Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

AMB ALGORITHMS FOR

Reconciling taxonomy and phylogenetic
inference: formalism and algorithms for
describing discord and inferring taxonomic roots

Frederick A Matsen™ and Aaron Gallagher

Abstract

Background: Although taxonomy is often used informally to evaluate the results of phylogenetic inference and
the root of phylogenetic trees, algorithmic methods to do so are lacking.

Results: In this paper we formalize these procedures and develop algorithms to solve the relevant problems. In

particular, we introduce a new algorithm that solves a “subcoloring” problem to express the difference between a
taxonomy and a phylogeny at a given rank. This algorithm improves upon the current best algorithm in terms of
asymptotic complexity for the parameter regime of interest; we also describe a branch-and-bound algorithm that

MOLECULAR BIOLOGY

saves orders of magnitude in computation on real data sets. We also develop a formalism and an algorithm for

rooting phylogenetic trees according to a taxonomy.

Conclusions: The algorithms in this paper, and the associated freely-available software, will help biologists better
use and understand taxonomically labeled phylogenetic trees.

Keywords: phylogenetics, taxononomy, dynamic program, branch and bound, convex coloring, algorithms

Background

Since the beginnings of phylogenetics, researchers have
used a combination of phylogenetic inference and taxo-
nomic knowledge to understand evolutionary relation-
ships. Taxonomic classifications are often used to
diagnose problems with phylogenetic inferences, and
conversely, phylogeny is used to bring taxonomies up to
date with recent inferences and to find misclassified
sequences. Similarly, biologists often evaluate a putative
“root” of a phylogenetic tree by looking at the taxo-
nomic classifications of the subtrees branching off that
node.

Despite the long history of interaction between phylo-
geny and taxonomy, automated tools for the automated
curation of taxonomies have only recently been devel-
oped. In 2007, Dalevi et. al. [1] released the GRUNT tool
to refine existing taxonomic classifications and propose
novel ones. This was followed just recently by McDonald
et. al. [2], who developed the tax2tree tool to update
taxonomies based on a measure of precision and recall

* Correspondence: matsen@fhcrc.org
Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

( BioMVed Central

for classifications. These tools aim to update taxonomies
to be closer to phylogenetic inferences.

In this paper we approach the commonly encountered
simpler problem of a researcher inferring a phylogenetic
tree and wishing to understand the level of agreement of
that tree with a taxonomy at various ranks and wishing to
root the tree taxonomically. We state the agreement pro-
blem between a taxonomy and a phylogeny in terms of an
“subcoloring” problem previously described in the compu-
ter science literature [3,4]. As described below, we make
algorithmic improvements over previous work in the rele-
vant parameter regime and present the first computer
implementation to solve the subcoloring problem. Our
choice of algorithms is guided by the parameter regime of
relevance for modern molecular phylogenetics on marker
genes: that of large bifurcating trees and a limited amount
of discord with a taxonomy. For rooting, we show that the
“obvious” definition has major defects when there is dis-
cordance between a phylogeny and a taxonomy at the
highest multiply-occupied taxonomic rank. We then pre-
sent a more robust alternative definition and algorithms
that can quickly find a taxonomically-defined root.

© 2012 Matsen and Gallagher; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:matsen@fhcrc.org
http://creativecommons.org/licenses/by/2.0

Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

We emphasize that our work is in describing discor-
dance between a taxonomy and a phylogeny and perform-
ing taxonomic rooting rather than updating taxonomies,
in contrast to the work described above. However, our
approach to expressing discord between a taxonomy and a
phylogeny can be used to suggest that certain sequences
are misclassified; we will explore this direction in future
work.

Expressing the differences between a taxonomy
and a phylogeny

Informal introduction

In this paper we will consider agreement with a taxonomy
one taxonomic rank at a time, in order to separate out the
different factors that can lead to discord between taxon-
omy and phylogeny. These factors include phylogenetic
methodology problems, out of date taxonomic hierarchies,
and mislabeling. Various such factors lead to discordance
at distinct ranks. For example, we have observed rampant
mislabeling at the species level in public databases,
whereas higher-level assignments are typically more accu-
rate. Phylogenetic signal saturation or model mis-specifi-
cation problems can lead to an incorrect branching
pattern near the root of the tree at the higher taxonomic
levels, although the genus-level reconstructions can be
correct.

An alternative to considering agreement one rank at a
time would be to look for the largest set of taxa for which
the induced taxonomy and phylogenetic tree agree on all
levels. Agreement between taxonomy and phylogeny at all
taxonomic ranks simultaneously is equivalent to requiring
complete agreement of a phylogeny and a taxonomic tree.
Finding a subset of leaves on which two trees agree is
known as the Maximum Compatible Subtree (MCST)
problem, known to be polynomial for trees of bounded
degree and NP-hard otherwise [5]. Although such a solu-
tion is useful information, we have pursued a rank-by-
rank approach here for the reasons described above.

We formalize the agreement of a taxonomy with a phy-
logeny on a rank-by-rank basis in terms of convex color-
ings [3,4]. Informally, a convex coloring is an assignment
of the leaves of a tree to elements of a set called “colors”
such that the induced subtrees for each color are disjoint.
In this paper we will say that a phylogeny agrees with
taxonomic classifications at taxonomic rank r if the taxo-
nomic classifications at rank r induce a convex coloring
of the tree. For example, in Figure 1 the tree is not con-
vex at the species rank due to nonconvexity between spe-
cies s; and s,, although it is convex at the genus rank, as
the g; and g, genera fall into distinct clades. In terms of
the convex coloring definition, there is nontrivial overlap
between the induced trees on s; and s,.

