
Citation: Wang, M.-C.; Gong, G.-Y.;

Wang, C.-L.; Ko, H.-W.; Weng, R.-X.;

Chang, P.-Y.; Chiou, C.-C. Methods

for Collection of Extracellular

Vesicles and Their Content RNA as

Liquid Biopsy for Lung Cancer

Detection: Application of Differential

Centrifugation and Annexin A5

Coated Beads. Curr. Issues Mol. Biol.

2022, 44, 2374–2386. https://doi.org/

10.3390/cimb44050162

Academic Editor: Peter C. Hart

Received: 25 April 2022

Accepted: 20 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Methods for Collection of Extracellular Vesicles and Their
Content RNA as Liquid Biopsy for Lung Cancer Detection:
Application of Differential Centrifugation and Annexin A5
Coated Beads
Mei-Chia Wang 1,2,3 , Guan-Yu Gong 2, Chih-Liang Wang 4, How-Wen Ko 4, Rong-Xuan Weng 5, Pi-Yueh Chang 1,2

and Chiuan-Chian Chiou 2,3,4,5,*

1 Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
ottermika@cgmh.org.tw (M.-C.W.); changpy@cgmh.org.tw (P.-Y.C.)

2 Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University,
Taoyuan 333, Taiwan; e75967259@livemail.tw

3 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
4 Department of Thoracic Medicine, Chang-Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;

wang@cgmh.org.tw (C.-L.W.); howwenko@gmail.com (H.-W.K.)
5 Master and PhD Program in Biotechnolgy Industry, College of Medicine, Chang Gung University,

Taoyuan 333, Taiwan; ken010194@gmail.com
* Correspondence: ccchiou@mail.cgu.edu.tw; Tel.: +886-3211-8800 (ext. 5204)

Abstract: Extracellular vesicles (EVs) contain abundant extracellular RNA (exRNA), which can be a
valuable source of liquid biopsy. However, as various RNA species exist in different types of EVs,
lack of detailed characterization of these RNA species and efficient collection methods limits the
clinical application of exRNA. In the present study, we measured two mRNAs, CK19 and PCTK1;
one lncRNA, MALAT1; and two miRNAs, miR21 and miR155, in different EV fractions separated by
differential centrifugation or captured by magnetic beads coated with annexin A5 (ANX beads). The
results showed that in a cultured medium, the majority of mRNA and lncRNA exist in larger EVs,
whereas miRNA exist in both large and small EVs from the differential centrifugation fractions. All
these RNA species exist in ANX beads captured EVs. We then used ANX beads to capture EVs in
plasma samples from non-small-cell lung cancer patients and age-matched healthy volunteers. We
found that the ANX bead capturing could efficiently improve RNA detection from human plasma,
compared with direct extraction of RNA from plasma. Using ANX-bead capturing and reverse
transcription and quantitative PCR, we detected significantly higher levels of CK19 mRNA, MALAT1
lncRNA, and miR155 miRNA in the plasma of lung cancer patients. These facts suggested the
collection methods strongly affect the results of exRNA measurement from EVs, and that ANX beads
can be a useful tool for detecting exRNA from plasma samples in clinical application.

Keywords: extracellular vesicles; annexin A5 beads; extracellular RNA; liquid biopsy; non-small-cell
lung cancer

1. Introduction

Extracellular vesicles (EVs) are membranous vesicles derived from endosomal or
plasma membrane and may play important roles in intercellular communication [1–3]. Re-
cently, EVs have drawn intensive attention due to their possible application as a source of
liquid biopsy for disease detection [4]. According to their origin and size, EVs can be classi-
fied into at least three types: exosomes (40–200 nm in diameter), microvesicles (50–1000 nm
in diameter), and apoptotic bodies (50–5000 nm in diameter). Some researchers believe
that cancer cells may also release a specific type of EV, namely oncosomes (50–5000 nm in
diameter) [4]. These EVs have different formation pathways. For example, microvesicles
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are budded from membrane surface; exosomes are formed from multiendosomes; apoptotic
bodies are blebbed from apoptotic cells. These different formation paths make them engulf
different cell contents.

