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A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common
pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple
SNPs within each gene, with external prior information at either the SNP or gene level. Themodel involves variable selection at the
SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance
matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation
studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency
and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the
WECARE study of second breast cancers in relation to radiotherapy exposure.

1. Introduction

TheWomen’s Environment, Cancer And Radiation Epidemi-
ology (WECARE) study [1] is aimed at a comprehensive
examination of genes involved in particular functional path-
ways. The study is a population-based nested case-control
study of 708 contralateral breast cancers (CBC) within a
notional cohort of about 65,000 survivors of a first breast
cancer, 1401 of whom serve as controls, and the primary
exposure of interest is ionizing radiation dose to the con-
tralateral breast from radiotherapy for treatment of the first
cancer. Ionizing radiation is known to cause double strand
breaks (DSBs) in DNA, which can invoke any of several
DNAdamage responsemechanisms, primarilyDSB repair via
either homologous recombination or nonhomologous end
joining, cell cycle checkpoint regulation, or apoptosis. The
original study focused on mutations in the ATM gene, which
plays a central role in the recognition of DSBs. The study
was then extended to include BRCA1, BRCA2, and CHEK2,
which are all involved in homologous recombination repair
(HRR), and later still to include a broader set of 38 candidate
genes involved in this and other pathways for DSB damage
response. We have previously reported on the main effects

of ionizing radiation [2, 3], ATM [4–6], BRCA1/2 [7–12],
CHEK2 [13], and the interactions of radiation with ATM
[14] and BRCA1/2 [15] as well as with other treatments and
reproductive factors [16, 17], amongst other risk factors. The
aim of this paper is to provide a comprehensive modeling
strategy for examining the effects of all genes in a pathway
and to apply the approach to candidate genes for CBC risk in
the WECARE study.

There are a growing number of literature works on meth-
ods for pathway modeling, motivated in large part by an
interest in mining GWAS data for commonalities across
related genes that individually may not achieve genomewide
significance but in the aggregate may point to novel pathways
(see [18] for a review of gene set enrichment analysis and
alternatives). Our goal here is more modest, guided by an
a priori selection of strong candidate genes [19]. Like other
methods of pathway analysis, however, we aim to exploit
external knowledge about the biological function of each
gene and the relationships between them [20].

Our starting point is a model for multiple variants pro-
posed by Quintana et al. [11], which collapses a subset of
the variants within a gene into a single “burden” type index,
similar to a number of other recent rare variant proposals
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(see Basu and Pan [21] for a review and comparison by
simulation), but extended to allow for both deleterious and
protective effects and to explicitly allow for uncertainty about
which variants to include in the model (and which direction
for those that are included) by Bayesian model averaging.
This approach was further extended to incorporate prior
covariates in the probabilities of SNP inclusion [12, 22].
Hoffman et al. [23] introduced a step-up variable selection
approach that allows for deleterious and protective effects but
did not consider model uncertainty except in the form of a
permutation procedure for the overall significance test so is
unable to assess the importance and direction of particular
variants or alternative models. Chen et al. [24] describe a
somewhat similar model that combines variable selection
at the SNP level with shrinkage at the gene level. In the
current paper, we extend this approach to multiple genes,
incorporating prior covariates and prior gene-gene similarity
information in a hierarchical modeling framework.

2. Model Specification

We have information on 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁
𝐼
individuals with binary

outcomes 𝑌
𝑖
, a vector of fixed effects X

𝑖
(age, family history,

etc.), and a vector of SNP genotypes S
𝑖𝑔
= (𝑆
𝑖𝑔𝑠
), 𝑠 = 1 ⋅ ⋅ ⋅ 𝑁

𝑆𝑔

within multiple genes 𝑔 = 1 ⋅ ⋅ ⋅ 𝑁
𝐺
for each individual.

We propose a novel model based on a hierarchical Bayes
framework with three levels: (i) a subject-level model for
the association between genes and disease, (ii) a gene-level
model for the regression coefficients in the gene-disease
association model, and (iii) a SNP-level model describing
which variants contribute to each gene and the direction of
their effects. (These submodels are described by (1), (2), (4),
and (5), resp., below and the surrounding text.) The general
framework is similar to one recently proposed by Quintana
et al. [12, 22] but differs in a number of details. The overall
model is represented as a directed acyclic graph in Figure 1,
where boxes represent observed data and circles represent
latent variables or model parameters; single arrows denote
stochastic links, while double arrows denote deterministic
links. The 3 dotted rectangles enclose the covariates and
parameters included in each level of the model and their
relations.