We will express the level of agreement between a tax-
onomy and a phylogeny at a rank r in terms of the size

Page 2 of 11

$1 So S1 S2
l | | |
g1 do

Figure 1 Coloring and taxonomic assignments. A taxonomically
labeled phylogenetic tree that is concordant with the genus level
taxonomic assignments g; but not the species taxonomic
assignments ;.

of a maximal convex subcoloring. Given an arbitrary leaf
coloring, a subcoloring is a coloring of some subset of
the leaves S of the tree that agrees with the original col-
oring on the set S. The maximal convex subcoloring is
the convex subcoloring of maximal cardinality. For a
tree that is taxonomically labeled at the tips, the discord
at rank r is defined to be the size of the maximal convex
subcoloring when the leaves are colored according to
the taxonomic classifications at rank r.

Our algorithmic contributions result in efficient algo-
rithms for the convex subcoloring problem in the para-
meter regime of interest: a limited amount of discord for
large trees. First, by developing an algorithm that only
investigates removing colors when such a removal could
make a difference, we show that the maximal convex sub-
coloring problem can be solved in a number of steps that
scales in terms of a local measure of nonconvexity rather
than the total number of nonconvex colors. Second, we
implement a branch and bound algorithm that terminates
exploration early; this algorithm makes orders of magni-
tude improvement in run times for difficult problems.

Before proceeding on to outline how the algorithm
works, note that the original definition of convexity is
not the only way to formalize the agreement with a tax-
onomy at a given rank: a stronger way of defining con-
vexity is possible (Figure 2). In this “strong” version,
colors must sit in disjoint rooted subtrees rather than
just in disjoint induced subtrees. The algorithmic solu-
tion for this stronger version will be a special case of
the previous one as described below. It may be of more
limited use for two reasons. First, it depends on the
position of the root: a tree that is strongly convex with
one rooting may not be so in another. Also, it is not
uncommon for phylogenetic algorithms to return a tree
like in Figure 2(ii) although Figure 2(i) may actually be



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

() P

a a b b
a a

Figure 2 An alternative definition of convexity. Example colored
trees showing the (i) original and (ii) strong definition of convexity,
assuming a and b don't appear elsewhere in the tree. In this figure,
(i) and (ii) are convex according to the original definition, but only
(i) is convex according to the strong definition.

the correct tree; thus an algorithm that threw out all
leaves except those that are convex in the strong sense
might be overly strict.

The tree in Figure 3 serves to explain why the pro-
blem is combinatorially complex and motivates a

b,Cc
a,b,d

Figure 3 Recursion example. A possible scenario encountered by
the subcoloring recursion. The letters a, b, ¢ and d represent the
presence of leaves with those taxonomic labels; asssume these
taxonomic labels do not occur elsewhere in the tree. The positions
of colors b and ¢ shows that this coloring is not convex, and a
recursive subcoloring algorithm must decide at x in which subtrees
to allow the b and c colors.

Page 3 of 11

recursive solution. The idea of this solution is to recur-
sively descend through subtrees, starting at the root. Say
this recursion has descended to an internal node x, and
there are nodes of the color ¢ somewhere above x. If the
set of leaf colors in the subtree T, is {b, ¢} and if the set
of leaf colors in the subtree T, is {a, b, d}, then some
removal of colors is needed due to nonconvexity
between the b and c colors. Assuming the leaf colors
above x are fixed, the choices are to uncolor the ¢ nodes
in T, or the b nodes in either T, or T,.

One can think of “allocating” the cut colors to the
subtrees: the possible choices are to allocate ¢ to 77 but
choose one of T} or T, to have b, or to disallow ¢ in T}
and allow b in both T} and T5,. Here and in general, the
crux of devising an efficient recursion is to efficiently
decide which colors get allocated to which subtrees.
Convexity can be insured by explicitly choosing a color
for each internal node, and making sure that the color
allocations respect those internal node choices in terms
of convexity.

In fact, selecting these color allocations is the only
problem, as a complete set of color allocations is trivi-
ally equivalent to a choice of coloring. Indeed, given an
optimal color allocation for each internal node, one can
simply look at the allocations for the internal nodes just
above the leaves to decide whether those leaves get
uncolored or not. Conversely, given a leaf coloring, one
can simply look at the color set of the descendants of
that internal node to get the set of colors allocated to
the subtrees.

In deciding the color allocations, we can restrict our
serious attention to colors that are present on either
side of an edge, such as b and ¢ on either side of the
edge directly above the root of T in Figure 3. We will
say that these colors are cut by the edge. Colors that are
not cut by an edge should not require any decision
making when the recursive algorithm is visiting the
node just above that edge. However, doing the account-
ing is not completely straightforward: of the cut colors,
one might only allocate b to 75, but a and d can be
used as well. Thus, allocations including some colors
not cut by the current edge must be considered, moti-
vating the definition of the colors in play (Definition
10). The colors in play for an internal node are those
colors cut by edges directly below that node that are
available for allocation to the trees below that internal
node.

Note that the ingredients of the decision being made
in Figure 3 are the color specified by the coloring just
above x (in this case fixed to be c), and the colors avail-
able in the subtrees below x. Given a set of colors to
allocate to the leaves below x, the algorithm needs to
decide how to allocate the possible colors to 77 and T5.
One way of doing that is to test every possible allocation



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

using the results of the recursion for below subtrees and
score them in terms of the size of the corresponding
subcoloring. Doing this with an awareness of the cut
colors leads to an algorithm expressed in terms of the
maximum number of colors cut by a given edge.