EVs contain various macro-molecules carrying information from the original cells [5–7].
Extracellular RNA (exRNA) is an important category of macromolecules in EVs. As exRNA
is unstable in body fluids, it must be protected within lipid bilayer membrane or associated
with proteins [8]. Various RNA species can be encapsulated in the EVs. For example,
microRNA (miRNA) (76.2%), long noncoding RNA (lncRNA) (3.36%), and messenger RNA
(mRNA) (1.36%) have been found in exosomes [9,10]. RNA cargo of EVs reflects the levels
and types of cytoplasmic content, which provides clue of physiologic state of the cells
releasing them [11]. Measurement of exRNA in EVs in serum or plasma have been explored
as an approach of blood-based cancer detection [12–17]. However, a lack of reproducible
and efficient approaches for collecting different EVs and exRNA limits its application [18].

Several methods have been proposed for EV collection and classification, usually
dependent on size, membrane property or surface markers of EVs. These methods included
centrifugation, affinity column, and microfluidic technology [19,20]. The most frequently
used method for different EV isolation is differential centrifugation, which includes at
least two steps of centrifugation: a low-speed centrifugation for pelleting larger EVs and
a high-speed centrifugation for pelleting smaller EVs [21–23]. The second centrifugation
is performed on an ultra-centrifuge and usually needs a high working volume [24]. The
required speed and time are various in different laboratories [25]. Alternatively, some
polymers can be added to facilitate precipitation of EVs, thus an ultra-centrifuge is unde-
manding [21]. Affinity column is another method to collect EVs, which applies a column
specifically binding to membrane vesicles [26,27]. The common workflow of affinity purifi-
cation is binding, washing, and elution. A centrifuge is also required in the procedures [26].
In general, these methods are either costly or time consuming. Most importantly, the
requirement of centrifugation steps makes them difficult to fit in the laboratory automation
system for clinical application.

In animal cells, the lipid phosphatidylserine (PS) is present in the inner leaflets of the
plasma membrane [28]. When cells undergo apoptosis, PS translocates to the outer leaflets.
In addition, PS is also found on the outer surface of the membrane of most EVs, especially
apoptotic bodies and exosomes [29,30]. Annexin A5 is a calcium-dependent, PS binding
protein. Thus, annexin A5 can be a useful agent for the recognition and collection of EVs.
Shih et al. have developed an annexin A5-coated magnetic beads (ANX beads)-based
procedure to capture EVs from fluidic samples [31]. The ANX beads had high affinity to
the EVs, the spiked apoptotic bodies or endogenous EVs could be recovered from fluidic
samples. They also showed that the captured EVs contained amplifiable RNA [31]. As this
method does not need any sophisticated instrument or complicated operation, it can be
easily adapted in an automation system, such as a magnetic particle processor. However,
the EVs captured by the ANX beads need further characterization before the ANX beads
can be used in clinical practice. In this study, we employed differential centrifugation and
ANX beads methods to concentrate EVs from culture media and human plasma. The size
and RNA content of the EVs were analyzed and compared. Then we applied the ANX bead
method to collect exRNA and checked the diagnostic value of different RNA species in
lung cancer.

2. Materials and Methods
2.1. Preparation of ANX Beads

The preparation of ANX beads has been described elsewhere [31]. Briefly, a human
annexin A5 gene with a His-tag was cloned and expressed in Escherichia coli. An aliquot of
bacterial lysate was mixed with MagneHis Ni (Promega, Madison, WI, USA) particles in a
binding buffer containing 100 mM HEPES (pH 7.5), 10 mM imidazole, and 300 mM NaCl
for 1 h at 4 ◦C to allow for an association between the annexin A5 protein and the magnetic
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beads through His-tag. The beads were washed with and stored in the binding buffer for
subsequent use.

