this study showed that the expression of proinflammatory cytokines (IL-
1β and TNF-α) in the liver was elevated while the levels of anti-inflammatory cytokines
(IL-4 and IL-10) were reduced in the diabetic group compared to the normal group; however,
the administration of B. toyonensis SAU-19 reverted these effects. This result is consistent with
the study by Liu et al. [41], who reported that Lactobacillus rhamnosus GG culture supernatant
(LGGs) could reduce liver inflammation and injury in a high-fat/high-fructose diet and
intermittent hypoxia exposure-induced metabolic dysfunction.

Gluconeogenesis and glycogenolysis are two major pathways for endogenous glucose
production [42]. PEPCK and G6pase are two key enzymes of hepatic gluconeogenesis [43].
PEPCK and G6pase catalyzes the process of gluconeogenesis in the liver and thus is associ-
ated with glucose production [6]. Increased expression of PEPCK and G6pase in the liver
has been linked with the onset of type 2 diabetes [44]. FOXO1 is a member of the forkhead
family transcription factors, which directly binds to PEPCK and G6pase target DNA se-
quence to control their expression in the liver [45]. Studies have proved that the inhibition
of FoxO1 decreases hepatic gluconeogenesis and improves glucose metabolism in animals
with T2DM [46]. GS is the rate-limiting step for glycogen synthesis, and activation of GS
by decreasing its phosphorylation results in increased glycogen synthesis [47]. GLUT2 is a
bidirectional glucose transporter and a transmembrane carrier protein mostly found in the
liver, kidney, and pancreas and is involved in supporting the passive movement of hexoses
through the cell membranes [48]. The high expression levels of hepatic GLUT2 mRNA re-
ported in this study were similar to those reported by Matsuzaka et al. [49] and Narasimhan
et al. [50] in rats, Jung et al. [51] in mice, and Okamoto et al. [52] in the HepG2 cell line.
The upregulation of GLUT2 expression in diabetes mice may increase the hepatic glucose
output since it was suggested that GLUT2 transports glucose from the liver when the
intracellular concentration of glucose exceeds its concentration in the plasma [53,54]. In cel-
lular respiration, phosphofructokinase-1 (PFK-1) controls the oxidation of glucose [55].
An increase in the levels of PFK-1 has been reported to increase glucose metabolism [42,56].
The results from this study showed that the mRNA expression levels of PEPCK and G6pase
genes were higher in the diabetic group as compared to the control group; however, the ad-
ministration of B. toyonensis SAU-19 reduced the expression of these genes, indicating
that B. toyonensis SAU-19 suppresses hepatic gluconeogenesis. This result was consistent
with the study by Yadav et al. [57], who reported that Lactobacillus rhamnosus MTCC: 5957,
Lactobacillus rhamnosus MTCC: 5897, and Lactobacillus fermentum MTCC: 5898 reduced the
mRNA expression of PEPCK and g6pase. Furthermore, the expression of FOXO1, GS,
GLUT2, and PFK-1 in the treatment group was elevated compared to the diabetes group.
This indicated that B. toyonensis SAU-19 reduced T2DM by upregulating genes related to
glycogen synthesis and excess glucose transport in the liver. This result was similar to
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the study by Kim et al. [58], who reported that Bifidobacterium lactis HY8101 upregulated
the glycogen synthesis-related gene pp-1 and GLUT4 and downregulated the hepatic
gluconeogenesis-regulated genes (PCK1 and G6PC) in diabetic mice.

This study reported on the antidiabetic activity of Bacillus toyonensis SAU-19; however,
the molecular mechanisms involved in the treatment of T2DM were not fully reported.
Therefore, we suggest that further studies should be conducted to elucidate the potential
molecular mechanisms that the B. toyonensis strain SAU-19 uses to prevent or treat type
2 diabetes.

5. Conclusions

In conclusion, this study demonstrated that the B. toyonensis strain SAU-19 has an
excellent antidiabetic effect in HFD/STZ-induced T2DM mice. The potential mechanism of
this effect might be related to decreasing insulin resistance and oxidative stress, upregulat-
ing genes related to glycogen synthesis and glucose transport, and improving lipid profiles.
Therefore, from the results, B. toyonensis SAU-19 could be used for the treatment of T2DM.
However, further studies are still needed to clarify the detailed mechanisms of action by
validating the efficacy of B. toyonensis SAU-19 through human clinical trials.
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