The subject-level model is specified in terms of a burden
index for each gene, a deterministic function comprised
of the number of positively associated SNPs minus the
number of negatively associated SNPs; however, the choice
of whether a SNP is included or not and, if included, its
direction is stochastic, governed by prior probabilities that
could in principle vary across genes or across SNPs within
genes. The gene-level model has means and covariances for
each ln RR (relative risk in log scale) coefficient that can
depend upon external information (“prior covariates” and
prior “gene-gene connections”). In principle, the SNP-level
model could also include prior covariates [22], although that
is not considered here. For the simulations and the analysis of
the realWECAREdata, we used theGeneOntology (GO, [26]
a pathway ontology database, http://www.geneontology.org/)
for the 38 WECARE candidate genes to construct the prior
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Figure 1: Directed acyclic graph describing the structure of the
model. Boxes describe observed data; circles represent latent vari-
ables or model parameters. Single arrows denote stochastic relation-
ships, while double arrows denote deterministic relationships. The
first rectangle illustrates the relations of disease status and genes at
the subject (i) level; the second rectangle illustrated the relations of
external information and first level coefficient 𝛽

𝑔
at the gene (𝑔)

level; the third rectangle illustrates the relations of weighted SNP
effects and gene burden index at SNP (s) level.

covariate and connection information, as described in more
detail in the simulation section.

Level 1. The subject-level model for case-control data uses a
conditional logistic regressionmodel to relate burden indexes
𝐺
𝑖𝑔
= 𝐺(W

𝑔
, S
𝑖𝑔
) for genes 𝑔 = 1 ⋅ ⋅ ⋅ 𝑁

𝐺
to a binary outcome

variable𝑌
𝑖
, the disease status for individual 𝑖. Here,𝐺 denotes

a deterministic function of the SNP genotypes 𝑆
𝑖𝑔𝑠

for SNP
𝑠 in gene 𝑔 with corresponding weights W

𝑔
= (𝑊

𝑔𝑠
) ∈

{−1, 0, +1} defined in the level 3 model. Thus, the first level
model is of the following form:

logit Pr (Y
𝑖
= 1) = X󸀠

𝑖
𝛼 +

𝑁𝐺

∑

𝑔=1

𝑒
𝛽𝑔𝐺(W

𝑔
, S
𝑖𝑔
) + offset

𝑖
, (1)

where X
𝑖
denotes a vector of fixed covariates (confounders)

with coefficient vector 𝛼.The offset term is needed to account
for the counter-matched design in the WECARE study [1].

Each gene burden index has a log regression coefficient
𝑒
𝛽𝑔 describing its contribution to risk, the interpretation of
which will depend upon the current assignment of weights. A
change of the genotype of a single SNP in the function 𝐺

𝑖𝑔
is

reflected by the change of 𝑒𝛽𝑔 on logit scale.This is based on all
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SNPs tested in the gene, but each SNP has a different weight
𝑊
𝑔𝑠
with different prior probabilities; the details are explained

in level 3 of the model. The exponentiation of the 𝛽s ensures
that the effects of each gene will be positive, thereby avoiding
the label-switching problem that would arise if the signs of 𝛽

𝑔

and all the𝑊
𝑔𝑠
were reversed for a given gene.This also avoids

having to deal with truncated normal distributions if 𝛽
𝑔
were

not exponentiated but instead constrained to be positive. (We
call (1)Model I and briefly describe this alternative possibility
(Model II) in Section 7.)

Level 2.The regression coefficients 𝛽
𝑔
in the first level logistic

regression model are given by the gene level of the hierarchi-
cal model:

𝛽
𝑔
= Z󸀠
𝑔
𝜋 + 𝑏
𝑔
+ 𝑒
𝑔
, (2)

where

𝜋 = (𝜋
0
, . . . , 𝜋

𝑁𝑍
) ∼ N (0, 𝑉

𝜋
I) ,

b = (𝑏
1
, . . . 𝑏
𝑁𝐺
) ∼ N (0, 𝜏

2A) ,

e = (𝑒
1
, . . . , 𝑒

𝑁𝐺
) ∼ N (0, 𝜎

2I) .