2.2. Preparation of EVs from Cultured Cells

EVs may be secreted by living cells or shed from the bleb of apoptotic cells. We gener-
ated these two populations of EVs from cultured cells. H1299 human NSCLC cells were
fed with RPMI1640 medium supplemented with 10% (v/v) fetal bovine serum, 100 U/mL
penicillin/streptomycin, and 0.03% L-glutamate (Thermo Fisher Scientific, Waltham, MA,
USA) and maintained at 37 ◦C and 5% CO2 in a humidified incubator. The cells were grown
in T25 flasks until reaching a number around 1 × 106 cells. To prepare EVs from living
cells, the growth medium was replaced with fresh serum-free RPMI1640 medium for 24 h
and the cell-free culture medium was collected. To prepare EVs from apoptotic cells, the
medium was replaced with fresh RPMI1640 medium containing 5 µg/mL camptothecin
(Sigma-Aldrich, St. Louis, MO, USA) and 3 µg/mL 5-fluorouracil (Sigma-Aldrich). After
two days, the supernatant of the medium was collected. The quantities of EVs were ex-
pressed by their protein content, which was determined with a Bio-Rad Dc protein assay
(Bio-Rad Laboratories, Hercules, CA, USA) after the lysis of the EVs with Tris buffered
saline (pH 8.0) containing 1% NP-40 (Sigma-Aldrich).

2.3. Differential Centrifugation

Different sized EVs were separated with a two-step centrifugation protocol [32]: 500 µL
culture mediums or plasma were centrifuged at 4 ◦C for 20 min at 16,000× g to separate
pellet (DCF1) and supernatant. The supernatant was transferred to a new tube and centrifu-
gated for a second time at 120,000× g for 70 min. The second pellet (DCF2) and supernatant
(DCF3) were collected. Before further analysis, the DCF1 and DCF2 were resuspended in
phosphate-buffered saline (PBS).

2.4. Capture of EVs by ANX Beads

A 500-µL aliquot of the medium with EVs was mixed with 500 µL Ca-HEPES buffer
(containing 10 mM HEPES, pH 7.5; 1 mM MgCl2; 5 mM KCl; 2% BSA; 15 mM CaCl2; and
150 mM NaCl) and ANX beads. The mixture was gently agitated on a rotator for 15 min at
4 ◦C and then incubated without agitating for 30 min at room temperature to capture EVs.
The EV–bead complexes were then pulled down by a magnetic stand and the supernatant
was removed. The beads were washed twice and resuspended with 500 µL Ca-HEPES
buffer [31].

2.5. Nanoparticle Tracking Analysis (NTA)

The pellets collected from differential centrifugation (DCF1 and DCF2) were resuspend
with 500 µL PBS. ANX beads concentrated EVs were eluted by 500 µL EDTA elution
buffer. Nanoparticle tracking analysis was performed with a NanoSight NS300 (Malvern
Panalytical, Malvern, UK) equipped with a 488 nm laser to measure the number and size
distribution of the EVs. Video capture was performed at camera level 15, slider shutter
1206, slider gain 366 for 60 s intervals. A total of 1498 captures were taken for each sample
3 times. Samples were analyzed with appropriate threshold setting. Video capture and
analysis was carried out using NanoSight NTA software 3.4 (Malvern Panalytical).

2.6. RNA Processing and Analysis

Total nucleic acid was extracted using LabTurbo Viral Nucleic Acid Extraction kits
(Labturbo Biotech, Taipei, Taiwan) from a 300 µL culture medium or plasma sample. The
samples were mixed with a 300 µL lysis buffer and 30 µL proteinase K, then incubated at
56 ◦C for 10 min and processed on an automatic LabTurbo 24/48 Compact System (Labturbo
Biotech). This method generated 60 µL of purified nucleic acid solution. Total RNA concen-
tration was measured using Qubit RNA HS Assay Kits on a Qubit 4.0 Fluorometer (Thermo
Fisher Scientific). Specific RNAs were measured by reverse transcription-quantitative
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polymerase chain reaction (RT-qPCR), using commercial kits from Thermo Fisher Scientific.
For mRNA and lncRNA, random hexamers were used as reverse transcription (RT) primers.
For miRNA, gene-specific loop primers were used as RT primers. RNA was converted into
cDNA using SuperScript III First Strand Synthesis Supermix (Thermo Fisher Scientific). The
cDNA was amplified with target-specific primers and probes using TaqMan Gene Expres-
sion Assays (Thermo Fisher Scientific), performed on a QuantStudio 12K Flex Real-Time
PCR System (Thermo Fisher Scientific). The TaqMan Gene Expression Assays included
CK19 (Hs00761767_s1), PCTK1 (Hs00178837_m1), MALAT-1 (Hs00273907_s1), GAPDH
(Hs002786624_g1), and β2M (Hs00984230_m1). The TaqMan MiRNA Assay included miR21
(467534_mat) and miR155 (000397). After RT-qPCR, the threshold cycle (Ct) was obtained
for each reaction and was used to estimate gene expression level. For the experiments with
multiple measurements, a batch of standard RNA from cultured cells was subjected to each
assay and its Ct value was used to normalize the measurement. The RNA level of each
gene was thus expressed as delta Ct, in which delta Ct = Ctstandard − Ctgene.