However, building such a comprehensive optimality
map is not necessary. By simply counting the number of
leaves of each color below x, one can get upper bounds
on the sizes of the corresponding subcolorings and only
evaluate those that have the potential to be worth
exploring. This observation is the basis of the branch
and bound algorithm (Algorithm 1).

Definitions and algorithms

A rooted subtree is a subtree that can be obtained from
a rooted tree T by removing an edge of 7 and taking
the component that does not contain the original root
of T. The proximal direction in a rooted tree is towards
the root, while the distal direction is away from the
root. Given a tree T, let N(T), E(T), and L(T) denote
the nodes, edges, and leaves of 7. Given a set U, let il
denote the set of subsets of U. If the input tree to the
algorithm is not rooted, root it arbitrarily. Following the
terminology of [3,4], a color set will be an arbitrary finite
set, always denoted in this paper by the letter C.

Definition 1. Let T be a rooted tree, and let F € L (T).
A leaf coloring is a map y: F — C.

A color ¢ is cut by an edge e if there is at least one
leaf of color ¢ on either side of e. A multicoloring is
defined to be a map from the edges of the tree to sub-
sets of the colors.

Definition 2. Given a coloring y on a rooted tree T,
the induced multicoloring for y is the map
% E(T) — 2Csuch that % (e) is the (possibly empty)
set of colors cut by that edge.

Definition 3. Define the badness 8 of a coloring y to
be maxecrT) |X (€)|. We say that a coloring is convex if
it has badness equal to zero or one.

Definition 4. The total number of bad colors of a col-
oring y is T = |Ueeg X (e)|where £ is the set of edges
where |x (e)| > 2.

Definition 5. A subcoloring of a leaf coloring y: F — C
is a coloring y: G — C with G € F such that )’ agrees
with ) on the domain of ).

Subcolorings are partially ordered by inclusion of
domains; the size of a subcoloring is defined to be the
size of its domain.

Problem 1 (Moran and Snir [3,4]). Given a leaf color-
ing x on a tree T, find a largest convex subcoloring.
Previous work and motivation for present algorithm
The foundational work in this area was done by Moran
and Snir [3,4]. Their work is phrased in terms of “convex

Page 4 of 11

recoloring,” i.e. finding the minimal number of changes
in a coloring in order to obtain one that is convex.

It suffices to consider subcolorings for the case of leaf
colorings. Indeed, any recoloring can be turned into a
subcoloring by removing the color of all of the leaves
that get recolored. Conversely, any convex subcoloring
can be turned into a convex recoloring in linear time [6].
For internal nodes, the color to be used for a given inter-
nal node is given by the definition of convex coloring.
For leaf nodes, simply take the color of the closest
colored node. In this equivalence, the number of leaves
whose color is removed is equal to the number of leaves
who get recolored; thus a minimal recoloring is equiva-
lent to a maximal subcoloring. Because of this equiva-
lence, we only consider subcolorings in this paper.

In [4], Moran and Snir investigate both the general case
of leaf colorings as well as the case of colorings including
internal nodes. They also consider non-uniform recolor-
ing cost functions, where a “cost” is associated with reco-
loring individual nodes and the goal is to find a convex
recoloring minimizing total cost. In all settings, they
demonstrate that the relevant recoloring problem is NP-
hard. They also demonstrate fixed parameter tractablity
(EPT) of the problems as described in the next paragraph.
In [3] they present, among other results, a 3-approxima-
tion for tree recoloring.

The FPT bound for leaf coloring an # taxon tree from
[4], O(n* 7 Bell(z)), comes from an elegant argument using
the Hungarian algorithm for maximum weight perfect
matching on a bipartite graph. In fact, an inspection of
their proof reveals that their algorithm is O(n d® 7 Bell()),
where d is the maximum degree of the tree. Bell(k)
denotes the kth Bell number, which is the number of
unordered partitions of k items; these numbers are known

k k
to satisfy the bounds (el’—r‘lk) < Bell (k) < (ﬁ) (7].

Their recursion at a given internal node iterates over every
unordered partition of the nonconvex colors, constructing
a bipartite graph with edge weightings determined by the
sizes of subcolorings of subtrees using those color sets for
the set of excluded colors. Applying the Hungarian algo-
rithm to each such graph results in optimal solutions for
every possible set of colors to exclude from the subtree at
that internal node. Because every unordered partition of
the non-convex colors is considered, the algorithm is
exponential in 7. For the case of general (i.e. not just leaf)
colorings, Moran and Snir show that a dynamic program
gives an O (1 7 d**?) algorithm. This of course also gives
the same bound for leaf colorings.

The work of Moran and Snir was followed up by
many authors. For leaf-colored trees, Bachoore and Bod-
laender [8] propose a collection of reductions to simplify
the problem under investigation. These reductions



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

encode some of the logic of the algorithm presented
here, such as that trees that have disjoint color sets can
be solved independently. They also use the fact that
nonconvexity can be expressed in terms of the crossings
of paths connecting leaves of the same color to show
that the recoloring problem can be solved in O(14°"T)
time, where OPT is the optimal number of uncolored
leaves. Note that this sort of bound is different than
those described above, as OPT can get large even when
the total number of bad colors is small. The work for
the general case culminated in the work of Ponta, Hiiff-
ner, and Niedermeier [9], who use the childwise iterative
approach to dynamic programing to construct an algo-
rithm of complexity O(n 7 37).

