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The true revolution in the age of digital neuroanatomy is the ability to extensively quantify
anatomical structures and thus investigate structure-function relationships in great detail.
To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a
MATLAB-based software that can be used to detect patterns in the 3D distribution of
cells. RipleyGUI uses Ripley’s K -function to analyze spatial distributions. In addition the
software contains statistical tools to determine quantitative statistical differences, and
tools for spatial transformations that are useful for analyzing non-stationary point patterns.
The software has a graphical user interface making it easy to use without programming
experience, and an extensive user manual explaining the basic concepts underlying the
different statistical tools used to analyze spatial point patterns. The described analysis
tool can be used for determining the spatial organization of neurons that is important for
a detailed study of structure-function relationships. For example, neocortex that can be
subdivided into six layers based on cell density and cell types can also be analyzed in
terms of organizational principles distinguishing the layers.
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INTRODUCTION
Determining the spatial distribution of cells is important for
projects aiming at large scale re-constructions of neuronal net-
works (Heintz, 2004; Markram, 2006; Smith, 2007; Helmstaedter
et al., 2008; Lichtman et al., 2008; Defelipe, 2010; Oberlaender
et al., 2012).

If a certain neurological disorder can be correlated with a
change in the cell distribution, this data is of course not suf-
ficient to explain the disease, but can rather help understand
how connectivity might have been affected (Landau et al., 2004;
Landau and Everall, 2008; Armstrong, 2010). Analyzing changes
in connectivity can be much more painstaking than simply ana-
lyzing a re-distribution in soma locations. The changes that
these alterations in soma distributions cause for the connectiv-
ity can subsequently be analyzed using computational model-
ing of large-scale anatomical networks (Eberhard et al., 2006;
Gleeson et al., 2007; Koene et al., 2009; Zubler and Douglas,
2009; Lang et al., 2011). On a larger scale it is known that
the brain can be divided into different anatomical and func-
tional areas, but less is known about the functional significance
of ordered structures on a smaller scale such as for example
the dendrite bundles from layer 5B cells (Krieger et al., 2007)
or even cortical columns (Horton and Adams, 2005; Rockland,
2010). To fully explore the potential of the large data sets, which

Abbreviations: CSR, Complete Spatial Randomness; GUI, Graphical User
Interface; BTSS, Between-Treatment Sum of Squares; K̂ , estimated value of the
K-function; E[K̂(t)], expected K-function; EGFP, enhanced green fluorescent
protein.

can be obtained using imaging and digitization techniques, it is
necessary to develop automatized analysis tools (Wearne et al.,
2005; Bjaalie, 2008; Oberlaender et al., 2009; Meijering, 2010;
Meyer et al., 2010). In this paper we describe such a software
tool and exemplify its use for analyzing neuron distributions in
neocortex.

A spatial point pattern is a set of locations, or events, within a
specified region (Diggle, 2003). The events are irregularly placed
and are modeled as the result of an unknown underlying stochas-
tic process, referred to as a spatial point process. We can think
of the distribution of neurons as the result of one such pro-
cess. Analysis of spatial point patterns is a mathematical tool that
allows us to obtain a quantified readout of the organization of
neurons.

When exploring the properties of an unknown spatial dis-
tribution, the first step is to look at the intensity. The inten-
sity, lambda, can be estimated as the average number of events
per unit volume. A spatial distribution is also characterized
by its second-order properties, that is, how events distribute
in relation to each other. Ripley’s K-function is a method
for exploring second-order properties in n-dimensions (Ripley,
1979, 1988; Baddeley et al., 1993; Diggle, 2003; Mattfeldt,
2005; Eglen et al., 2008; Jafari-Mamaghani et al., 2010; Millet
et al., 2011). The three-dimensional case requires more elab-
orated methods for edge correction (Baddeley et al., 1993;
Eglen et al., 2008; Jafari-Mamaghani et al., 2010). We pro-
vide a MATLAB-based software for various analytical uses of
Ripley’s K-function using the 3D edge correction term developed
in (Jafari-Mamaghani et al., 2010) which in contrast to other
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edge correction terms (Baddeley et al., 1993) is based on the
exact evaluation of volumes rather than calculations of surface
areas.