2.7. Patients and Clinical Samples

Twenty healthy volunteers and 22 NSCLC patients were recruited at Chang Gung
Memorial Hospital, Taiwan. This study was approved by the Institute Review Board
of Chang Gung Memorial Hospital (approval number 201801557B0). Peripheral blood
from the healthy volunteers and the patients was collected in tubes containing EDTA as
anticoagulants. Blood samples were centrifuged at 530× g for 10 min to separate plasma.
An aliquot of 500-µL plasma was mixed with 500 µL Ca-HEPES buffer and ANX beads.
The mixture was gently agitated on a rotator for 15 min at 4 ◦C, and then incubated without
agitating for 30 min at room temperature to capture EVs. The EV–bead complexes were
then pulled down by a magnetic stand and the supernatant was removed. The beads were
washed twice with a 1 mL Ca-HEPES buffer and resuspended in a 300 µL LabTurbo lysis
buffer and 30 µL proteinase K, then incubated in 56 ◦C for 10 min. RNA in the sample was
extracted on the automatic LabTurbo 24/48 Compact System. Total RNA concentration
was measured using a Qubit Fluorometer and specific RNAs were measured by RT-qPCR,
as described in Section 2.6.

2.8. Statistical Analysis

Student’s t-test was used for statistical analysis. Results were considered significant at
p < 0.05. The receiver operating characteristic curve was made using SigmaPlot 10 Software.

3. Results
3.1. Collection and Characterization of EVs Separated by Differential Centrifugation

EVs may be secreted by living cells or shed from bleb of apoptotic cells. We first
generated these two populations of EVs by collecting the culture medium with living
cells or the medium with apoptotic cells. Then we applied differential centrifugation
to fractionate the media using a two-step protocol: a first centrifugation at 16,000× g
for 20 min, followed by a second ultra-speed centrifugation at 120,000× g for 70 min.
This protocol divided EVs into three fractions. The pellet of the first centrifugation was
designated as DCF1, which was expected to consist mostly of larger particles; the pellet
of the second centrifugation was designated as DCF2, which was expected to contain
smaller particles; and the supernatant of the second centrifugation was designated as DCF3,
which was expected to consist of soluble molecules, very small EVs, or nonmembrane
particles like protein aggregates or protein-RNA complexes. Then we applied nanoparticle
tracking analysis (NTA) to measure the number and size of EVs in these fractions. The
results showed that in the medium with living cells, the most abundant particles were small
particles that exist in DCF2, whereas in the medium with apoptotic cells, the most abundant
particles were large particles that exist in DCF1 (Table 1). The NTA profiles confirmed this
observation and showed the tendency of particle size: DCF1 > DCF2 > DCF3 (Figure 1).
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The majority of EVs in DCF1 were particles larger than 100 nm in diameter, whereas those
in DCF2 and DCF3 were particles smaller than 100 nm in diameter (Table 1 and Figure 1).

Table 1. The concentration and size distribution of particles fractionated by differential centrifugation
or captured by ANX beads.