For trees built from real data, taxonomic identifiers
are not randomly spread across the tree in a uniform
fashion. For example, species-level mislabeling will lead
to trees that are mostly convex with a couple of outliers,
while a horizontal gene transfer will effectively “trans-
plant” one clade into another. In both of these situations
there is a non-uniform distribution of taxonomic identi-
fiers across the tree, and nonconvexity in these cases
may be local. Indeed, in Figure 4 we show the relation-
ship between the badness 8 and the total number of bad
colors 7 for our example trees, showing that the badness
B is significantly smaller than the total badness on a col-
lection of phylogenetic trees for non-marker genes. This
motivates the search for a fixed parameter tractable
algorithm that is exponential in f3 rather than 7.

Furthermore, phylogenetics is typically concerned with
a setting of trees with small degree. For example, many
commonly used phylogenetic inference packages such as
RAxML [10] and FastTree [11] only return bifurcating
trees; these sorts of programs are the intended source of
trees for our algorithm. Even when multifurcations are
allowed, the setting of interest is that of degree much
smaller than  or 7, which has ramifications for algo-
rithm choice as described below.

Algorithm

In this section we present our algorithm, which makes
two improvements over previous work for the parameter
regime of interest. First, it restricts attention to cut col-
ors, resulting in an algorithm that is exponential in
rather than z. Still, such a complete recursion evaluates
many sub-solutions that do not end up being used.
Because the problem is NP-hard, we cannot avoid some
such evaluation, but we might hope to do better than
evaluating everything.

This motivates the second aspect, a branch and bound
strategy that can make orders of magnitude improve-
ments in the run time of the algorithm. In order to
make the branch and bound algorithm possible, the
algorithm enumerates all legal color allocations first,
and ranks them according to the upper bound function.

Page 5 of 11

By bounding the size of a solution for a given color allo-
cation, we can avoid fully evaluating the sub-solution for
that color allocation. A simple way of bounding the size
of a solution for a color allocation is the maximal size
of the solution when convexity is ignored.

Given a rooted subtree T’ of T, the root edge of T” in
T is the edge connecting the root of 7" to the rest of T .

Definition 6. Given a rooted subtree T" of T, define
K(T’) to be the colors of y cut by the root edge T as it
sits inside T.

Assume that T has been embedded in the plane, and
that every internal node has been uniquely labeled. For
every such label i let £(i) be the ordered tuple of labels
of the nodes directly descendant from i in the tree, let T'
(i) be the subtree below i, and use x(i) as shorthand for
k(T(i)). Vector subscript notation will be used to index
both #(i) and the color set -tuples defined next; i.e. £(i);
is the jth entry of t(i).

Definition 7. A color set k-tuple is an ordered k-tuple
of subsets of C. They will be denoted with .

These color set k-tuples will represent the allocation
of colors to subtrees. We will ensure convexity of these
color allocations using the following two definitions.

Definition 8. Given a color set k-tuple 1,

Am) = Jm
and
B(x) = | (mi nm).

i<j

Definition 9. An almost partition of Y € C is an
ordered 2-tuple (b, ) where b € C and m is a color set
k-tuple such that A(rr) = Y and B(rr) € {b}.

These will be the color allocations at a given internal
node x with color b; this definition guarantees convexity
locally, such that the b color is a legal color for the
internal node. As described in the Introduction, we
would like to primarily restrict our attention to cut col-
ors, but this requires some attention because not all of
the colors that need to be allocated at a given internal
node are necessarily cut by the edge above that node.
This motivates the following definition, which describes
how all of the colors that are cut on the edges around a
given internal node i are available for allocation at i
except for those colors that are in (i) but not in X.

Definition 10. Given i an internal node index and
X € k(i) define

GG, X) = XU

U < () \« @

jet(



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8 Page 6 of 11
http://www.almob.org/content/7/1/8

) C °
.
.
120 - o ° i
)
o o
L)
e ° °
® oo
°
100 - A
8 o
.
80 = o
°
l_)
60 -
40 -
20-
| | | | | |
20 40 60 80 100 120
Figure 4 Local versus global nonconvexity. The relationship between S, a local measure of nonconvexity, and 7, a global measure, for our
example data set. Each point represents a single phylogenetic tree with taxonomic assignments at a given rank.

G(i, X) will be called the colors in play for (i, X). cut set X such that the color ¢ is just above X. The first
Definition 11. Assume we are given an internal node  condition ensures that the color allocation for each sub-
i, X € k(i), and c € C. A legal color allocation for (i, ¢,  tree sits inside the correct set of cut colors. The second

X) is an almost partition (b, ) of G(i, X) such that condition says that an internal node must take on any
1. 7; < k(i) color found above and below it.
2. ifce Xthenb =c. Definition 12. An implicit subcoloring for T’ is a
Denote the set of such legal color allocations with A(i,  choice of (b(i), n(i)) € A(i) for every i € N(T") satisfying
¢ X), and let A(i) = U, x AG, ¢ X). the following compatibility property for every k € t(i):

These color allocations are exactly the set of choices ) )
that are allowed when developing a subsolution for a (b(k), 7 (k) € A(k, b(D), p(i)r)-



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

That is, the color allocation for every node descending
from i is a legal color allocation given the choices of b(i)
and (i) made at i.

As described in the Introduction, an implicit subcolor-
ing defines an actual subcoloring via the implicit subco-
loring just proximal to leaf nodes. Indeed, say £(i); is a
leaf, and that (b(i), 7z(i)) is the color allocation for inter-
nal node i. Then 7(i); is empty or a single element by
definition, and the color for leaf £(i); is used in the sub-
coloring if 7(i); # &. Every convex subcoloring can be
written in this form.