Examples of software for spatial analysis of 2D and 3D data,
respectively, is PAST and SpPACK, which has an impressive num-
ber of functions (Hammer et al., 2001; Perry, 2004), and SA3D
and PASSaGE (Eglen et al., 2008; Rosenberg and Anderson,
2011) that evaluates Voronoi tessellations, nearest neighbor dis-
tance and estimates Ripley’s K-function. The software presented
in this paper, RipleyGUI, focuses on using Ripley’s K-function
and in contrast to existing software includes statistical tools that
allow the user to easily compare cell distributions, thus providing
methods for a more thorough analysis of the data. Furthermore
RipleyGUI handles sets of data for analyzing the mean and vari-
ance of the estimated K-function within a data set, and through
comparison with distributions following complete spatial ran-
domness (CSR), the statistical significance level of all findings
can be calculated. An important complement and improvement
to existing software are thus the statistical tools implemented
in RipleyGUI to determine statistically significant differences.
RipleyGUI is written in MATLAB which is commonly used by
experimental scientists and can thus easily be integrated with
other analysis plugins.

IMPLEMENTATION
COMPUTING ENVIRONMENT
RipleyGUI has been developed using MATLAB 7.1. The only
requirement to run RipleyGUI is to have MATLAB, preferably ver-
sion 7.0 or later, with the Statistics toolbox. RipleyGUI has been
tested on Windows XP, Windows Vista, Ubuntu, and Mac OS X.
Nevertheless, given the cross-platform nature of MATLAB, it can
be used with any Unix, Macintosh, or Windows environment.
The software is distributed as an open-source software with a user
manual.

RipeyGUI requires only basic experience and knowledge of
MATLAB. The user should be familiar with the MATLAB envi-
ronment and MATLAB path definitions. RipleyGUI is started
by typing “RipleyGUI” in the MATLAB command window
(a detailed explanation is given in the accompanying manual).
The user can now interact with a graphical interface without the
need of any implementation of MATLAB commands. Further
analysis can be done by embedding the generated data into
MATLAB’s workspace.

DATA INPUT/OUTPUT
The state of RipleyGUI including all calculated functions can be
saved in native MATLAB format at any time to be retrieved later.
All figures can be opened in separate MATLAB windows from
where they can be saved in all formats supported by MATLAB,
such as .jpg, .png, or .fig. RipleyGUI loads neuron distribu-
tions from single files or from folders with files. When single
files are loaded the defaults file format is “∗.ascii” but selecting
in the import dialog “All files” also “.txt” and “.csv” files can
be imported. If files are imported in the import “Set” option
the imported files must be in the “∗.ascii” format. This enables
the user to keep comments in “.txt” format in the same folder
as the files that will be analyzed with RipleyGUI. Necessary in

both cases is that the file has no headings and three columns (cor-
responding to the x, y, and z values) separated by comma, tab, or
space.

REFERENCE DISTRIBUTIONS
To help the user get familiar with the K-function and how it
behaves for different types of distributions RipleyGUI contains
functions for generating some basic distributions with a user
defined volume and intensity. The distributions are based on the
intensity parameter and the underlying stochastic process.

The reference distributions include (1) the homogenous
Poisson process, (2) the simple Poisson inhibition process, (3) the
Poisson cluster process, and (4) the Poisson inhibited cluster pro-
cess. These processes are also elaborated on in the RipleyGUI User
Manual.

The homogenous poisson process (CSR)
In the Homogenous Poisson Process, events are placed randomly
and independently in a 3D region. The distribution of the events
is assumed to follow CSR. They can be generated for different val-
ues of lambda, the intensity of the process. The total number of
events depends on lambda (λ) and the size of the volume (V),
(number of events = λ× V).

Simple poisson inhibition process
In an inhibited or sparse distribution events are less likely to
appear close to other events. A simple inhibition distribution
is created through generation of independent events where any
event closer than a certain distance to an earlier event is discarded.
New events are generated until the desired intensity is reached.
This type of distribution can be used to take the cell size into
account when mimicking a situation where cells are placed ran-
domly and independently, and where events cannot be closer than
the diameter of the cells. The constraint on event proximity limits
the maximum number of events (see RipleyGUI Manual).