No. of Particles
(×108/mL)

Small Particles
(<100 nm) (%)

Large Particles
(>100 nm) (%)

Living-cell medium
DCF1 2.46 34.1 65.9
DCF2 5.46 66.2 33.8
DCF3 0.21 64.5 35.5

ANX-beads 4.96 23.1 76.9

Apoptotic-cell medium
DCF1 2.11 21.5 78.5
DCF2 0.123 54.4 45.6
DCF3 0.0257 77.7 22.3

ANX beads 2.64 43.0 57.0

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 5 
 

 

protein aggregates or protein-RNA complexes. Then we applied nanoparticle tracking 
analysis (NTA) to measure the number and size of EVs in these fractions. The results 
showed that in the medium with living cells, the most abundant particles were small par-
ticles that exist in DCF2, whereas in the medium with apoptotic cells, the most abundant 
particles were large particles that exist in DCF1 (Table 1). The NTA profiles confirmed this 
observation and showed the tendency of particle size: DCF1 > DCF2 > DCF3 (Figure 1). 
The majority of EVs in DCF1 were particles larger than 100 nm in diameter, whereas those 
in DCF2 and DCF3 were particles smaller than 100 nm in diameter (Table 1 and Figure 1).  

Table 1. The concentration and size distribution of particles fractionated by differential centrifuga-
tion or captured by ANX beads. 

 No. of Particles 
(×108/mL) 

Small Particles  
(<100 nm) (%) 

Large Particles  
(>100 nm) (%) 

Living-cell medium    

DCF1 2.46 34.1 65.9 
DCF2 5.46 66.2 33.8 
DCF3 0.21 64.5 35.5 

ANX-beads 4.96 23.1 76.9 
Apoptotic-cell medium    

DCF1 2.11 21.5 78.5 
DCF2 0.123 54.4 45.6 
DCF3 0.0257 77.7 22.3 

ANX beads 2.64 43.0 57.0 

 
Figure 1. The particle size profiles of different differential centrifugation fractions of EVs from the 
medium with apoptotic cells (A–C) and that with living cells (D–F). DCF1, DCF2, and DCF3 were 

A.

C.

B. E.

D.

DCF2 DCF2

DCF1DCF1

F.

0

0.5

1

1.5

2

0 100 200 300 400

P
e
rc
e
n
ta
g
e

0

1

2

3

4

5

0 100 200 300 400

P
e
rc
e
n
ta
g
e

0

5

10

15

0 100 200 300 400

P
e
rc
e
n
ta
g
e

0

0.5

1

1.5

2

0 100 200 300 400

P
e
rc
e
n
ta
g
e

0

0.5

1

1.5

2

0 100 200 300 400

P
e
rc
e
n
ta
g
e

0

1

2

3

4

0 100 200 300 400

P
e
rc
e
n
ta
g
e

Apoptotic cell medium Living cell medium

Size (nm ) Size (nm )

Size (nm ) Size (nm )

Size (nm ) Size (nm )

DCF3 DCF3

Figure 1. The particle size profiles of different differential centrifugation fractions of EVs from
the medium with apoptotic cells (A–C) and that with living cells (D–F). DCF1, DCF2, and DCF3
were three fractions of the media derived from two-step centrifugation, as described in Materials
and Methods.

3.2. Different RNA Species Distributed in Different Differential Centrifugation Fractions

One of the purposes of the present study was to understand the distribution of different
RNA species in different differential centrifugation fractions; we selected five RNA biomark-
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ers from three RNA species as targets for this purpose. These RNA biomarkers have been
reported to be associated with lung cancer, including CK19 and PCTK1 mRNAs [31,33,34],
MALAT1 lncRNA [35,36], and miR21 and miR155 miRNAs [37–40]. The different differ-
ential centrifugation fractions from the medium with living cells was subjected to RNA
extraction and RNA quantification. The levels of different RNA species were measured by
reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results showed
that DCF1 and DCF2 contained higher concentration of total RNA than DCF3 (Figure 2A).
The majority of the two mRNAs and the lncRNA distributed mainly in DCF1, lesser in
DCF2, and almost none in DCF3 (Figure 2B–D). In contrast, the two miRNAs distributed
more evenly, i.e., they were in similar levels in DCF1, DCF2, and DCF3 (Figure 2E,F). These
results indicated that the mRNAs and the lncRNA were allocated mainly in larger particles,
whereas the mi-RNAs exist in all differential centrifugation fractions.
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Figure 2. RNA contents in different DC fractions of EVs from medium with living cells. DCF1, DCF2,
and DCF3 were three fractions of the media derived from two-step centrifugation, as described in
Materials and Methods. RNA was purified from the fractions and its concentration was determined
by a Qubit fluorometer (A). The levels of different RNA species were measured by RT-qPCR. These
RNA species included mRNAs of CK19 and PCTK1 (B,C, respectively), lncRNA of MALAT1 (D), and
miRNAs of miR21 and miR155 (E,F, respectively). All the measurements were performed in triplicate
and the bars are shown as mean ± standard error.