Proposition 1. Implicit subcolorings define convex
colorings.

Proof. Assume an implicit subcoloring {(b(j), 7()))}ic &
(n)- Let x be the coloring defined by an implicit subco-
loring. If y is not convex, then there is an edge e such
that |x (e)] > 2. Say {a, b} C i (e) . Without loss of
generality, the colors will be positioned as in one of the
two cases depicted in Figure 5 (note that the subtrees
marked a, b can contain other colors in addition to
these). In case (i), |B(7(i))| = 2, contradicting the defini-
tion of an almost partition. In case (ii), b(i;) is a by the
definition of almost partition because a € B(5(i;)). Then
b(i) = a for every i between i; and i,, inclusive, by part 2
of Definition 11 and Definition 12. However, b € B
(72(i)), contradicting the definition of almost partition. O

With this in mind, we can now speak of the size of an
implicit subcoloring as the size of its associated convex
subcoloring. The goal, then, is to find the largest impli-
cit subcoloring.

Theorem 1. There is an O(n d B> 2B (d-1)"P'?) com-
plexity algorithm to solve the subcoloring problem for
leaf labeled trees.

Proof. For every internal node i, define the question
domain Q(i) to be C x 2°9. An answer map at internal
node i (resp. answer size map) is a map Y — A(i) (resp.
Y —» N) for some Y € Q(i).

() (i)

ab ab ab

Figure 5 Two potential settings for nonconvexity along an
edge e in the proof of Proposition 1.

Page 7 of 11

We will fill out an answer map ¢; and an answer size
map o; as needed at every internal node i recursively as
follows. For a given i, say we are given a question (¢, X)
e Q(i). If i is a leaf, then ¢;(c, X) = X and w (¢, X) = |X].
Otherwise, say there are ¢ descendants of i. For each (b,
m) € A, ¢, X), find the answers #ui); (b, 1), and their
associated @t(); by recursion. Let

67),' (b, 7'[) = Z a)[(i)j (b, 7Tj).

1<j<t

Let w;(cc X) be the maximum value of
@; (b, ) for (b, ) € A (i, ¢, X), and let ¢;(c, X) be the
(b, m) obtaining this maximum, concluding the recursive
step. The result of this recursion after starting at the root
with every color for ¢ will be a collection of answer maps
for every i.

These maps define an implicit subcoloring. This can
be seen by descending through the tree recursively,
using the ¢; to get almost partitions from questions and
passing the resulting questions onto subtrees. Specifi-
cally, for question (¢, X) at internal node i, let (b(i),
n(i)): = ¢i(c, X) then recur by passing question (b(i),,
7n(i);) to %u; for every descendant j. Start at the root
(call its index p), pick the color ¢, maximizing w, (c,,
@), and begin the recursion with (c,, ©).

This subcoloring is maximal by construction. The
assertion is clear for 1-leaf trees. Now say that the
algorithm finds optimal solutions for all allocations of
colors to trees of less than # leaves. Then, given a tree
on 7 leaves and an allocation of colors to the root, the
algorithm tries every legal allocation of those colors to
each of the subtrees and taxes the maximum thereof.
Because every legal color allocation is tried, and the
algorithm finds maximal subcolorings for each of the
subtrees, the subcoloring for the entire tree must be
maximal.

The computation required for a single internal node is
as follows. The number of colors in play is bounded above
by dff /2, as each color in play must be cut in at least two
edges. Thus, for a given question (¢, X) and color b for the
internal node, choosing the allocation can take (d - l)dﬁ 2
steps for the colors other than b, while deciding where b is
present can take 27 trials. There are at most $2° choices of
question and df3/2 choices of internal node color for a
given internal node.

There are O(n) internal nodes, giving the bound. O

An upper bound for @ can be used to construct a
branch and bound recursion as follows.

Algorithm 1 (Branch and bound recursion to find opti-
mal implicit subcoloring). Assume a function
vi (b, m) > @ (b, &) for all (b, m) € A(i). Proceed as in
the proof of Theorem 1, with the following modification.



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

For a given internal node i with c€ C and X S (i), find ¢,

(¢, X) as follows:

1. sort the elements (b, 1) of A(i, ¢, X) in decreasing
size with respect to v;.
2. proceed down this ordered list as follows, starting
with q = 0:
(a) compute @b, ) ; if g < @; (b, m) thensetq = @; (b, 7)
(b) call the next item in the ordered list (¥, ). If
q =2 v; (b, ') then stop, otherwise recur to (a)
3. let ¢ic, X) be the (b, 1) corresponding to q.

The correctness of this algorithm follows directly from
Theorem 1, as the only solutions that are thrown away
are strictly sub-optimal.

A simple upper bound is the number of leaves that
could be used given the restrictions in 7z but ignoring con-
vexity. That is, let v; (X) be the number of leaves of T7(i)

with colors in X. Then define vi (b, 7) = Zj Vi, (75).

This upper bound gives significant improvement in time
used over the algorithm in Theorem 1 (Figure 6).