(3)

The level 2 model uses a simple linear regression to
relate the regression coefficients 𝛽 from the level-1 model to
external information on the genes’ involvement in certain
pathways and the similarity of their effects. We incorporate
information regarding prior predictions of the effects of
each gene into the design matrix Z, here structured as a
gene-by-pathway matrix of binary values, each indicating
whether a gene is in a particular pathway. Basically,Z contains
second-stage covariates for each of the genetic factors. 𝜋 is a
column vector of coefficients corresponding to these higher-
level effects and is assigned an independent normal prior
with mean 0 and variance 𝑉

𝜋
and identity matrix I. Prior

information about gene-gene connections is incorporated in
the A matrix for the b random effects with a multivariate
normal distribution centered at zero with variance 𝜏

2. The
term e is included as a residual error, also given a zero
mean independent normal distribution, with 𝜎

2 specifying
the residual variance of the second-stage covariates.

Level 3. The SNP-level model defines the deterministic func-
tions 𝐺(W

𝑔
, S
𝑖𝑔
), where each gene is uniquely determined by

the SNP inclusion indicator variables𝑊
𝑔𝑠
. The 𝐺

𝑖𝑔
serve as a

design matrix of genetic factors for the individuals within the
study. In other words, the function serves as a risk index for
each gene and as a weighted sum of SNP effects within each
gene:

𝐺(W
𝑔
, S
𝑖𝑔
) =

𝑁𝑆𝑔

∑

𝑠=1

𝑊
𝑔𝑠
𝑆
𝑖𝑔𝑠
, (4)

where the weights𝑊
𝑔𝑠
= −1, 0, or +1 have prior probabilities:

Pr (𝑊
𝑔𝑠
= 𝑑) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝜑
−

( 𝑁
𝑠
+ 𝑐)

(𝑁
𝑆𝑔
+ 𝑐)

, 𝑑 = −1

1 − (𝜑
−
+ 𝜑
+
)

( 𝑁
𝑠
+ 𝑐)

(𝑁
𝑆𝑔
+ 𝑐)

, 𝑑 = 0

𝜑
+

( 𝑁
𝑠
+ 𝑐)

(𝑁
𝑆𝑔
+ 𝑐)

, 𝑑 = 1.

(5)

Here, 𝑁
𝑆𝑔

denotes the number of SNPs in gene 𝑔 and 𝑁
𝑠

the average number of SNPs across all genes; we assigned
𝑐 to be the minimum number of SNPs within any gene. 𝜑

+

and 𝜑
−
represent the parameters of the prior probabilities for

deleterious and protective SNP effects, respectively.This form
of prior probabilities for the SNP indicator variables keeps
the expected number of SNPs included in the model to be
roughly similar across genes while allowing genes with more
SNPs to have similar probabilities of being included as genes
with fewer SNPs. For now, we treat 𝜑 as fixed parameters, but
these too could be given hyperpriors and estimated.

The posterior estimates for the association parameters
resulting from the three-level hierarchical Bayesian analysis
are an inverse-variance weighted average between the con-
ventional estimates from the logistic regression only and the
estimated conditional second-stagemeans,Z󸀠

𝑔
𝜋. Between the

maximum likelihood first-stage estimates and the second-
stage prior estimates, the weights will favor the one with
smaller variance. This intuitive weight adjustment is one
of the important differences between Bayesian hierarchical
approach and the single-stage logistic regression analysis.

Finally, the variance components are given standard
conjugate inverse gamma hyperprior distributions:

𝜎
2
∼ 𝐼𝐺 (𝑑𝑓

𝑒
, 𝐸) ,

𝜏
2
∼ 𝐼𝐺 (𝑑𝑓

𝑏
, 𝐵) ,

𝑉
𝜋
∼ 𝐼𝐺 (1, 𝑃) .

(6)

3. Fitting the Model

The full model is fitted in a sequence of Markov chain Monte
Carlo (MCMC) steps described in detail in the Appendix.
Basically, the selection of SNPs to include in each gene
𝑊
𝑠
is performed by sampling from their full conditional

distributions one at a time; this involves an approximation
to the change in the corresponding estimate of 𝛽

𝑔
and hence

the likelihood that would result from adding or deleting that
SNP. The gene-level regression coefficients 𝛽

𝑔
and correlated

random effects 𝑏
𝑔

are accomplished by the Metropolis-
Hastings moves for the entire 𝛽 and b vectors, conditional
on the current SNPs in the model, the prior covariates Z

𝑔
,

and gene-gene correlation matrix A, using a multivariate
normal proposal. The second-level gene-level coefficients 𝜋

𝑔

and the independent and correlated variances 𝜎
2 and 𝜏

2

are then sampled using further Metropolis-Hastings moves.
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Updating the coefficients 𝛼 of the fixed covariates involves
only a standard update for logistic regression.