3.3. ANX Beads Captured Different Sized EVs

We have previously shown that ANX beads could capture EVs from conditioned
medium and human plasma [31]. In the present study, we further characterized the
captured EVs from media with living cells and media with apoptotic cells. The media
were first mixed with ANX beads to let EVs be captured, and then the captured EVs were
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eluted and analyzed by NTA. The results showed that the ANX beads could capture large
(>100 nm) and small (<100 nm) particles (Table 1). From either the medium with apoptotic
cells or that with living cells, the size profile of the captured EVs were similar to that in
the media (Figure 3). The NTA data showed that the size of ANX bead-captured EVs
ranged from 19.5 to 571.5 nm in apoptotic cell medium and from 45.5 to 653.5 nm in living
cell medium. This fact suggested that these different sized EVs can associate with the
ANX beads.

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 7 
 

 

3.3. ANX Beads Captured Different Sized EVs 
We have previously shown that ANX beads could capture EVs from conditioned me-

dium and human plasma [31]. In the present study, we further characterized the captured 
EVs from media with living cells and media with apoptotic cells. The media were first 
mixed with ANX beads to let EVs be captured, and then the captured EVs were eluted 
and analyzed by NTA. The results showed that the ANX beads could capture large (>100 
nm) and small (<100 nm) particles (Table 1). From either the medium with apoptotic cells 
or that with living cells, the size profile of the captured EVs were similar to that in the 
media (Figure 3). The NTA data showed that the size of ANX bead-captured EVs ranged 
from 19.5 to 571.5 nm in apoptotic cell medium and from 45.5 to 653.5 nm in living cell 
medium. This fact suggested that these different sized EVs can associate with the ANX 
beads.  

 
Figure 3. Comparison of particle size profile of the EVs in medium and that captured by ANX beads. 
The EVs in cultured medium with apoptotic cells (A) and living cells (B) were either analyzed di-
rectly by nanoparticle tracking analysis (NTA) or captured with ANX beads, eluted, and analyzed 
by NTA. 

3.4. ANX Beads Recovered RNA from Medium and Human Plasma  
We then compared the recovery of RNA extracted from the ANX bead-captured EVs 

and that extracted directly from the cultured medium with living cells. The results showed 
that after ANX bead capturing, the measured total RNA concentration was higher than 
that from direct purification (Figure 4A). However, the levels of mRNA, lncRNA, and 
miRNA were similar when using both methods (Figure 4B–F). Only CK19 mRNA was 
slightly higher in the ANX bead method (Figure 4B). Then the comparison was applied in 
human plasma samples. RNA from plasma was either extracted from the ANX bead-cap-
tured EVs or extracted directly from plasma. The results showed that the measured total 
RNA concentration was significantly higher than that from direct purification (Figure 5A). 
All the levels of different RNA species were also higher when using the ANX bead method 
except miR155 (Figure 5B–F). These results indicated that the ANX beads could efficiently 
recover exRNA from cultured medium and plasma samples. The reason why the ANX 
bead method seemed to have higher efficiency for recovering RNA will be discussed be-
low. 

Figure 3. Comparison of particle size profile of the EVs in medium and that captured by ANX beads.
The EVs in cultured medium with apoptotic cells (A) and living cells (B) were either analyzed directly
by nanoparticle tracking analysis (NTA) or captured with ANX beads, eluted, and analyzed by NTA.