Computer implementation

The original algorithm described in Theorem 1 and the
branch and bound algorithm in Algorithm 1 have been
implemented in the rppr binary of the pplacer suite of pro-
grams (http://matsen.thcrc.org/pplacer). The code is in
written in OCaml [12], an appropriate choice as it has O
(log n) immutable set operations in the standard library.
The input can either be a “reference package” containing
both taxonomic and phylogenetic information, or simply a
phylogenetic tree along with a comma separated value file
specifying the color assignments. Our implementation has
been validated using an independent “brute-force” imple-
mentation in Python; the two codes return identical results
on a testing corpus consisting of all colorings on all trees
of three to eight leaves with up to six colors. These trees
and results can be downloaded at http://matsen.thcrc.org/
pplacer/data/convexify-validation.tar.gz. The algorithm is
invoked via a single command line call, which outputs a
list of uncolored taxa for every nonconvex taxonomic rank
as well as displaying them on a taxonomically labeled tree
by highlighting them in red.

One time saving difference between our implementation
and the algorithm described in the previous section is that
the computer implementation has a notion of “no color.”
This is motivated by the fact that in the case that ¢ ¢ X
and B(m) is empty for an internal node i, there are a num-
ber of colorings of i that will provide a convex subtree. By
collapsing all of the possible colors into a single “no color”
in this case, we gain some savings in time and memory.

The “no color” version of the algorithm can also be
used to solve the case of strong convexity described in

Page 8 of 11

the Introduction. Specifically, restricting every internal
node to have no color except for the internal nodes of
subtrees that consist of entirely one color leads to an
algorithm for strong convexity. This strong convexity
version is available via a command line flag.

The data set used as a test set was a collection of 100
trees built from automatically recruiting sequences via a
BLAST search via HMMs built from COG [13] align-
ments. Taxonomic identifiers for the various ranks were
found using the taxtastic software, available at http://
github.com/fhcre/taxtastic. Each trial was run three times
and the results averaged; if any of the runs did not finish
in 8 hours, exceeded 16 G RAM usage, or encountered a
stack overflow, the trial was marked as “DNF.” Every trial
that completed according to these criteria using the full
recursion also completed using the branch-and-bound.
Colored trees with badness strictly greater than 14 were
excluded from Figure 6, as were trials that did not com-
plete using either algorithm. The full recursion and the
branch and bound implementations only differ by a
switch that controls if the algorithm terminates early.
Trials run on Intel Xeon (X5650) cluster nodes with 48
G of RAM. This test data set is available upon request.

Taxonomic rooting
Researchers generally like to root phylogenetic trees in a
way that the progression along edges from the root to
the leaves is one of evolutionary descent. There are a
number of ways of achieving this, from using outgroups
to using non-reversible models of mutation [14]. How-
ever, there has been surprisingly little work on one of
the most commonly used informal means of rerooting,
which is by using taxonomic classifications. By that we
mean looking for a rooting such that the leaf sets of the
descendant subtrees each have a single taxonomic classi-
fication at the highest taxonomic rank that contains
multiple taxonomic identifiers. Here we formalize this
process and describe algorithms for finding the taxo-
nomic root or roots.

The work in this section will be based on the follow-
ing formalization of ranks in taxonomies.

Definition 13. A rank function for a set U is a map
rk: 2> N such that

max (rk (A) , 1k (B)) < rk(A U B)

for all A and B in 2%

It follows immediately that rk(A) < rk(B) when A € B
e 2% By an abuse of notation, we also let rk(T) signify
rk(L(T)) for a (sub)tree T with leaf set in the domain of
the rank function. From a taxonomic perspective, rk(U)
will represent the rank of the most specific taxonomic
classification containing all of the taxonomic labels in U.
For this section, a taxonomically labeled phylogenetic


http://matsen.fhcrc.org/pplacer
http://matsen.fhcrc.org/pplacer/data/convexify-validation.tar.gz
http://matsen.fhcrc.org/pplacer/data/convexify-validation.tar.gz
http://github.com/fhcrc/taxtastic
http://github.com/fhcrc/taxtastic

Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

Page 9 of 11

DNF - A A
16384 -
°
8192 - o
3 e
= 4096 -
= °
S 2048-
k= °
g 1024 - |
x °
() ® o
©T b512- S o o
c
> ° °®
8 256-
|
©
% 128 - e o ©
|
< o®
8 64 -
g
S g2- .
S 16-
Q 1
8 8- ¢ o o
© 5
% 4 - (Y oo ¢ =
— o ® 0% oo
© ®9 .0 ©° o o
2- 0 %00 %
-"g : “:~o? ¢ ®e °
© ° °
o 1- ° .0::6.‘:0 o... °
‘.. CLJ
ro
0.5- ° oog °
[ )] (X' oo
0.25-
| | |
1e-02 1e-01 1e+00

(blue) to 14 (red).

A AAA A A A A AL AMAM M
°
°
°
°
°
°
°
°
4
°
°
°
°® ° ° LY
[ ] [ ] ... ... * ) ' .. °
o ()
S ° ] ¢ ° e
°® :o. ® e o © * e’ A ¢ °
H P4 ° ° ° o O .., LY
° c o °®
... 'Y ° [ )
°
| | | |
1e+01 1e+02 1e+03 1e+04

Time for branch—-and-bound recursion (s)

Figure 6 Runtime comparison. Runtime comparison between the full recursion (Theorem 1) to the branch and bound (Algorithm 1). “DNF”
means that the full recursion did not finish in the time and memory allotted. Symbols colored according to their badness B, ranging from 4

tree is one for which we have a rank function on the
leaves.

Given x a node of T, let W(x; T) represent the set of
trees obtained by rooting T at x and deleting x and its
incident edges from T .