4. Posterior Summarization

Instead of parameter estimation, we focus primarily on
hypothesis testing and model selection. We use the Bayes
factors (BF) at both the SNP level and the gene level to
compare the posterior odds provided by data to their prior
odds of a pair of hypotheses. Kass and Raftery [27] suggest a
qualitative interpretation of BF > 3 (or equivalently 2ln(BF) >
2) as providing “positive” evidence, >20 as “strong” evidence,
and >150 as “very strong” evidence.

We tabulate the following quantities, where𝐷 denotes the
ensemble of all the data.

(i) For each SNP, the posterior probability of 𝑊
𝑔𝑠

=

−1, 0, +1 and Bayes factor

BF
𝑔𝑠
= (

Pr (𝑊
𝑔𝑠

̸= 0 | 𝐷)

Pr (𝑊
𝑔𝑠
= 0 | 𝐷)

)

÷ (

(𝜑
−
+ 𝜑
+
) / (𝑁

𝑆𝑔
+ 𝑐)

1 − (𝜑
−
+ 𝜑
+
) / (𝑁

𝑆𝑔
+ 𝑐)

) ,

(7)

where the first factor is the ratio of posterior prob-
abilities that SNP in gene g has any effect (positive
or negative) versus no effect given the data 𝐷 and
the second factor is the corresponding ratio of prior
probabilities.

(ii) For each gene, the Bayes factor for the probability that
at least one SNP is included in the model is

BF
𝑔
= (

1 − Pr (W
𝑔
≡ 0 | 𝐷)

Pr (W
𝑔
≡ 0 | 𝐷)

)

÷(

1 − (1 − ((𝜑
−
+ 𝜑
+
) / (𝑁

𝑆𝑔
+ 𝑐)))

𝑁𝑆𝑔

(1 − ((𝜑
−
+ 𝜑
+
) / (𝑁

𝑆𝑔
+ 𝑐)))

𝑁𝑆𝑔

).

(8)

We also tabulate the posterior means and standard
deviations of each, along with the mean number of
SNPs included in the model.

(iii) For the other parameters, 𝛼, 𝛽, 𝜋, 𝜎2, and 𝜏
2, we

simply tabulate the posterior means and SDs.
(iv) Finally, we tabulate the posterior distributions of

numbers of SNPs and numbers of genes with at least
one SNP included in the model.

5. Simulation Studies

We conducted simulation studies based on the structure of
the real WECARE study data described below. Specifically,
we used the real SNP, covariate, and counter-matching offset
data for each risk set and reassigned case/control status in
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Figure 2: Graphical representation of the Amatrix derived from the
Gene Ontology. The lower levels of the graph indicate sets of genes
with high correlations across the 860 GO terms.

each risk set based on an assumed relative risk model. We
used the estimated values of the coefficients 𝛼 for the fixed
covariates and randomly assigned weights 𝑊

𝑔𝑠
to SNPs and

log relative risk coefficients 𝛽
𝑔
to each gene under the models

described above. There were a total of 504 SNPs in 38 genes
(ranging from 1 to 51 SNPs per gene) involved inDNAdamage
response pathways (DNA repair, cell cycle checkpoint con-
trol, and apoptosis). Using the Gene Ontology, we extracted
860 terms relating to biological process ormolecular function
annotated to any of these 38 genes and selected four of these
GO terms as prior covariates in the Z matrix (specifically,
DNA damage checkpoint, MRE11 complex, double-strand
break repair via nonhomologous end joining, and negative
regulation of cell cycle), with 𝜋 = 0.25, 0.5, 0.75, and 1
respectively, and the intercept 𝜋

0
was set to −2. All 860 GO

terms were used to construct a correlation matrix A for the
similarity in the ways each pair of genes was described in
the GO (Figure 2). The log relative risk coefficients 𝛽

𝑔
were

assigned with mean Z󸀠
𝑔
𝜋 and SDs of 𝑏

𝑔
and 𝑒
𝑔
𝜎 = 𝜏 = 0.5.