Poisson cluster process
In a clustered, or aggregated, point pattern distribution most
events are closer to their neighbors than expected comparing to a
distribution under CSR. A Poisson cluster distribution is created
from randomly distributed parent events, which independently
from each other create offspring events. Seeding locations of the
offspring are independently and identically distributed according
to an exponential family distribution. Only the offspring are part
of the final distribution (Diggle, 2003). Offspring with a position
outside the volume are placed on the other side of the volume,
that is, the distribution is wrapped along its diagonal.

Poisson inhibited cluster process
This distribution combines the properties of the inhibited and
clustered Poisson processes. This can be a way to take the cell
size into account when mimicking a situation where neurons are
clustered.

STATIONARITY
Station
As an optional feature in RipleyGUI, the Station routine rotates
a sample distribution using a rotation matrix, minimizing the
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volume needed to contain the events in the distribution. The rota-
tion is performed in 2D, the thinnest dimension is ignored during
rotation. This is suitable for distribution regions where parts of
the region are vacant.

Divide
Another RipleyGUI routine Divide cuts a distribution in pieces
along its longest side. (If the longest and second-longest sides are
equal, Divide will have no effect.) This will help station to create
stationary subsets and obtain a more uniformly shaped sample
domain.

DATA ANALYSIS
Ripley’s K-function
RipleyGUI estimates the K-function in three dimensions with
edge correction, and displays plots of how the sample domain
distribution deviates from its expected value. One strength of the
program is that it also manages sets of distributions and allows the
user to estimate the average K-function of the set and compare it
to the expected values of K-functions for a set of distributions
following CSR. The average is weighted so that distributions with
more events influence the average proportionally.

Bootstrapping confidence intervals
When working with sets of distributions, RipleyGUI uses a
bootstrapping method to create confidence intervals around the
estimated K-function average. The upper and lower intervals
within which 95% of the K̂-functions can be expected to fall are
displayed.

Comparing with CSR
To quantify the deviation of a distribution from CSR, RipleyGUI
creates a comparison set of distributions. The comparison set has
the same size and intensity as the distribution being tested but
consists of distributions following CSR. The sample distribution
is compared to the distributions following CSR and RipleyGUI
will test whether or not the hypothesis that the sample distribu-
tion follows CSR can be rejected for different values of distance
t. In calculations with a relatively low number of events the sim-
ulated CSR distribution can appear more inhibited than actually
expected. This occurs as a consequence of how the boundaries are
defined. Boundaries are defined as the maximum span between
events in each dimension and that might be smaller than the
region in which the cell data was acquired, especially in distri-
butions that have few events. This, however, affects the sample
distribution and the simulated distributions following CSR both
in the same direction.

Comparing between data sets
To facilitate for the user to make comparisons between sample
sets RipleyGUI displays the estimated K-functions for up to three
data sets in the same plot. By visually inspecting the overlap
between the estimated K-functions the user will get an overview
of for which t-values the K̂-functions differ. To confirm the dif-
ference between sets RipleyGUI is able to perform between-group
comparisons (Figures 4, 5).

The between-group comparison is based on the hypothesis
that two sets are based on identical point pattern distributions.

Under this hypothesis, replacing a distribution in a set with a
distribution from the other set should not affect the weighted
average K̂-functions. To verify this hypothesis, sets with the same
number of samples as the original data set, chosen randomly from
both sets are created using replacement. This procedure is done
5000 times. A score using a function of sum of squares, is calcu-
lated for each of the 5000 re-samplings and the real sets (Diggle,
2003). The verification of the hypothesis is then reduced to inves-
tigating whether or not the score based on the real sets is likely to
have been produced by the scores under the hypothesis (Diggle,
2003; Jafari-Mamaghani et al., 2010).

INTENDED USE AND FUTURE DIRECTIONS OF THE SOFTWARE
This paper accompanies the first release of RipleyGUI show-
ing how it can be used to analyze the 3D distribution of cells.
Examples from neuroanatomy where this type of analysis can be
used includes the analysis of the spatial distribution of neocortical
layer 5B cell clusters (White and Peters, 1993; Krieger et al., 2007)
and interneurons (Yanez et al., 2005), the vertical alignment of
neurons in frontal cortex (Semendeferi et al., 2011), and the dis-
tribution of cells in the retina (Novelli et al., 2007). The software
is released with an extensive user manual. Future developments
of the program includes (1) re-programming in C to increase the
speed of the edge correction, and (2) add the possibility to use
Ripley’s K-function in 3D for a cross-correlation analysis of two
different populations, thus investigating if cells from two different
populations are attracted or repelled from each other.