3.4. ANX Beads Recovered RNA from Medium and Human Plasma

We then compared the recovery of RNA extracted from the ANX bead-captured EVs
and that extracted directly from the cultured medium with living cells. The results showed
that after ANX bead capturing, the measured total RNA concentration was higher than that
from direct purification (Figure 4A). However, the levels of mRNA, lncRNA, and miRNA
were similar when using both methods (Figure 4B–F). Only CK19 mRNA was slightly
higher in the ANX bead method (Figure 4B). Then the comparison was applied in human
plasma samples. RNA from plasma was either extracted from the ANX bead-captured
EVs or extracted directly from plasma. The results showed that the measured total RNA
concentration was significantly higher than that from direct purification (Figure 5A). All
the levels of different RNA species were also higher when using the ANX bead method
except miR155 (Figure 5B–F). These results indicated that the ANX beads could efficiently
recover exRNA from cultured medium and plasma samples. The reason why the ANX
bead method seemed to have higher efficiency for recovering RNA will be discussed below.

3.5. Applying ANX Bead-Captured EV for Diagnosis of Lung Cancer

We then investigated whether the circulating exRNA could be used as cancer mark-
ers. Plasma samples from 22 non-small-cell lung cancer (NSCLC) patients and 20 age-
matched healthy controls were collected for the study. RNA from the samples were
extracted by ANX beads or directly from plasma. Five RNAs (CK19 mRNA, PCTK1
mRNA, MALAT1 lncRNA, miR155 miRNA, and miR21 miRNA) were determined by
RT-qPCR. When using the RNA from ANX bead-captured EV, three RNAs had significantly
higher levels in NSCLC patients then in healthy controls and showed good diagnos-
tic value in the receiver operating characteristic (ROC) curve. They were CK19 mRNA
(Figure 6A,D), MALAT1 lncRNA (Figure 6B,E), and miR155 miRNA (Figure 6C,F). The
levels of PCTK1 mRNA and miR21 miRNA showed no difference between the two groups
(Supplementary Figure S1). When using RNA directly extracted from plasma, the levels of
four RNAs showed no differences between the two groups. Only miR155 had a better di-
agnostic value (Supplementary Figure S2). These facts suggested that the three circulating
RNAs, CK19, MALAT1, and miR155 could be promising diagnostic markers for NSCLC
when using ANX beads for EV capturing and RNA purification.
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Figure 4. ANX beads could recover RNA from cultured medium. The media with living cells
were either subjected to RNA extraction directly or first mixed with ANX beads to capture EVs
and then subjected to RNA extraction. Total RNA concentration was determined by a fluorometer
(A). The levels of different RNA species were measured by RT-qPCR. These RNA species included
mRNAs-CK19 and PCTK1 (B,C, respectively), lncRNA-MALAT1 (D), and miRNAs-miR21 and
miR155 (E,F, respectively). All the measurements were performed in triplicate and the bars are shown
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Figure 5. ANX beads increased exRNA recovery from plasma samples. The plasma samples (n = 50)
were either subjected to RNA extraction directly or first mixed with ANX beads to capture EVs and
then subjected to RNA extraction. Total RNA concentration was determined by a fluorometer (A). The
levels of different RNA species were measured by RT-qPCR. These RNA species included mRNAs-
CK19 and PCTK1 (B,C, respectively), lncRNA-MALAT1 (D), and miRNAs-miR21 and miR155 (E,F,
respectively). Student’s t-test was used for statistical analysis. Results were considered significant at
p < 0.05. *** p < 0.001.
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Figure 6. The diagnostic performance of circulating CK19 (A,D), MALAT1 (B,E) and miR155 (C,F)
RNA for NSCLC using ANX beads. Plasma samples from NSCLC patients (n = 22) and healthy
controls (n = 20) were subjected to RNA purification with ANX beads and RNA quantification with
RT-qPCR. The diagram shows the distribution of the RNA levels of different groups (A–C) and their
receiver operating characteristic curves (D–F). *** p < 0.001.

4. Discussion

In this study, we used differential centrifugation to separate EV fractions from cultured
medium and measured three RNA species in these EVs. The differential centrifugation
divided the EVs into three fractions, DCF1, DCF2, and DCF3. We found that in the three
fractions, the majority of mRNA and lncRNA existed in DCF1 and DCF2, which contained
mostly large and medium EVs, but not in DCF3, which contained very small particles
or soluble molecules. However, miRNA could be detected in all three fractions. We also
found that the ANX beads, which captured EVs with PS in the outer membrane, was able
collect large and small EVs and detected the three RNA species in them. By using the ANX
beads, we were able measure differential expression of CK19 mRNA, MALAT1 lncRNA,
and miR155 miRNA in the plasma of NSCLC patients.