SNP weights𝑊
𝑔𝑠
were assigned with 𝜑

−
= 𝜑
+
= 0.05 and 𝑐 =

1.The resulting gene indices𝐺
𝑔
(W, S) and the corresponding

𝛽
𝑔
, along with the real X

𝑖
and estimated 𝛼 coefficients and

offset terms, were then used to compute each subject’s relative
risk and randomly assign which member of each risk set
would be designated as the case.The estimates are based on 10
replicates for the data of each of 10 realizations of the𝑊

𝑔𝑠
and

𝛽
𝑔
from thesemodel parameters, using 1000MCMCscans for

tabulation after a burn-in of 500 scans. It yielded a total of 32
causal SNPs in 24 of the genes on average. Table 1 summarizes
the posterior probabilities for SNP and gene inclusion, along
with the proportion of SNPs and genes with BFs greater than
3, 20, and 150. Although the differences between null and
causal SNPs and genes are somewhat modest, there is a clear
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Table 1: Simulation analysis based on 10 parameter replicates with 10 data replicates per parameter replicate.

(a)

SNPTrue Average countsa Posterior SNP inclusionb BFc

−1 0 1 >3 >20 >150
−1 17.5 24.14% 71.75% 4.11% 25.54% 17.49% 12.46%
0 348.1 3.19% 93.76% 3.05% 3.90% 0.68% 0.19%
1 18.4 3.88% 70.19% 25.94% 28.15% 19.13% 15.54%

(b)

GeneTrue Average countsd Posterior gene inclusione BFf

Not included Included >3 >20 >150
Not included 13.9 55.95% 44.05% 3.67% 0.58% 0.15%
Included 24.1 36.55% 63.45% 27.71% 20.01% 17.14%
aAverage counts of simulated SNP inclusion indicators based on 10 × 10 replicates.
bAverage row percentages of the distribution of posterior SNP inclusion indicators based on 10 × 10 replicates.
cAverage row percentages of the SNP counts among the range of the indicated Bayes factors based on 10 × 10 replicates.
dAverage counts of simulated gene inclusion indicators based on 10 × 10 replicates.
eAverage row percentages of the distribution of posterior gene inclusions based on 10 × 10 replicates.
fAverage row percentages of the gene counts among the range of the indicated Bayes factors based on 10 × 10 replicates.

shift in both the posterior probabilities and the Bayes factors
in the appropriate directions.

6. Application to the WECARE Study Data

Using the same settings as for the simulation studies, we
analyzed the real WECARE study data, except that 10,000
scans were retained after a burn-in of 4,000 iterations. The
posterior distributions of numbers of genes with at least one
SNP included and numbers of SNPs included are shown in
Figures 3(a) and 3(b). An average of 10 SNPs in 9 genes
was included in the model. Figure 4 shows the posterior
probabilities (a) and Bayes factor for each of the genes (b)
and SNPs (c). At the gene level, only MDC1 and RAD51
were included with substantial Bayes Factors of 20.71 (“strong
evidence”) and 3.51 (“positive evidence”), respectively, while
ATM and NBN were identified only with BFs between 1 and
3. In this analysis, the known deleterious variants in ATM,
BRCA1, BRCA2, and CHEK2 were treated as fixed covariates
rather than being lumped in with the other tag SNPs. None
of the four GO terms selected as prior covariates contributed
significantly to the model, the strongest being DNA damage
checkpoint (𝜋 = −0.15, SE = 0.27). The correlated variance
𝜏
2

= 0.25, and the independence variance 𝜎
2

= 0.16,
suggesting moderately strong residual gene-gene similarities
(spatiality 𝜏2/(𝜎2 + 𝜏

2
) = 61%) defined by the ensemble of all

GO terms and not explained by the regression of 𝛽s on the
subset of selected GO terms.

Table 2 lists the numbers of pairs of the homozygous
reference allele, heterozygous allele, and homozygous risk
allele for cases (CBC) and controls (UBC), respectively, for
all the SNPs identified by our models and by a previous
WECARE publication [25]. We also report the estimated
ln RRs from simple logistic regression for each selected SNP,
adjusted for the same set of covariates (age, menarche,
menopause, family history, pregnancy, histology, treatment,
the FGFR2 GWAS-identified SNP, and deleterious variants

in ATM, BRCA1, BRCA2, CHECK2s and offset term) as in
our model. The logistic regression found SNPs rs4713354
and rs2269705 in MDC1 to be strongly associated with
CBC risk (𝑃 < 0.001), and SNPs rs1800057 v IVS14m55,
rs13447682, rs3736640, and rs1801320 had protective effects
with statistical significance (𝑃 < 0.05) or with marginal
statistical significance (rs6005861 and rs9297757, 𝑃 < 0.1).