APPLICATION
We used RipleyGUI to analyze spatial properties of genetically
labeled layer 5 pyramidal neurons in neocortex. This section can
be used as a guide to interpret the results from RipleyGUI.

RUN RipleyGUI
To run RipleyGUI, type RipleyGUI in your MATLAB command
window; this will open the window shown in Figure 1. It is
now possible to load test distributions as explained in the User
Manual. As an introduction to spatial point patterns the user
can first use the reference distributions (section Reference dis-
tributions) to study the K-function. Spatial point patterns can
be divided into three main categories of patterns (Diggle, 2003):
aggregation, where events tend to attract other events (cluster-
ing); inhibition, where events tend to repel other events and hence
create a more regular pattern (dispersion); and CSR where events
are distributed randomly. A plot of these three different built-in
distributions and the K-function analysis of these distributions
are shown in Figure 2. In RipleyGUI the estimated K-function
is often displayed as the difference between the estimated K-
function [K̂(t)] and the expected (E[K̂(t)]) K-function to make
deviations from the CSR pattern more noticeable. When the esti-
mated K-function value is similar to the expected value from
a distribution following CSR (E[K̂(t)]) the difference |(K̂(t) –
E[K̂(t)])| is close to 0 and we cannot discard that the sample dis-
tribution is following CSR (Figures 2A,D); when the difference is
positive (the values of the estimated K-function are higher than
the expected value from a distribution following CSR) it indi-
cates aggregation (Figures 2B,E); when the difference is negative
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FIGURE 1 | Screenshot of the opening screen of RipleyGUI. The upper
left panel (Create a new distribution) is allocated for distribution
simulations. Each of the four reference distributions (see section
Reference distributions) can be tuned with intensity and other parameters.
The simulated distributions are displayed in the upper center panel (Name).
The lower left panel (Operations on this distribution) is designed for

analysis of the distribution on display in the upper central panel (Name).
The right panel (Operations on all distributions in a chosen set) is designed
for saving, managing, and analyzing single or multiple data sets. The
results of all the analysis can be viewed inside or outside of RipleyGUI
depending on the user’s preference. All analysis-related parameters are
tunable in their corresponding panels.

it indicates inhibition (Figures 2C,F). An estimation of K̂(t) (or
in general any stochastic quantity) is based on sample observa-
tions under given assumptions that might not always be fulfilled.
The expectation (E[K̂(t)]) of a stochastic quantity is the mean
value of the quantity under fulfilled assumptions over the entire
population.

USING RipleyGUI ON EXPERIMENTAL DATA
Corticostriatal cells in visual and somatosensory barrel cortex
The mouse brain samples investigated in the present study were
etv-expressing layer 5A pyramidal neurons projecting to stria-
tum [corticostriatal cells; etv-pyramids (Groh et al., 2010)] sam-
pled from the somatosensory barrel cortex and visual cortex.
Confocal images were acquired from coronal slices 50–100 μm
thick (Figure 3). We chose to analyze for t-values up to 50 μm to
get estimations for the K-function on a varying scale. However,

the most stable results for Ripley’s K-function are for t-values
smaller than 0.25 times the shortest side of the volume (Ripley,
1988; Diggle, 2003; Costa et al., 2007). The distributions of genet-
ically labeled cells (etv-pyramids) were compared in two different
sensory cortices. One aim for such a comparison could be to
investigate if local factors influence the structural arrangement,
and thus presumably the organization of these cell types in micro-
circuits. The distribution of etv-pyramids in both somatosensory
barrel cortex (Jafari-Mamaghani et al., 2010) and visual cortex
(Figures 4, 5) differs significantly from CSR distributions with
the same size and intensity. In the somatosensory barrel cortex
the sample volume was layer 5A and in the visual cortex it was
layer 5 (Groh et al., 2010). The distribution of cells is thus only
analyzed with respect to the organization within a specific layer
(Figure 3). Figure 4A shows the estimated K-function for all the
distributions in the experimental data set (blue lines) and all
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FIGURE 2 | Examples of simulated reference cell distributions. (A,D) The
Homogenous Poisson Process [Complete spatial randomness (CSR)]. The
difference K̂ (t) – E[K̂ (t)] is close to 0 and we cannot discard that the sample