According to the size distribution of the three fractions (Table 1 and Figure 1), DCF1
contained most particles with sizes larger than 100 nm. Cell debris, apoptotic bodies, or
microvesicles fall into this range. DCF2 contained particles with sizes around 100 nm.
Microvesicles and exosomes are of this size. DCF3 contained particles with sizes much
smaller than 100 nm. ExRNA in this fraction may be located in very tiny vesicles or
associated with protein or lipid. Although we did not further classify specific types of EVs,
the result that the majority of mRNA and lncRNA existed in DCF1 and DCF2 indicates the
two RNA species existed mainly in large EVs but not in tiny EVs or protein-RNA or lipid-
RNA complexes. This fact also suggests that procedures using intensive centrifugation or



Curr. Issues Mol. Biol. 2022, 44 2384

filtration may cause the loss of most mRNA and lncRNA and may not be suitable for the
detection of these two RNA species.

In contrast to mRNA and lncRNA, miRNA existed in all the fractions, including DCF3.
DCF3 contained soluble molecules and tiny particles that could not be pelleted by the
ultra-speed centrifugation. These tiny particles may include very small EVs or aggregation
of macromolecules. Some reports showed that miRNA can form protein-RNA complexes
or lipid-RNA complexes in cultured medium or body fluids [8,41], which is consistent with
our findings. The fact that miRNA can be detected in large EVs, small EVs, and molecular
aggregations indicates that miRNA is a relatively abundant RNA species and exists in
different conformations, which makes miRNA a good source of exRNA as a liquid biopsy.
However, diseases may only change distribution of miRNA in certain types of EVs and
choosing particular types of EVs may be important for the diagnostic purpose of miRNA.

In Figures 4 and 5, the measured total RNA concentration was higher when using
the ANX bead method than that of direct purification. This might be because the steps of
EV capturing and washing in the ANX bead method efficiently removed some impurities
which could not have been removed by the direct purification method. The impurities
interfered with the measurement of RNA by the Qubit fluorescent method, resulting in a
lower reading and underestimated concentration. The impurities seemed to not be an issue
in the cultured medium, as the RT-qPCR detected similar levels of different RNA species
extracted by both the ANX bead method and the direct purification method. However, in
plasma samples, the existence of impurities was a more severe issue as the measured total
RNA concentration and the levels of different RNA species were much higher when using
the ANX bead method than when using direct purification method. These facts suggest
that using ANX beads to capture EVs before RNA purification is a better procedure to
detect circulating exRNA in plasma samples.

To our knowledge, we are the first to apply ANX beads in EV collection and exRNA
detection in the blood of lung cancer patients. In addition to the removal of possible
impurities, ANX beads provide many other advantageous features: Firstly, they can capture
different types of EVs with PS expressed on the outer membrane. Secondly, ANX beads can
concentrate EVs from large amounts of liquid biopsy. Thirdly, the procedure using magnetic
beads can be easily incorporated into an all-in-one device for automatic EV capturing, RNA
extraction, and quantitative PCR. In the future, exRNA biomarkers found in the present
study have the potential to be combined with a biosensor to develop an inexpensive,
point-of-care testing method, as is seen in the example of survivin mRNA [42,43]. We
suggest that the ANX beads can be a powerful tool for circulating exRNA purification and
disease detection.

5. Conclusions

Circulating exRNA has potential diagnostic value. However, different RNA species
exist in different EVs and choosing suitable collection methods can be crucial for detecting
certain types of RNA. The ANX bead method is an efficient tool for collecting EVs and their
RNA contents from plasma samples and may be applied in the diagnosis of NSCLC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cimb44050162/s1, Supplementary Figure S1: When using ANX beads for RNA purification
from plasma samples, the ROC curves of PCTK1 mRNA (A) and miR21 miRNA (B) showed no
promising diagnostic value in 22 NSCLC patients and 20 healthy controls. Supplementary Figure S2:
When using RNA directly purified from plasma samples, the ROC curves of all five RNA markers
showed no promising diagnostic value in 22 NSCLC patients and 20 healthy controls.
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