Table 2 also shows the SNP Bayes factors, based on which
our model selected a total of nine SNPs with positive to
strong evidence for disease association. Two SNPs (one in
NBN and one inRAD51) were identified with strong evidence
(BF > 20) and seven SNPs from four genes (ATM, CHEK2,
MDC1, MRE11A) with positive evidence (BF > 3). In a prior
study by the WECARE study Collaborative Group, 134 com-
mon variants in six DNA damage response genes (CHEK2,
MRE11A, MDC1, NBN, RAD50, and TP53BP1) were tested
separately or within haplotypes for association with CBC risk
[25]. Six SNPs were reported to be associated with CBC risk
with 𝑃 < 0.05, but none remained statistically significantly
associated after correction for multiple comparisons. Five
SNPs (rs6005861 in CHEK2, rs4713354 inMDC1, rs13447682
in MRE11A, and rs9297757 and rs3736640 in NBN) among
those six SNPs reported by Brooks et al. were selected by
our model for showing positive or strong evidence for CBC
risk. The remaining SNP (rs14448 in NBN) reported by
Brooks et al. was not statistically significantly associated with
CBC in the logistic regression (𝑃 = 0.447). All the SNPs
except rs4713354 in MDC1 reported by Brooks et al. were
found to have protective effects in the log-additive model.
The same direction of the risk was also found for each
SNP in the logistic regression. In addition, our model shows
positive evidence of CBC risk for SNP rs1800057, a variant
in ATM, which was previously shown to be associated with
a statistically significant reduction in CBC risk [28] in the
WECARE study. Its protective effect was also found in the
logistic regression (ln RR = −0.47, 𝑃 = 0.046).
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Figure 3: Posterior distributions of numbers of genes (a) and numbers of SNPs (b) included in the analysis of the WECARE study data.

Table 2: Association between selected variants in DNA-damage response genes and CBC risk in the WECARE study.

Gene rs number

Homozygous;
reference allele Heterozygous Homozygous;

risk allele ln RRc Bayes factors

Case
(CBC)

Control
(UBC)

Case
(CBC)

Control
(UBC)

Case
(CBC)

Control
(UBC) (95% CI) 𝑃 valued BF SNP BF gene

ATM rs1800057a 680 1322 28 76 0 1 −0.47 (−0.95, −0.01) 0.046 4.58 1.41
rs4987951a 674 1278 34 121 0 0 −0.66 (−1.32, −0.25) 0.002 9.04

CHEK2 rs6005861a,b 680 1311 27 86 1 2 −0.40 (−0.85, 0.06) 0.086 7 0.36

MDC1 rs4713354a,b 535 1116 157 267 16 16 0.47 (0.26, 0.68) <0.001 9.72 20.71
rs2269705a 589 1220 113 175 6 4 0.50 (0.25, 0.76) <0.001 15.91

MRE11A rs13447682a,b 690 1343 18 54 0 2 −0.56 (−1.12, −0.01) 0.046 5.7 0.52

NBN
rs14448b 640 1215 60 171 8 13 −0.11 (−0.40, 0.18) 0.447 0.2

2.62rs9297757a,b 651 1233 148 52 5 18 −0.26 (−0.58, 0.05) 0.097 27.33
rs3736640a,b 676 1288 32 107 0 4 −0.64 (−1.27, −0.21) 0.003 4.14

RAD51 rs1801320a 646 1209 58 186 4 4 −0.31 (−0.62, 0.00) 0.048 21.38 3.51
aSNPs identified by Model I based on Bayes factors. Only those SNPs with BF exceeding 3 are listed.
bSNPs identified by Brooks et al. 2012 [25] based on per-allele RR. Only those SNPs with 𝑃 value for trend <0.05 are listed.
c lnRR: regression coefficients of each SNP from simple logistic regression, adjusted for age, menarche, menopause, family history, pregnancy, histology,
treatment, the FGFR2 GWAS-identified SNP, and deleterious variants in ATM, BRCA1, BRCA2, CHECK2, and offset term.
d
𝑃 values associated with Wald-𝑧 test for lnRR estimates from simple logistic regression adjusted for fixed covariants listed in d.

Seven of the nine SNPs selected by our model have
been found associated with breast cancer risk in previous
investigations. Besides the six SNPs reported in the previous
WECARE study, rs1801320 (135G > C), a SNP in the 5󸀠-
untranslated region (UTR) of the RAD51 gene, was found
with mixed results for its role in breast cancer risk from
other breast cancer risk studies [29–31]. In addition to those
previously reported SNPs, our model selected rs4987951 in
ATM and rs2269705 in MDC1, about which we found no
previous reports of association with breast cancer.