distribution is following CSR. (B,E) K̂ (t) – E[K̂ (t)] is positive indicating
aggregation. (C,F) K̂ (t) – E[K̂ (t)] is negative indicating inhibition (dispersion).
Data was generated using a t-value step 2, and max 30.

the simulated distributions following CSR (red lines) generated
to compare with the experimental data. From visual inspection
one can infer that if the different colored lines are separated it is
likely that one can discard the hypothesis that the target sample
data is based on CSR. The statistical analysis on the existence of
any difference between the estimated K-functions obtained from
the sample data and the distributions following CSR is shown in
Figure 4B. This difference is calculated as the fraction of the K̂-
functions following CSR simulation that are further from E[K̂(t)]
than the sample set’s average K̂-function. When this is less than
0.05 (the black line), we can discard randomness on a significance
level of 0.05. In general the experimental data has negative values
for small t-values (<15 μm) when estimating K̂ (t) – E[K̂ (t)].
When this difference is negative it indicates inhibition, but for
these small t-values the “inhibition” is caused by the cell size since
no cells can be closer to each other than their diameter. While ana-
lyzing the K̂-function one must thus consider the diameter of the
neurons under investigation.

It is important to keep in mind that the deviations from CSR
might be caused by many different factors. If different parts
of the measured distribution have different densities, this will
result in an aggregated pattern, although it is not caused by
actual clusters. Even when stationarity can be guaranteed, we
cannot know anything about the underlying process that causes
the aggregation. The only certain conclusion is that the sample

distribution deviates from CSR. A possible explanation to the
aggregated pattern in this data is that it was sampled over col-
umn borders. As the cell density is slightly higher in the barrel
column than the septa for the etv-pyramids (Groh et al., 2010)
the assumption of stationarity is not entirely fulfilled in this area.

Comparing two experimental cell distributions
The analysis of each data set [etv-pyramids in barrel cortex
(bc) and visual cortex (vc)] thus shows that they are all dis-
tributed with a more or less strong tendency to be aggregated
(Figures 4, 5). Using RipleyGUI one can test if the K-functions
from two experimental distributions are different using the
between-treatments sum of squares, BTSS (see User Manual,
and below). In Figure 5A the estimated K-function of the etv-
pyramids in visual and barrel cortex are plotted. In Figure 5B
the average of K̂ (t) – E[K̂ (t)] is displayed with a 95% con-
fidence interval. The non-overlapping confidence intervals after
t = 20 μm mean that 95% of the bc-etv population does not over-
lap with 95% of the vc-etv population after t = 20 μm (and vice
versa). A more rigorous test, however, of statistical significance
between two sample groups can be performed by utilizing the
between-group statistics and the BTSS test. In plots of between-
group comparisons (Figure 5C), the red square shows the BTSS
value for the real sets and the black curve the accumulated
probability distribution under the null hypothesis (by bootstrap
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FIGURE 3 | Cell count data. (A) Confocal image (z-projection) of a brain slice
showing neurons (gray) labeled with Neuronal Nuclei (NeuN) antibodies, and
genetically EGFP-labeled layer 5a corticostriatal pyramidal cells (green). Scale
bar 50 μm. (B) 2D projection of manually placed markers indicating the
position of NeuN-labeled cell bodies in a brain slice of the somatosensory

mouse cortex cut in the coronal plane. Pia matter is at y = 0, and the y-axis is
distance from pia matter; x-axis is the width of the tissue slice. The six cortical
layers are labeled L1 (Layer 1), etc. The black box shows the approximate
position of the image in (A) and the green box the approximate position of
the EGFP-labeled cells. A sub-section of the image is plotted in 3D in (C).

FIGURE 4 | Comparing a test distribution with a CSR distribution.