Definition 14. Define the subrank subrk(x; T) to be
maXse w1y 'K(S), the maximum rank of the subtrees of
T when rooted at x. We will say x is a delicate taxo-
nomic root of T if

brk (x; T) = i brk (y; T).
subrk (x; T) yrerbl(l%)sur(y )

This definition formalizes an intuitive definition of
taxonomic root. For example, imagine that we have a
tree with the three domains of cellular life in three dis-
tinct subtrees: Bacteria, Archaea, and Eukaryota; call the
internal node that sits between these subtrees x. The
subrank of x is domain. Any other internal node will
contain some of each of the domains, and thus will have



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

rank strictly higher than domain. In this case, x is the
unique taxonomic root.

However, if the tree is not convex at the subrank of the
delicate taxonomic root then every internal node will be
a delicate taxonomic root; thus the “delicate” terminol-
ogy. Indeed, assume an internal node y and 4, B e ¥(y;
T) such that aq, a, € L(A), by, by S L(B), and subrk(a,
a,) = subrk(by, by) = subrk(T). Then for any rooting,
there must exist a subtree containing either {a;, a,} or
{b1, by}, and the subrank must be equal to that of 7.

We now develop a more robust definition of taxo-
nomic root, which will require several definitions. The
edges of the tree will be thought of as unordered pairs
{x, ¥} of nodes.

Definition 15. An arrow on an edge {x, y} is an
ordered pair of nodes (x, y). The first node of the pair is
called the origin of the arrow, and the second is called
the direction.

Definition 16. An arrow tree (T,.A) is an ordered
pair consisting of a tree T and a set of arrows A on the
edges of T. A complete arrow tree is an arrow tree such
that for every node x of the tree there is some arrow in
A with origin x.

Note that (x, y) and (y, x) may both be part of an
arrow set for a tree with an edge {x, y}. We will use
“pointing towards” and “pointing away” in their usual
senses as they relate to arrows in the real world.

Definition 17. The induced arrow tree (T, A)for a
tree T and a rank function 1K is a complete arrow tree
defined as follows. For a given internal node x € N(T),
say {S1, - -+ S} = WY(w T) and let r; = rk(S;) for 1 < i
n. Assume without loss of generality that ri < ry < - - -
ry. There is some minimal 1 < j < n such that r; = - - -
r,. Let A, be

ININ

{(x,y) ly is the root of one of Sj, - -+, Sp}.

Then Ais the union of the A,for all nodes x along
with the set of (x, y) where x is a leaf and y is adjacent
to x.

Intuitively, induced arrows point towards potential
taxonomic roots.

Lemma 1. Say (T, A)is an induced arrow tree for a
rank function rk, and that {x, y} and {y, z} are adjacent
edges of T. If (y,z) € Athen (x,y) € A.

Proof. When x is a leaf, (x,y) € A is automatic, thus
assume it is not. Using terminology from Figure 7,
because (y,z) € A,

rk(Ri U---URp) <1k).
This implies that

tk(R) <tk U) <rtk(S;U---US Ul

Page 10 of 11

Figure 7 lllustration of Lemma 1.

and thus that (x,y) € A. D

Induction on the edges of a path shows the following:

Corollary 1. Say (T, A)is an induced arrow tree, and
that {u, v} and {x, y} are edges of T such that the path
from u to y contains both v and x. If (x,y) € Athen
(wmv)e A. D

Informally, this corollary says that any time there is an
arrow on edge e, pointing away from edge e;, that there
must be an arrow on e; pointing towards e;.

Definition 18. A multi arrow node (MAN) for a taxo-
nomically labeled tree is a node x such that there are
two or more arrows in the induced arrow tree with x as
an origin.

Proposition 2. Say (T, A)is an induced arrow tree. If
node x is a MAN then for any node y there must be an
arrow in A with origin y pointing towards x.

Proof. Since x is a MAN, there must be at least one
arrow in 4 with origin x pointing away from y. This
implies the proposition by Corollary 1. O

Now imagine that x and z are two MANS, and y is on
the path between x and z. By the above proposition,
there must be arrows with origin y pointing towards
both x and z, showing that y will be a MAN. Thus:

Proposition 3. MANs form a convex set in the tree. D

Definition 19. An edge {x, y} is a bi-arrow edge of an
arrow set A if (x, y) and (y, x) are in A.

Proposition 4. If the set of MANs is empty, then there
is exactly one bi-arrow edge.

Proof. First note that there cannot be two or more bi-
arrow edges when the set of MANSs is empty; in that
case by Corollary 1 there would have to be a MAN
between them. Now assume there are no bi-arrow
edges. Since the set of MANs is empty, then for every
leaf of the tree the sequence of nodes determined by fol-
lowing arrows is well defined. Note that the arrow on
every leaf is pointing into the interior of the tree, and
thus the sequence of nodes starting from an arbitrary
leaf cannot hit another leaf. Therefore the sequence of



Matsen and Gallagher Algorithms for Molecular Biology 2012, 7:8
http://www.almob.org/content/7/1/8

nodes must backtrack somewhere, contradicting that
there are no bi-arrow edges. O

Definition 20. Assume a taxonomically labeled tree T.
If there is at least one MAN then define the set of taxo-
nomic roots to be the set of MANs. Otherwise define it to
be the set of nodes of the bi-arrow edge.

Let diam(7T) be the node-diameter of T, i.e. the num-
ber of steps from edge to edge required to traverse the
tree. Because every arrow with a non-root origin points
in the direction of the taxonomic roots:

Proposition 5. A taxonomic root for a tree T with n
leaves can be found in at most diam(T) steps. O

Computer implementation

Taxonomic rerooting has been implemented in the rppr
binary of the pplacer suite of programs (http://matsen.
therc.org/pplacer). However, rather than finding all pos-
sible taxonomic roots as described above, the program
reports one of the roots after applying the maximal sub-
coloring algorithm as described in the previous section
to the highest multiply occupied taxonomic rank. Such
a root is the closest approximation to the one “best”
taxonomic root in the presence of nonconvexity.