7. Discussion

Our model is motivated in part by ongoing work onmethods
for testing associations with multiple rare variants in next
generation sequencing data [12, 22], for which it is obvious
that attaining statistically significant results for any single
variant is difficult because of their rarity and the enormous
multiple comparisons penalty. This motivates our choice
of a burden index for gene-level associations comprising

simple −1/0/+1 weights with model averaging across their
uncertainty distribution. For common variants with minor
allele frequencies (MAF) >5% (and perhaps in candidate
gene studies for uncommon variants with 1% < MAF <

5%), it may be possible to allow each SNP to have its own
regression coefficient from some continuous distribution, but
constraints would be needed to ensure identifiability if both
SNP- and gene-level parameters were to be estimated.

As a compromise, we have treated the known deleterious
variants in ATM, BRCA1/2, and CHEK2 as fixed covariates,
along with age, treatment, reproductive variables, and so
forth, since it seems unreasonable to consider these variants
as exchangeable with the tagging SNPs. Unfortunately, this
precludes borrowing strength across all the variants within
these genes—that is, given that we know that some variants
in these genes are deleterious, it would seem more likely
that there would be other causal variants in the same
genes. Furthermore, if these four genes have similar prior
covariate values Z

𝑔
, that should inform the estimation of the

corresponding 𝜋
𝑔
𝑠 and draw the estimates of 𝛽s for other
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Figure 4: Continued.
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Figure 4: Posterior probabilities (a) and Bayes factors for gene inclusion (b) and SNP inclusion (c) in the model for the real WECARE study
data.

genes that are highly correlated with them in the A matrix
towards the 𝛽

𝑔
values for these genes.

We have included prior information only on genes, not
SNPs, in our model, since the GO does not provide any
annotation of specific variants within genes. However, there
are many ways of classifying SNPs a priori, such as simple
indicators for whether they are coding or noncoding variants
or the predictions of programs like SIFT [32] and PolyPhen
[33] based on predicted effects on protein conformation or
evolutionary conservation. Such information could easily be
incorporated into a multinomial logistic or probit model for
the inclusion probabilities 𝜑

𝑠
[12, 22]. The current version of

our program treats 𝜑
+
and 𝜑

−
as fixed constants, but these

could simply be assigned prior Beta distributions, subject to
the constraint that 𝜑

+
+ 𝜑
−
< 1.

In addition to the model described above (Model I), we
considered an alternative Model II with a similar structure,
except that the gene log RR coefficients 𝛽

𝑔
are not exponen-

tiated:

log it Pr (𝑌
𝑖
= 1) = X󸀠

𝑖
𝛼 +

𝑁𝐺

∑

𝑔=1

𝛽
𝑔
𝐺(W

𝑔
, S
𝑖𝑔
) + offset

𝑖
,

𝛽
𝑔
≥ 0.

(9)

To ensure that they are positive, the second level of the
hierarchical model is in the following form:

Pr (𝛽
𝑔
) =

{{{{{

{{{{{

{

𝜑(

𝛽
𝑔
− Z󸀠
𝑔
𝜋

𝜎
) 𝛽

𝑔
> 0

Φ(−

Z󸀠
𝑔
𝜋

𝜎
) 𝛽

𝑔
= 0,

(10)

where 𝜑 denotes the probability density of normal distri-
bution and Φ denotes the cumulative density of normal
distribution.This is a proper density for 𝛽

𝑔
, since it integrates

to one.The third level of Model II remains the same asModel
I. Model fitting is similar to Model I except for some details
in updating 𝛽

𝑔
s and 𝜋s.

In the simulations, Model II yielded a total of 47 causal
SNPs in 25 of the genes on average. Model I showed higher
sensitivity and specificity for SNP selection (Table 2) than
Model II based on both posterior SNP inclusion and SNPBFs.
Model II showed a higher sensitivity for gene selection than
Model I based on the posterior gene inclusion, but a lower
specificity. In addition, Model I showed a higher sensitivity
based on gene BFs.
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In the application to WECARE data, Model II identified
5 SNPs in genes MDC1, NBN, and RAD51, with positive
evidence for disease association (BF > 3). Four (rs4713354,
rs2269705, rs9297757, and rs1801320) of the five selected SNPs
are in common with Model I, two (rs4713354, rs9297757) are
in common with Brooks et al. [25], and one (rs11620361) is
not in common with previous methods. One gene (MDC1)
was selected with positive association based on gene-level
Bayes factors (BF = 6). Both the simulation study and real
data application suggested that Model I performs better than
Model II in terms of selecting causal variants.