Etv-pyramid distributions in visual cortex (vc) are not randomly distributed.
The samples (n = 6) have been divided and rotated (using Divide and Station)
to obtain stationarity. 200 CSR distributions were generated, and used to
create a confidence interval for the CSR hypothesis. (A) The estimated

K -function for etv-pyramids (blue lines) compared to simulated CSR
distributions (red lines). The K -function is estimated for t-values between 4
and 50 μm with a 2 μm step size. (B) P -values from the hypothesis test of
CSR. For t = 18 μm the etv-pyramid distributions differs from CSR with 95%
significance. These types of graphs can be generated with the RipleyGUI.
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FIGURE 5 | Example of how RipleyGUI can be used to compare two

different cell distributions. Etv-pyramids in visual cortex (red lines) and
etv-pyramids in barrel cortex (blue lines). (A) The estimated K -function for
etv-pyramids in visual (vc-etv) and barrel cortex (bc-etv). (B) Average of
estimated K -function with 95% confidence interval for etv-pyramids in visual

and barrel cortex. (C) The BTSS value for the experimental data (red square)
is larger than the BTSS value at the 0.95 quantile of the accumulated
probability distribution. The probability that the compared test distributions
are from the same underlying distribution is thus less than 5%. These types
of graphs can be generated with the RipleyGUI.

resampling). The BTSS value for the between-group compari-
son is calculated over the entire range of t-values for the null
hypothesis that the two sets stem from the same underlying spa-
tial distribution. This BTSS value (the red square) is beyond the
0.95 quantile of the BTSS distribution based on the BTSS values
under the null hypothesis (solid black line). Thus, the probabil-
ity that the BTSS value based on the actual samples belongs to
the bootstrapped distribution is less than 5% and the two sets are
significantly different at 5% significance level.

The aim of this analysis was to show how RipleyGUI can be
used to compare two experimental distributions, the statistical
test that can be used and how the results can be interpreted. The
results show that the structural organization of a given population
of genetically labeled neurons can differ in two sensory cortices.
This difference in spatial soma distribution in combination with
the differences in neuron morphology (Groh et al., 2010) could
indicate that these neuron types are organized according to differ-
ent structure-function relationship principles in the two different

sensory cortices. Larger degrees of aggregation thus means in this
case that etv-pyramids in visual cortex are more packed within a
sphere with a radius of ∼20 μm than expected from a CSR distri-
bution, whereas for etv-pyramids in barrel cortex this is the case
only for a bigger sphere with radius ∼30 μm. How these changes
influence connectivity remains to be investigated combining both
experiments and modeling.

DISCUSSION
We describe a MATLAB-based software for analyzing the spatial
distribution of neurons in 3D. The program has a graphical user
interface making it easy to use without any MATLAB programing
experience. The software is an important addition to a growing
arsenal of computer aided programs (http://www.spatstat.org/;
Perry, 2004; Wearne et al., 2005; Eglen et al., 2008; Rosenberg and
Anderson, 2011) for the analysis of large quantities of structural
data that is becoming available (Heintz, 2004; Jones et al., 2009;
Berlanga et al., 2011). The use of the method is exemplified by
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analyzing the distribution of genetically labeled layer 5 corti-
costriatal cells. We show how this data can be interpreted to
indicate differences in the spatial organization of layer 5 pyra-
midal cells in visual compared to barrel cortex. Conclusive
evidence for these differences would, however, require data
from large sample regions to overcome possible confound-
ing factors such as non-stationarity and non-uniform sample
regions. The developed software tool in combination with exper-
imental techniques that enables physiological measurements
from genetically identified neurons (Groh and Krieger, 2011)
ensures that structure-function relationships can be examined in
great detail.

AVAILABILITY AND REQUIREMENTS
Operating system(s): Platform independent (tested on Windows
XP, and VISTA; Linux Ubuntu; Mac OS X 10.4–10.8). Programing
language: MATLAB. Other requirements: MATLAB 7 or higher,
Statistics toolbox. License: RipleyGUI is distributed free under the

conditions that (1) it shall not be incorporated in software that
is subsequently sold; (2) the authorship of the software shall be
acknowledged in any publication that uses results generated by
the software; (3) this notice shall remain in place in each source
file.
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