Conclusions and future work

We have formalized the question of describing the dis-
cordance of a phylogenetic tree with its taxonomic clas-
sifications in terms of a convex subcoloring problem
previously described in the literature. This coloring pro-
blem has some elegant solutions for the general case,
but the parameter regime of interest here consists of
trees of small degree and local nonconvexity. These con-
siderations motivate a solution that solves a given recur-
sion for as few “questions” as possible. The first
component of this is to restrict attention to cut colors,
resulting in a smaller base for the exponential complex-
ity (Figure 4). The second is a branch and bound algo-
rithm that gives a significant improvement in runtime
compared to the algorithm in Theorem 1 (Figure 6). To
enable this the ¢; are only built up “upon demand,” that
is, when a given question is asked. The implementation
described here is the first of which we are aware, and
certainly the first that conveniently integrates with taxo-
nomic annotation.

We also develop the first formalism for taxonomic
rooting of phylogenetic trees, show that the obvious
definition is useless in the presence of nonconvexity,
and develop a more robust definition. This version can
be found in time linear in the diameter in the tree.

We are currently developing a computational pipeline
to find misclassified sequences in public databases using
these algorithms. We are also using these algorithms
together to develop a collection of automatically curated
“reference packages” that bring together taxonomic and

Page 11 of 11

phylogenetic for the purposes of environmental short
read classification, visualization, and comparison.

Acknowledgements

This work was motivated by joint work with David Fredricks, Noah Hoffman,
Martin Morgan, and Sujatha Srinivasan at the Fred Hutchinson Cancer
Research Center. We are especially grateful to Noah Hoffman for providing
feedback on early results of the algorithm, to Shlomo Moran and Sagi Snir
for help understanding their algorithm, and to Robin Kodner for allowing
the COG trees to be used as test data for our algorithm. Both authors were
supported in part by NIH grant HG005966-01.

Authors’ contributions

FAM conceived of the project, designed the algorithms, and wrote the
paper. AG designed the algorithms and implemented the algorithms and
validations. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 30 September 2011 Accepted: 2 May 2012
Published: 2 May 2012

References

1. Dalevi D, DeSantis T, Fredslund J, Andersen G, Markowitz V, Hugenholtz P:
Automated group assignment in large phylogenetic trees using GRUNT:
GRouping, Ungrouping, Naming Tool. BMC Bioinformatics 2007, 8:402.

2. McDonald D, Price M, Goodrich J, Nawrocki E, DeSantis T, Probst A,
Andersen G, Knight R, Hugenholtz P: An improved Greengenes taxonomy
with explicit ranks for ecological and evolutionary analyses of bacteria
and archaea. The ISME Journal 2012, 6:610-618.

3. Moran S, Snir S: Efficient approximation of convex recolorings. Journal of
Computer and System Sciences 2007, 73:1078-1089.

4. Moran S, Snir S: Convex recolorings of strings and trees: Definitions,
hardness results and algorithms. Journal of Computer and System Sciences
2008, 74(5):850-869.

5. Hein J, Jiang T, Wang L, Zhang K: On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics 1996, 71(1-3):153-169.

6. Bodlaender HL, Fellows MR, Langston MA, Ragan MA, Rosamond FA,
Weyer M: Quadratic kernelization for convex recoloring of trees.
Proceedings of COCOON 2007. Springer 2007, 86-96.

7. Berend D, Tassa T: Improved bounds on Bell numbers and on moments
of sums of random variables. Probability and Mathematical Statistics 2010,
30(2).

8. Bachoore E, Bodlaender H: Convex recoloring of leaf-colored trees. Proc
3rd ACID. Texts in Algorithmics 2006, 9:19-33.

9. Ponta O, Huffner F, Niedermeier R: Speeding up dynamic programming
for some NP-hard graph recoloring problems. Proceedings of the 5th
international conference on Theory and applications of models of
computation Springer-Verlag; 2008, 490-501.

10.  Stamatakis A: RAXML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics 2006,
22(21):2688.

11, Price M, Dehal P, Arkin A: FastTree 2-approximately maximum-likelihood
trees for large alignments. PLoS One 2010, 5(3):29490.

12. OCaml. [http://caml.inria.fr/ocaml/index.en.html].

13. Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D,
Mazumder R, Mekhedov S, Nikolskaya A, et al: The COG database: an
updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.

14. Yap VB, Speed T. Rooting a phylogenetic tree with nonreversible
substitution models. BMC Evolutionary Biology 2005, 5:2.

doi:10.1186/1748-7188-7-8

Cite this article as: Matsen and Gallagher: Reconciling taxonomy and
phylogenetic inference: formalism and algorithms for describing
discord and inferring taxonomic roots. Algorithms for Molecular Biology
2012 7:8.


http://matsen.fhcrc.org/pplacer
http://matsen.fhcrc.org/pplacer
http://www.ncbi.nlm.nih.gov/pubmed/17949484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17949484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22134646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22134646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22134646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://caml.inria.fr/ocaml/index.en.html
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15629063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15629063?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Expressing the differences between a taxonomy and a phylogeny
	Informal introduction
	Definitions and algorithms
	Previous work and motivation for present algorithm
	Algorithm

	Computer implementation

	Taxonomic rooting
	Computer implementation

	Conclusions and future work
	Acknowledgements
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