We have extended the model to incorporate gene-envi-
ronment (𝐺 × 𝐸) interactions with radiotherapy or radiation
dose since the focus of the WECARE study is on these
genes acting in response to the DSB damage induced by
radiotherapy exposure. Extending the model to incorporate
𝐺×𝐸 interactions is straightforward, simply adding the main
effect of 𝐸 and an additional vector of interaction terms
to the subject-level model and then putting a similar prior
on the interaction coefficients. For the time being, we have
treated the 𝛽s and 𝛿s as independent, but a more appealing
approach would be to treat them as having bivariate normal
distributions depending on Z and A. No significant 𝐺 × 𝐸

interactions were found in this model (results not shown).
It remains to be seen whether this approach is scalable to

GWAS data. As currently implemented with MCMC meth-
ods, the approach would not be computationally feasible,
even with parallel implementations on high-performance
computing environments. However, work in progress (Quin-
tana et al. [11, 12, 22]) suggests that analytic approximations
may be possible that would obviate the need for MCMC
methods.

Appendix

Model Fitting

At each iteration, the following updates are performed.
Selection of SNPs to include in the model involves

evaluating the three posterior probabilities for 𝑑 = {−1, 0, +1}

and selecting𝑊
𝑠
with the corresponding probability

[𝑊
𝑔𝑠
= 𝑑 | Y, S,W; 𝜑]

∝ [Y | {𝐺
𝑔
(𝑊
𝑔𝑠
= 𝑑,W

𝑔(−𝑠)
, S
𝑔
) ,G
−𝑔
} ; {𝛽
𝑔𝑠𝑑

, 𝛽
−𝑔
}]

× [𝑊
𝑔𝑠
= 𝑑 | 𝜑

𝑑
, 𝑁
𝑆𝑔
] ,

(A.1)
where 𝛽

𝑔𝑠𝑑
is a single Newton step iteration towards the

maximum likelihood estimate (MLE) of 𝛽
𝑔
if 𝑊
𝑔𝑠

were set
to 𝑑.

Update the vector of regression coefficients 𝛽 using a
multivariate Metropolis-Hastings move with proposal 𝛽󸀠 ∼
𝑀𝑉𝑁(𝛽, 𝛿

𝛽
I) and acceptance probability

min{
𝑝 (𝑌 | G (S,W) ,𝛽

󸀠
) 𝑝 (𝛽

󸀠
| Z𝜋 + b, 𝜎2I)

𝑝 (𝑌 | G (S,W) ,𝛽) 𝑝 (𝛽 | Z𝜋 + b, 𝜎2I)
, 1} . (A.2)

Update the vector of randomeffectsbwith a similarMetropo-
lis-Hastings move with acceptance probability

min{
𝑝 (𝛽 | Z𝜋 + b󸀠, 𝜎2I) 𝑝 (b󸀠 | 𝜏2A)
𝑝 (𝛽 | Z𝜋 + b, 𝜎2I) 𝑝 (b | 𝜏2A)

, 1} . (A.3)

Note that an alternative possibility would be to sample𝛽 from
its marginal distribution

[𝛽 | Z,𝜋,A,Y, S,W, 𝜎
2
] ∝ [Y | G (W, S) ;𝛽]

× [𝛽 | Z󸀠𝜋, 𝜎2I+𝜏2A]
(A.4)

and omit the update of the bs.
Update the prior regression coefficients 𝜋 by a simple

linear regression and taking a multivariate normal around its
MLE,

[𝜋 | 𝛽,Z, b, 𝜎2] ∝ [𝛽 | Z󸀠𝜋 + b, 𝜎2I] [𝜋 | 0, 𝑉
𝜋
I] . (A.5)

Update the variances 𝜎2 and 𝜏
2 using a Metropolis-Hastings

move with proposals ln(𝜎󸀠) ∼ 𝑁(ln(𝜎), 𝛿
𝜎
) and similarly for

𝜏, with acceptance probabilities

[𝜎, 𝜏 | 𝛽,Z,𝜋,A] ∝ [𝛽Z󸀠𝜋, 𝜎2I + 𝜏
2A] [𝜎2] [𝜏2] . (A.6)

As noted above, we treat the 𝜑s as fixed, but these too could
be given prior distributions and estimated as well.

The coefficients (𝛼) of subject-level confounders are
updated using single Newton-Raphson iteration towards the
MLE of 𝛼, following a random multivariate normal update
to sample the new 𝛼. The procedure is based on the approxi-
mation that the likelihood for 𝛼 is quadratic with flat priors.
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